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Motivated by the pair-density-wave (PDW) state found in the one-dimensional Kondo-Heisenberg
chain, we report on a determinant quantum Monte Carlo DQMC study of pair-fields for a two-
dimensional half-filled Hubbard layer coupled to an itinerant, non-interacting layer with one electron
per site. In a specific range of interlayer hopping, the pairing vertex associated with PDW order
becomes more attractive than that for uniform d-wave pairing, although both remain subdominant
to the leading antiferromagnetic correlations at half-filling. Our result sheds light on where one
potentially may find a PDW state in such a model.

A novel spatially modulated superconducting state
known as a pair-density wave (PDW) [1] has attracted
increasingly significant attention. This nonuniform uni-
directional superconducting state was initially proposed
to provide a phenomenological understanding of the high-
temperature cuprate superconductors [2, 3], and exper-
imental evidence supporting its existence has been ob-
served in a wide range of quantum materials, includ-
ing cuprates [4–11], heavy fermion materials [12, 13],
iron-based superconductors [14, 15], kagome supercon-
ductors [16], and transition-metal dichalcogenides [17].
Numerically, it has been first observed in a density-
matrix renormalization group (DMRG) study [18] of a
one-dimensional Kondo-Heisenberg chain, which consists
of a Heisenberg antiferromagnetic (AFM) chain coupled
to a free electron gas. More recently, the PDW order has
been found in several other quasi-1D models with a quasi-
long-range and divergent PDW susceptibility through
DMRG [19–22], in 2D microscopic models with PDW
as the leading divergent susceptibility by using renor-
malization group analysis [23–25], and in certain exactly
solvable models [26–28].

In this work, we employ the numerically exact determi-
nant quantum Monte Carlo (DQMC) approach [29, 30] to
search for fingerprints of the PDW in a two-dimensional
system. Our model comprises a bilayer structure in two
dimensions, consisting of a non-interacting layer and a re-
pulsive Hubbard layer with strong electronic correlations.
The correlation is characterized by the ratio of the on-
site interaction to intralayer nearest-neighbor hopping,
denoted as U/t. The layers are hybridized through an in-
terlayer tunneling, also referred to as the hopping matrix
element t⊥. In the strong-coupling limit, the half-filled
Hubbard layer maps to an insulating Heisenberg antifer-
romagnet; and in this context, our model effectively re-

duces to the two-dimensional Kondo-Heisenberg model,
characterized by exchange interactions JK ∼ 2t2⊥/U and
JH ∼ 4t2/U , which may hold promise as a candidate for
PDWs in two dimensions.

The primary focus of our study is to investigate pair-
ing tendencies of this bilayer model in the special case
of one electron per site in both layers. As our model
is defined on a bipartite lattice, the imposed condition
of one electron per site (half-filling) in both layers leads
to a sign-problem-free implementation of DQMC [31],
allowing us to access relatively low temperatures. At
half-filling, pair-field correlations remain subdominant
to the AFM spin-spin correlations driven by the strong
Coulomb repulsion within the Hubbard layer. However,
our findings reveal strong subdominant pair-field sus-
ceptibility with leading PDW singlet pairing vertices at
the center-of-mass momentum q = (π, π), particularly
when the interlayer hybridization reaches a regime where
JK ∼ JH . Previous DQMC studies [32, 33] have explored
the magnetic and transport properties of this model at
half-filling, highlighting the competition between AFM
and Kondo-singlet formation at intermediate hybridiza-
tion — supported also here, as detailed in the Supple-
mentary Material (SM). This suggests that the compe-
tition between intralayer AFM and interlayer local spin-
singlet formation provides conditions favorable for PDW
formation. Despite the significant challenges posed by
the fermion sign problem in DQMC simulations, we also
explore the PDW pair-fields when doping the model away
from half-filling, as discussed in the final section.

