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The Josephson effect is a hallmark signature of the superconducting state, which, however, has been sparsely explored
in non-crystalline superconducting materials. Motivated by this, we consider a Josephson junction consisting of two
superconductors with a fractal metallic interlayer, which is patterned as a Sierpiński carpet by removing atomic sites in a
self-similar and scale-invariant manner. We here show that the fractal geometry has direct observable consequences on
the Josephson effect. In particular, we demonstrate that the form of the supercurrent-magnetic field relation as the fractal
generation number increases can be directly related to the self-similar fractal geometry of the normal metallic layer.
Furthermore, the maxima of the corresponding diffraction pattern directly encode the self-repeating fractal structure in
the course of fractal generation, implying that the corresponding magnetic length directly probes the shortest length scale
in the given fractal generation. Our results should motivate future experimental efforts to verify these predictions in
designer quantum materials.

Fractals are paradigmatic non-crystalline structures featuring
a non-integer spatial dimension with a self-similarly repeating
pattern at smaller and smaller length scales, which are rather
ubiquitous in Nature, from living organisms to geological ob-
jects.1 In the quantum realm, they are realized most commonly
in terms of wavefunctions exhibiting a fractal behavior when
electrons confined on a plane are subjected to a perpendicular
magnetic field, e.g. in the Hofstadter butterfly2, as well as in dis-
ordered electronic systems.3,4 The interplay of fractal geometry
in non-integer dimensions and quantum-mechanical collective
behavior of electrons living on fractals has attracted renewed in-
terest with advances in assembling of fractal structures5 and the
experimental observation of the emerging fractal features of the
electronic wavefunctions.6 These observations spurred further
interest in this problem, especially in light of possible nontrivial
topological properties of the electronic wavefunctions on the
fractals.7–16 Quite surprisingly, however, superconductivity in
this context has been rather sparsely explored.17–21 Intrigu-
ingly, a very recent study has however suggested that artificial
fractal geometries can enhance the critical temperature 𝑇𝑐 of
superconductors.18

Superconductivity is a macroscopic quantum phenomenon,
where a large number of electron pairs all condense into the
same macroscopic quantum state. This quantum state can
be described using a macroscopic wave function Ψ(r, 𝑡) =

|Ψ(r, 𝑡) |𝑒𝑖𝜑 (𝑟 ,𝑡 ) . When two different superconductors are con-
nected to the same metal, their wave functions can leak into
the metal and interfere with each other. This can result in
the Josephson effect,22,23 whereby a current that depends on
the phase difference 𝛿𝜑 between the wavefunctions in the two
superconductors flows through the normal metal. Josephson
junctions have found numerous applications, ranging from pre-
cise metrology (e.g. the SQUID) to novel computing paradigms
(e.g. RSFQ logic or phase qubits).

The Josephson effect in fractal geometries has received only
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FIG. 1. Geometry of the S/N/S Josephson junction with the N layer
exhibiting a fractal (self-similar) structure. The setup consists of
two superconductors (yellow) connected by a normal metal (black)
that has been patterned as a Sierpiński fractal by recursively creating
insulating holes according to eq. (3). A homogeneous in-plane
magnetic field B ∼ e𝑥 is then applied to the Josephson junction,
causing spatially varying screening currents J ∼ e𝑧 to flow between
the superconductors. Depending on the magnitude 𝐵 of the applied
magnetic field, the screening currents in different parts of the interlayer
may either interfere constructively or destructively, causing a kind of
interference pattern to appear in the current–field relation 𝐼 (𝐵).