Model and Methodology. In this study, we consider
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a two-dimensional bilayer Hubbard Hamiltonian,

Ĥ = −
∑

⟨ij⟩σ
ℓ∈{A,B}

tℓ(ĉ
†
iℓσ ĉjℓ,σ + ĉ†jℓσ ĉiℓσ)

−
∑

iσ

t⊥(ĉ
†
iAσ ĉiBσ + ĉ†iBσ ĉiAσ)

+
∑

i

Uℓ

ℓ∈{A,B}

(n̂iℓ↑ −
1

2
)(n̂iℓ↓ −

1

2
)

−
∑

iσ

µℓ

ℓ∈{A,B}

n̂iℓσ,

(1)

where ĉ†iℓσ (ĉiℓσ) denotes the creation (annihilation) op-
erator of an electron with spin σ at site i and layer ℓ,
and n̂iℓσ = ĉ†iℓσ ĉiℓσ is the corresponding electron den-
sity. Uℓ is the local (on-site) Coulomb interaction. We
set UA/t = 8, indicating a repulsive on-site Hubbard in-
teraction in layer A, and UB/t = 0, making layer B non-
interacting. µℓ is the chemical potential, which tunes the
electron density in layer ℓ. tℓ denotes the hopping in-
tegral between nearest-neighbor sites in the same layer
ℓ, and t⊥ is the hopping integral between layers, which
controls the interlayer hybridization. We set tℓ = t = 1
in both layers and measure all energies in units of t. In
this study, we focus on a range of t⊥ such that JK ≲ JH .

We use the numerically exact DQMC algorithm to
simulate the model at finite temperatures on square
lattices with periodic boundary conditions. Our pri-
mary focus is on half-filling in both layers, utilizing
a particle-hole symmetric band structure to avoid the
fermion sign problem [34]. For this purpose, we perform
simulations on 10 × 10 clusters down to relatively
low temperatures (T = 1/β = t/30). In the final
section, we investigate the effect of hole doping, but at
higher temperatures (T = 1/8) and on smaller 8 × 8
clusters to mitigate challenges posed by the sign problem.

Spin Correlations. Before investigating the pair-field
correlations within the model, we first analyze the spin-
spin correlations, which are unsurprisingly the dominant
correlations at half-filling. The real space, equal-time
spin-spin correlation function is defined as

Sℓℓ′(r) = ⟨ŝzrℓŝz0ℓ′⟩ (2)

with ŝziℓ = (n̂iℓ↑− n̂iℓ↓)/2, and its Fourier transform gives
the structure factor Sℓℓ′(q) =

∑
r e

iq·rSℓℓ′(r). We will
consider interlayer bonding (ŝzrA + ŝzrB) and anti-bonding
(ŝzrA − ŝzrB) combinations, which are used to define a “qz”
quasi-momentum of 0 or π, respectively.

In the absence of interlayer hybridization, the equal-
time spin-spin correlation function peaks at the in-plane
AFM wave vector q = (π, π), indicative of strong AFM
correlations within the Hubbard layer. After turning
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FIG. 1: Equal-time spin-spin correlations. The t⊥ de-
pendence of the spin-spin correlation at the AFM wavevector
S(π, π, π), the interlayer AFM spin correlation SAB(π, π) and
interlayer local spin correlation SAB(r = (0, 0)) for the half-
filled system (nA = nB = 1) of size N = 10× 10 with β = 30.

on the interlayer hybridization, the spin-spin correlation
function is dominated by the anti-bonding q = (π, π, π)
wavevector. Moreover, the interlayer spin correlations
SAB(q) exhibit a peak at the in-plane AFM wavevector
q = (π, π). Figure 1 shows that for small values of
t⊥, both the spin-spin correlations at q = (π, π, π)
and the long-range interlayer AFM spin correlations
initially increase with t⊥, a behavior attributed to the
development of superexchange interaction across the
layers. Notably, the interlayer hybridization opens a gap
for the itinerant electrons, resulting in a transition to
an insulating phase. This phenomenon was previously
reported in Ref. [33] and is further substantiated in
the SM. As t⊥ further increases, both S(π, π, π) and
−SAB(π, π) start to drop quickly around t⊥ ∼

√
2.

In this regime, neither the effective interlayer Kondo
coupling JK ∼ 2t2⊥/U , nor the intralayer Heisenberg
coupling JH ∼ 4t2/U dominates; however, the interlayer
local spin-spin correlation function SAB

(
r = (0, 0)

)

increases rapidly and appears to saturate as as t⊥ grows.
The behavior of the spin-spin correlations suggests a
strong magnetic competition between intralayer AFM
and interlayer singlet formation across t⊥ ∼

√
2.

Pair-Fields at Half-Filling. While the half-filled Hub-
bard model has dominant AFM spin correlations, various
analytical and numerical studies suggest that the leading
superconducting instability near half-filling corresponds
to a uniform spin-singlet dx2−y2-wave pair-field [35]. Fol-
lowing the discovery of a quasi-long-range PDW state on
the Kondo-Heisenberg chain, we confine our attention to
exploring how coupling with itinerant electrons influences
the superconducting pair-fields, particularly at nonzero
center-of-mass momentum.
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FIG. 2: Eigenvectors of Γ(q)P̄ (q). The left eigenvector
corresponding to the largest negative eigenvalues of Γ(q)P̄ (q),
denoted as ϕ(q) = (a,−a, b,−b, 0) in the operator basis
(ς̂q,x,A, ς̂q,y,A, ς̂q,x,B , ς̂q,y,B , ς̂q,z), is represented by the ratio
a/b on the y axis. The figure includes the center-of-mass
momentum q = (0, 0) (square symbols) and q = (π, π) (cir-
cle symbols), with the symbol color indicating the magnitude
of the largest negative eigenvalue, λ(q). Blue region denote
where λ(0, 0) is the largest negative eigenvalue across all con-
sidered q values, while red signifies λ(π, π) as the largest nega-
tive. Simulations are conducted on a half-filled 10×10 system
(nA = nB = 1) at β = 30.

FIG. 3: Largest negative eigenvalues of Γ(q)P̄ (q). λ(q)
for q = (0, 0) and (π, π) as a function of t⊥ at β = 30 on a
10×10 cluster. Errors estimates, smaller than the data points,
are obtained by bootstrap resampling. Inset: A color map of
λ(π, π)/λ(0, 0) across different temperature T and t⊥. The
blue region indicates λ(0, 0) > λ(π, π), while the red region
where λ(0, 0) < λ(π, π) highlight the dominance of a PDW
superconducting instability at q = (π, π). The blue dashed
line is a guide-to-the-eye in the crossover region.

To describe singlet pair-fields, we define the operator

∆̂(q) = (ς̂q,x,A, ς̂q,y,A, ς̂q,x,B , ς̂q,y,B , ς̂q,z) , (3)

as a function of the center-of-mass momentum q. Here,
ς̂q,α,ℓ =

∑
i e

iq·ri
(
ĉ(i+α)ℓ↑ĉiℓ↓ − ĉ(i+α)ℓ↓ĉiℓ↑

)
/2 denotes

the singlet pair operator on the nearest-neighbor bond
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FIG. 4: Pairing estimator for trial pair-field vectors.
λ∗
v for various trial wavevectors v, at different center-of-mass

momentum q. Considered vectors: v1 = (1,−1, 0, 0, 0)/
√
2

(green), v2 = (1,−1,−1, 1, 0)/2 (red), v3 = (1,−1, 1,−1, 0)/2
(yellow). Measurements were performed on a N = 10 × 10
cluster at β = 30.

α in layer ℓ, and ς̂q,z =
∑

i e
iq·ri (ĉiA↑ĉiB↓ − ĉiA↓ĉiB↑) /2

indicates interlayer pairing. The full pair-field suscepti-
bility is a square matrix written as

P (q) =

∫ β

0

dτ⟨∆̂(τ, q)∆̂†(q)⟩. (4)

Similarly, we can calculate the uncorrelated pair-field sus-
ceptibility P̄ (q) [36], which is the disconnected part of
P (q) (see the expressions given in the SM).
To elucidate the dominant pairing interaction within

the system, we compute the pairing vertex Γ using the
Dyson-like expression Γ(q) = P−1(q)− P̄−1(q). Equiva-
lently, the full pair-field susceptibility takes the form

P (q) = P̄ (q)
(
1 + Γ(q)P̄ (q)

)−1
. (5)