very limited attention in the literature so far.19,20,24 In this
paper, we fill this gap by considering a heterostructure made
of a sandwich of conventional 𝑠-wave superconductors (S) and
a normal material (N) with the Sierpiński fractal geometry.
Note that in contrast to e.g. Ref. 19, we do not here consider
fractal properties at the level of Josephson junction arrays,
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but rather a fractal structure within one junction. Moreover,
while e.g. Refs. 20 and 24 consider interlayers with fractal
characteristics that are naturally acquired during lithography, we
here consider artificial fractal geometries that can exhibit much
more dramatic phenomenology. In particular, we show that
fractal geometry, here taken to be a Sierpiński carpet (fig. 1), has
direct observable consequences on the Josephson effect. The
form of the supercurrent-magnetic field relation in the process
of the fractal generation, as we show, can be directly related
to the self-similar fractal pattern of the normal metallic layer,
as shown in fig. 2. Furthermore, the corresponding diffraction
pattern, through its maxima, encodes the self-repeating fractal
structure in the course of fractal generation (fig. 3), which
implies that the corresponding magnetic length directly probes
the shortest length scale in the given fractal generation. Our
findings should motivate experimental pursuits to probe our
theoretical predictions in the designer quantum materials.

We consider an S/N/S Josephson junction as illustrated in
fig. 1.22 We take the stack to be oriented along the 𝑧 axis, and
to have dimensions 𝑊 ×𝑊 in the 𝑥𝑦 plane. Each S layer is
a conventional BCS superconductor,25 and is assumed to be
much longer than the magnetic penetration depth 𝜆 along the
𝑧 direction. The N layer is a thin layer of a nominally normal
metal, but has in our case been patterned as a Sierpiński carpet:
It contains a fractal pattern of holes, where atoms have been
removed from the otherwise normal metal in a self-similar
and scale-invariant manner (see fig. 1). In an experiment, it is
likely easier to deposit a thin layer of an electric insulator at
the locations of the holes in our geometry, which would have
the same effect as our missing lattice sites. Artificial fractal
geometries in condensed matter systems—including Sierpiński
fractals—have in recent years been experimentally realized.6

The Josephson effect between the two superconductors pro-
duces dissipationless currents that flow through the fractal layer
whenever a phase difference is enforced. We assume that the
Josephson penetration depth is much larger than the in-plane
dimensions of the system, and hence any self-screening effects
may be neglected, meaning that the currents flow solely in the
𝑧 direction. The resulting current density therefore takes the
form

J (𝑥, 𝑦) = 𝐽 (𝑥, 𝑦) e𝑧 = 𝐽0𝑔(𝑥, 𝑦) sin[𝜑(𝑥, 𝑦)] e𝑧 , (1)

where 𝛿𝜑 is the gauge-invariant phase difference between two
vertically separated points deep inside each superconductor,
and 𝑔(𝑥, 𝑦) is a form factor, indicating the shape of the fractal.
To leading order, we have here assumed that the critical current
density 𝐽 (𝑥, 𝑦) is uniform and equal to 𝐽0 at coordinates without
a hole, whereas it drops to zero in the insulating holes. The
critical current density is thus given as 𝐽𝑐 (𝑥, 𝑦) = 𝐽0𝑔(𝑥, 𝑦). If
we express the coordinates 𝑥 = 𝑖𝑎 and 𝑦 = 𝑗𝑎 in terms of a
lattice constant 𝑎, we can then write

𝑔(𝑥, 𝑦) = 𝑆𝑁
𝑖 𝑗 , (2)

where 𝑆𝑁
𝑖 𝑗

are matrix elements of an 𝑁’th-order Sierpiński
carpet. The Sierpiński carpet is a fractal structure that has
the properties of self-similarity and scale invariance—at least
down to the scale of individual unit cells—and is illustrated in

/a + /aWave number kx

/a

+ /a

W
av
en

um
be
rk

y

Jc(kx, ky)/J(0, 0)

10 8

10 6

10 4

10 2

10 0

/9a + /9a= (2 /W)( / 0)
0

I c
(

)
=
J c
(k

x
=
0,

k y
=

)

FIG. 2. Fourier transform 𝐽𝑐 (𝑘𝑥 , 𝑘𝑦) of the current distribution in a
Sierpiński Josephson junction (upper panel). We here considered a
6th-order Sierpiński lattice as the interlayer. According to the Dynes–
Fulton method, the net current 𝐼 (𝛽) that arises for an applied magnetic
field 𝐵 ∼ 𝛽 along the 𝑥 axis is found from the Fourier-transformed
current density along the 𝑦 axis, as indicated by the blue line in the
upper panel, with the result shown in the lower panel.