From this expression, Γ(q)P̄ (q) can be used to gauge
pairing tendencies: the pairing mode with the most di-
vergent susceptibility is identified through the eigenmode
of Γ(q)P̄ (q) corresponding to the eigenvalue closest to
−1.
In situations where numerical analysis of the q-

dependent equal-time pair-field correlations in our model
at half-filling does not provide direct evidence for a dom-
inant PDW state down to the lowest accessible tempera-
tures, we explore the leading pairing tendencies through
Γ(q)P̄ (q). Figure 2 shows the evolution of the largest
negative eigenvalues λ(q) of Γ(q)P̄ (q) with interlayer
hopping t⊥, alongside the corresponding center-of-mass
momentum q, and its left eigenvector ϕ(q). When
λ(q) → −1, this eigenvector corresponds to the most
divergent eigenmode of P (q) (as discussed in the SM).
We find that the left eigenvector corresponding to

the largest negative eigenvalues of this matrix takes the
form ϕ(q) = (a,−a, b,−b, 0) at all t⊥ (a, b ∈ R). At
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(a) Hole doping in layer B
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FIG. 5: Comparison between half-filling and hole dopings The largest negative eigenvalues of Γ(q)P̄ (q) as a function
of t⊥ at different q when (a) nB = 1, 0.875, 0.8, nA = 1± 0.004 and (b) nA = 1, 0.9, 0.8, nB = 1± 0.03. Simulations are done
at β = 8 on a 8× 8 cluster. Errors, smaller than the data points, were estimated by bootstrap resampling.

small t⊥, the leading pairing instability corresponds to
a uniform d-wave order parameter with pairing field
mainly in layer A, and the pair-fields on the two lay-
ers have the same phase. As t⊥ increases to 0.7 or above,
the leading instability changes to a PDW with an in-
plane center-of-mass momentum q = (π, π). The corre-
sponding pairing order parameter takes a d-wave form
|a|(ς̂q,x,A − ς̂q,y,A) − |b|(ς̂q,x,B − ς̂q,y,B), where a and b
have comparable amplitudes but opposite signs. Within
numerical accuracy, these leading eigenstates are degen-
erate with another set of eigenstates, which are charac-
terized by eigenvectors that adopt an extended s-wave
form |a|(ς̂q,x,A + ς̂q,y,A)− |b|(ς̂q,x,B + ς̂q,y,B), also with a
center-of-mass momentum of q = (π, π). This degener-
acy is attributed to symmetry at q = (π, π) [38].

We trace the evolution of pairing tendencies at both
q = (0, 0) and (π, π) and show the largest negative eigen-
value of Γ(q)P̄ (q), λ(q), as a function of t⊥ for both
momentum points in Fig. 3. A crossover from uniform
pairing to a PDW is observed around t⊥ = 0.7. The
inset illustrates the ratio λ(π, π)/λ(0, 0) as a function
of temperature T and t⊥ to highlight the crossover re-
gion. For t⊥ > 0.7, λ(π, π) exhibits a broad minimum,
roughly centered around an intermediate range of t⊥
where JK ∼ JH . Within this range, the gap between
λ(π, π) and λ(0, 0) expands as t⊥ increases (see the SM

for additional details).

The leading eigenvectors change considerably as a
function of model parameters in the crossover re-
gion. To gain insight into the pairing struc-
ture, we compute a pairing estimator, λ∗

v(q) =(
vTΓ(q)v)/(vT P̄ (q)−1v

)
, for representative trial vectors

v in the basis (ς̂q,x,A, ς̂q,y,A, ς̂q,x,B , ς̂q,y,B , ς̂q,z). Detailed
methodology is described in the SM. As demonstrated
in both Fig. 2 and Fig. 4, the leading pairing eigenmode
for t⊥ < 0.7 has an eigenvector that represents uniform
d-wave pair fields in layer A. Up to the crossover value
of t⊥, the values of λ∗

v(q) for the two PDW trial vectors
are comparable — one with in-phase (yellow curve) and
the other with antiphase (red curve) pair-field structure
on two layers. However, through the crossover region,
a considerable splitting occurs between the in-phase and
antiphase PDWs, and the antiphase PDW at q = (π, π)
markedly becomes the most dominant pairing tendency.

Although our results showing an indication of strong
PDW correlations are encouraging, they also reveal
that the strength of the superconducting correlations
at overall half filling is insufficient to overcome antifer-
romagnetic correlations. It is anticipated that doping
the system away from half filling could create a spin
gap, suppress AFM correlations, and thereby enhance
PDW correlations. To investigate this hypothesis, we
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will further explore the performance of our model in the
underdoped regime in the next section.

Pair-Fields upon Doping. Since the PDW in the 1-D
Kondo-Heisenberg model was discovered at 1/8 hole dop-
ing in the electron gas, we naturally start with doping
layer B. Figure 5a presents a comparison of the largest
negative eigenvalues of Γ(q)P̄ (q) for both half-filling and
the hole doped scenarios (nB = 0.875, 0.8), with layer
A maintained at half-filling, but at an elevated tempera-
ture (β = 8) compared to the previous sections, which is
constrained by the fermion sign problem. In the regime
where JK ∼ JH , the uniform d-wave and PDW pair-fields
at q = (π, π) and (π, 0) have nearly identical eigenvalues
in the doped cases, despite the fact that AFM correla-
tions have been suppressed by the introduction of carriers
(see the SM). It is possible that the limitations imposed
by the fermion sign problem prevent us from observing
a notable increase in the magnitude of PDW eigenvalues
upon hole doping, but it also could be that the robust-
ness of AFM correlations leaves no room for the PDW to
prevail. What happens if we directly disrupt the AFM
correlations by doping holes into layer A?

We subsequently investigate the impact of the hole
doping in layer A on PDWs, as depicted in Fig. 5b. This
analysis focuses on relatively large values of the inter-
layer hopping to reduce the impact of the sign problem.
Upon doping layer A, the AFM correlations are destroyed
and the local interlayer spin correlations dominate the
system, as detailed in the SM. Meanwhile, we observe
that λ(q) becomes less negative across all center-of-mass
momenta q, and notably the leading pairing eigenvalues
are located at q = (π, 0) and (0, π), particularly when
JK ∼ JH . In the 1D Kondo-Heisenberg model, the PDW
wavevector appears to be tied to that of local magnetic
ordering and has a relation with the charge-density-wave
(CDW) ordering [18]. Through analysis of the charge
and spin vertices at zero frequency (see the SM), we ob-
serve charge response peaks at incommensurate ordering,
though the exact relationship between PDW and CDW
wavevectors remains unclear due to limited momentum
resolution. We find that the spin response peaks at
q = (π, π), with secondary peaks at q = (π, 0) and (0, π)
when the system is lightly doped. These findings suggest
a potential association between the PDW wavevector and
local magnetic ordering wavevectors.

In our efforts to enhance PDWs by mitigating AFM
correlations, we observe that doping the non-interacting
layer leads to the suppression of PDW tendencies;
doping the interacting layer reveals that, near t⊥ ∼

√
2,

the dominant pairing wavevector shifts towards (π, 0)
(or (0, π)), though the commensuration may result from
limited resolution and high temperature. The observed
modulation of a PDW could potentially be rationalized
by the inter-Fermi-pocket nesting from the perspective
of weak-coupling (see the SM), which might be similar to

the phenomena observed in other systems [37]. Despite
attempts to induce PDW states by doping holes into
the systems, evidence for the existence of PDWs in
our model remains elusive. Beyond exploring lower
temperatures and fine-tuning model parameters, alter-
native approaches such as modifying the hopping terms,
as suggested in Ref. [20], or incorporating additional
interaction terms as in Ref. [22], might be potential
pathways for achieving such states.