fig. 1. Such a lattice may be constructed using the recursive
algorithm

S𝑁 = S𝑁−1 ⊗ S1, S1 =
©­«

1 1 1
1 0 1
1 1 1

ª®¬ , S0 = 1, (3)

where ⊗ is the Kronecker matrix product. This implies that we
can also write the 𝑁 th order Sierpiński carpet S𝑁 = (S1)⊗𝑁
compactly as a Kronecker matrix power.

We now consider a magnetic field B = 𝐵e𝑥 applied in
the thin-film plane of the fractal interlayer. This produces
screening currents in the 𝑦𝑧 plane of the superconductors,
within a distance on the order of their penetration depth 𝜆 away
from the interface to the normal metal. These currents take the
form of elongated loops that flow purely vertically through the
thin normal metal, and give rise to a position-dependence in the
gauge-invariant phase difference, 𝜙 = 𝜙0 − 2𝑒

ℏ
𝐵𝑑𝑦, where 𝜙0 is

an externally enforced phase difference, and 𝑑 = 𝑙 + 2𝜆 is the
effective thickness of the junction in the 𝑧 direction, with 𝑙 the



3

thickness of the normal metal. The result are spatially varying
current contributions in the normal metal that can interfere
constructively or destructively depending on the precise value
of the magnetic field 𝐵. The total current flowing through the
system at a given 𝐵 is given as the surface integral over the
cross section, which is quadratic with widths 𝑊 ,

𝐼 (𝐵, 𝜙0) = 𝐽0

∫ 𝑊/2

−𝑊/2

∫ 𝑊/2

−𝑊/2
𝑑𝑥𝑑𝑦 𝑔(𝑥, 𝑦) sin

[
𝜙0 −

2𝑒
ℏ
𝐵𝑑𝑦

]
,

(4)
As was first observed by Dynes and Fulton,26 this expression is
simply the imaginary part of the Fourier transform of the current
density, which in our case becomes the Fourier transform of
the fractal form factor, 𝑔(𝑘𝑥 , 𝑘𝑦). Furthermore, since 𝑔(𝑥, 𝑦)
has inversion symmetry, 𝑔(𝑘𝑥 , 𝑘𝑦) is purely real. The critical
current is thus found at 𝜙 = 𝜋/2, and is given as

𝐼𝑐 (𝐵) = |𝐽𝑐 (𝑘𝑥 = 0, 𝑘𝑦 = 𝛽) | = 𝐽0

∫
𝑑r 𝑔(r)𝑒−𝑖𝛽𝑦 , (5)

with r = 𝑥e𝑥 + 𝑦e𝑦 . Here, the magnetic field 𝐵 is parametrized
via 𝛽 = (2𝜋/𝑊) (Φ/Φ0), where Φ = 𝐵𝑊𝑑 is the net flux
passing through the central parts of the Josephson junction,
and Φ0 = ℎ/2𝑒 is the flux quantum.

Using the approach outlined above, the current–field rela-
tion 𝐼𝑐 (𝐵) can be extracted as follows. First, an 𝑁 th order
Sierpiński carpet is constructed recursively using eq. (3). This
is subsequently employed to find 𝐽𝑐 (𝑥, 𝑦) according to eqs. (1)
and (2), which can then be run through a 2D Fast Fourier
Transform (FFT) algorithm to obtain 𝐽𝑐 (𝑘𝑥 , 𝑘𝑦). Finally, we
can then simply extract the critical current along a line in
the 2D plane, as determined by the direction of the applied
field and the chosen gauge. This procedure, and the result-
ing 𝐼𝑐 (𝐵), are shown in fig. 2 for a junction with a 6th-order
Sierpiński interlayer. Unsurprisingly, the Fourier transform
of a fractal contains self-similar features also, and ends up
having structures on all length scales from 𝜋/𝑊 to 𝜋/𝑎. The
resulting field dependence has a very different structure from
the well-known Fraunhofer and SQUID patterns that arise in
comparable non-fractal junctions.

We can arrive at this result by purely analytical means. This
can be done by treating current as a parallel coupling of the
current passing through each of the constituent elements of
a generation of the Sierpiński carpet. To illustrate this we
consider, for instance, the first generation, as is obtained from
fig. 1 by retaining only the largest hole in the center. In that
case, the total current may be split into three parts, two of
which form rectangular junctions with dimensions 𝑊 ×𝑊/3,
and one part which has the form of a SQUID formed by two
junctions with dimensions𝑊/3×𝑊/3 and an equally sized hole
in between. The rectangular contributions provide a current
in a Fraunhofer pattern, 𝐽0

𝑊2

3 sinc (𝜋𝑁Φ), whereas the SQUID
contribution gives a current 2𝐽0

(
𝑊
3
)2 sinc

(
𝜋𝑁Φ

3

)
cos

(
2𝜋𝑁Φ

3

)
.

Here, 𝑁Φ = 𝐵𝑑𝑊/Φ0 is the number of flux quanta passing
through the system, and sinc(𝑥) = sin(𝑥)/𝑥. Adding up each
contribution gives the critical current for the first-generation
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FIG. 3. The critical current 𝐼𝑐 as a function of magnetic field,
𝑁Φ = 𝐵𝑑𝑊/Φ0, for various generations 𝑁 of the Sierpiński carpet.
(a) Line plots for 𝑁 ∈ {3, 4, 5}, shifted vertically for clarity. The
vertical lines indicate the location of new peaks introduced by an
increase in 𝑁 . (b) A surface plot of 𝐼𝑐 (𝐵) for a wider range of
values of 𝑁 and 𝑁Φ. The dashed line is a guide for the eye, showing
approximately where 𝐼𝑐 (𝐵) becomes independent of 𝑁 .

Sierpiński carpet

𝐼
(1)
𝑐 (𝐵) =

𝐽0𝐴
(1)
𝐹

4

����sinc
(
𝜋𝑁Φ

3

) [
1 + 3 cos

2𝜋𝑁Φ

3

] ���� ,
where 𝐴

(𝑁 )
𝐹

=

(
8
9

)𝑛
𝑊2 is the surface area of the fractal at

generation 𝑛. An expression for arbitrary generation 𝑁 can be
obtained by repeating this process recursively, replacing each
uniform sub-square with the shape of the previous generation.
This leads to

𝐼
(𝑁 )
𝑐 (𝐵) =

𝐽0𝐴
(𝑁 )
𝐹

4𝑁

����� sinc
(
𝜋𝑁Φ

3𝑁

) 𝑁∏
𝑛=1

[
1 + 3 cos

(
2𝜋𝑁Φ

3𝑛

)] ����� ,
(6)

The 0th-order Sierpiński carpet is equivalent to a uniform square
lattice, and indeed we regain the conventional Fraunhofer
pattern for 𝑁 = 0 when no terms appear in the right-hand
product, 𝐼 (0)𝑐 (𝐵) = 𝐽0𝑊

2sinc(𝜋𝑁Φ). In the opposite limit 𝑁 →
∞ of a high-order Sierpiński carpet, the prefactor approaches
sinc(0) = 1. The current–field relation then reduces to a
product of similar factors 1 + 3 cos(𝛽𝑊𝑛) arising from the
Sierpiński pattern on different scales 𝑊𝑛 = 𝑊/3𝑛. This result
shows clearly that 𝐼𝑐 (𝐵) exhibits self-similarity across different
length scales, which arises from the fractal geometry of the
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Josephson junction interlayer. This self-similarity can be seen
in the 2D Fourier transform in fig. 2, where it manifests as
superimposed lattices of 3𝑛 × 3𝑛 squares.

The presence of multiple length scales has additional non-
trivial observable consequences as, for instance, the sensitivity
of the diffraction pattern on the order of fractal generation.
In fig. 3(a) the diffraction pattern is shown for a selection of
fractal generations, 𝑁 ∈ {3, 4, 5}. It can be seen that each new
generation introduces new features in the diffraction pattern
which were not present in the previous one. These features
appear in limited ranges of 𝑁Φ, and are characterized by a single
peak of constant height, the location of which is indicated by
the vertical lines in fig. 3(a). Indeed, for a fixed 𝑁 , we observe
that whenever 𝑁Φ = 3𝑞 for an integer 𝑞, the square brackets
in eq. (6) become constant and maximal for all 𝑛 ≤ 𝑞. For
𝑞 < 𝑁 , 𝐼 (𝑁 )

𝑐 increases with 𝑞, whereas for 𝑞 ≥ 𝑁 it vanishes.
The result is a local maximum at 𝑞 = 𝑁 − 1, at which point the
critical current becomes 𝐼

(𝑁 )
𝑐 = 3

√
3𝐽0𝐴

(𝑁 )
𝐹

/16𝜋. The peak
occurring at 𝑁Φ = 3𝑁−1 is a manifestation of the fact that the
magnetic length scale becomes small enough to resolve the
lowest length scales of the fractal. Alternatively, one may say
that when fractal generation is increased from 𝑁 to 𝑁 + 1, the
smallest length scale is reduced by a factor of 3. Hence, a flux
density corresponding to the rescaled magnetic field, 3𝐵, in
the latter (generation 𝑁 + 1), produces a similar response as
𝐵 in the former case (generation 𝑁). Another interesting and
related feature is that the critical current for any 𝑁Φ eventually
becomes independent of 𝑁 . This is demonstrated in fig. 3(b),
which shows a surface plot of the critical current as a function of
𝑁 and 𝑁Φ. The dashed line indicates approximately where this
saturation occurs. For 𝑁 = 7, the diffraction pattern remains
constant at least for 𝑁Φ ≤ 1000. This behavior is once again
a result of the phenomenon that as 𝑁 increases, smaller and
smaller length scales are introduced, which eventually become
smaller than the magnetic length scale. Their features cannot
be resolved by the applied flux, and so the system remains
uninfluenced.

Here, we have focused on the specific case where the mag-
netic field B ∼ 𝐵e𝑥 is applied along the 𝑥 axis. Note however
that a similar Dynes–Fulton analysis is applicable for a mag-
netic field B(𝜃) = 𝐵(cos 𝜃 e𝑥 + sin 𝜃 e𝑦) oriented along any
direction in the 𝑥 − 𝑦 plane, where each such direction would
provide a slightly different current–field relation 𝐼𝑐 (𝐵 | 𝜃). In
principle, one could in an experiment use the 𝐼𝑐 (𝐵 | 𝜃) curves
obtained for different field directions 𝜃 to reconstruct the 2D
Fourier transform 𝐽𝑐 (𝑘𝑥 , 𝑘𝑦) of the current density, and thus
to obtain the exact current distribution 𝐽𝑐 (𝑥, 𝑦) in the inter-
layer. Such an approach might be particularly interesting in
Josephson junctions where the interlayer might not be an ar-
tificially constructed fractal as considered here, but rather a
naturally occurring fractal or quasicrystal. In that case, this
kind of Dynes–Fulton analysis might provide a way to validate
and elucidate the non-crystalline, fractal or quasicrystalline,
structure of the interlayer.

In this paper, we have considered a fractal Josephson junction
composed of two superconductors separated by a Sierpiński-
patterned normal metal. We have analytically calculated the
current–field relation 𝐼𝑐 (𝐵) that arises in such junctions, and

shown that this experimental signature retains a crucial property
of fractals: self-similarity across length scales. In particular, the
obtained diffraction pattern is directly related to the self-similar
fractal geometry probed through the magnetic length. Our
results should be consequential for experiments, particularly in
the designer quantum materials, where the realization of the
normal fractal metallic layer should be feasible.
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