Conclusion. In this paper, we investigate the pairing
tendencies of a half-filled 2D repulsive Hubbard model
hybridized to non-interacting electrons. This model
system exhibits pronounced AFM tendencies when the
interlayer hybridization, t⊥, satisfies JK ≲ JH . For
values of t⊥ where JK ≳ JH , in-plane AFM correlations
are suppressed, accompanied by an increase in local
interlayer spin singlet correlations. In between this two
extremes, as t⊥ increases, we identify a crossover in
pair-field modes from a uniform d-wave form to a PDW
at a center-of-mass momentum (π, π), and the PDW
tendency becomes most significant when JK ∼ JH .
This suggests that a regime where the effective Kondo
coupling is comparable to the effective Heisenberg
coupling fosters a strong competition between intralayer
AFM and interlayer singlet formation, which potentially
constitute ideal conditions for the emergence of a PDW
superconducting state. Our study can serve as an
invitation for further exploration into this topic in
unexplored parameter regimes and associated models.
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In this Supplementary material, we provide additional data and analyses: (I) detailed derivations, measurements,
and discussions related to pair-fields; (II) additional measurements on transport properties demonstrating the metal-
insulator transition at half-filling, (III) analyses of spin and charge properties in both half-filled and doped scenarios;
(IV) extensive plots representing the Fermi surface for each layer.

I. MORE DETAILS ABOUT PAIR-FIELDS

FIG. 1: Eigenvalues of Γ(q)P̄ (q) versus t⊥. The pair-field matrix eigenvalues are shown for each value of t⊥ over a spread
of momentum q. Each momentum point in one octant of the Brillouin zone has been assigned a unique color, defined in the
color map. Measurements are performed on 10× 10 clusters at β = 30 with both layers at half-filling.

Pair-Field Susceptibilities. The full pair-field susceptibility P (q) is given by

Pab(q) =

∫ β

0

dτ⟨1
4

∑

i,j

eiq·(ri−rj)
(
ĉi+a↑(τ)ĉi↓(τ) + ĉi↑(τ)ĉi+a↓(τ)

)(
ĉ†j↓ĉ

†
j+b↑ + ĉ†j+b↓ĉ

†
j↑
)
⟩, (1)

and the uncorrelated pair-field susceptibility P̄ (q) is given by

P̄ab(q) =

∫ β

0

dτ
1

4

∑

i,j

eiq·(ri−rj)
(
⟨ĉi+a↑(τ)ĉ

†
j+b↑⟩⟨ĉi↓(τ)ĉ

†
j↓⟩+ ⟨ĉi+a↑(τ)ĉ

†
j↑⟩⟨ĉi↓(τ)ĉ

†
j+b↓⟩

+ ⟨ĉi↑(τ)ĉ†j+b↑⟩⟨ĉi+a↓(τ)ĉ
†
j↓⟩+ ⟨ĉi↑(τ)ĉ†j↑⟩⟨ĉi+a↓(τ)ĉ

†
j+b↓⟩

)
,

(2)

ar
X

iv
:2

40
4.

01
38

9v
1 

 [
co

nd
-m

at
.s

tr
-e

l]
  1

 A
pr

 2
02

4



2

FIG. 2: Comparison between half-filling and hole dopings in layer B. Eigenvalues of Γ(q)P̄ (q) (colored by center-of-
mass momentum q) for nB = 1, 0.875, 0.8 in the crossover region as a function of t⊥. Measurements are performed on N = 8×8
clusters at β = 8 with nA = 1± 0.004.

FIG. 3: Comparison between half-filling and hole dopings in layer A. Eigenvalues of Γ(q)P̄ (q) (colored by center-of-
mass momentum q) for nA = 1, 0.9, 0.8 in the crossover region as a function of t⊥. Measurements are performed on N = 8× 8
clusters at β = 8 with nB = 1± 0.03.

FIG. 4: Eigenvalues of Γ(q)P̄ (q) for various cluster sizes. Eigenvalues of Γ(q)P̄ (q) (colored by center-of-mass momentum
q) for different cluster sizes. Measurements are performed at β = 12 with both layers at half-filling.

where layer indices have been suppressed for clarity.

Eigenvalues of Γ(q)P̄ (q). In the main text, we show only the lowest eigenvalues of Γ(q)P̄ (q) at q = (0, 0) and
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FIG. 5: Pair fields for trial vectors. Top panel: ⟨P (q)⟩v (solid lines) and ⟨P̄ (q)⟩v (dashed lines). Bottom panel:
⟨Γ(q)P̄ (q)⟩v for different center-of-mass momenta q. Trial vectors v: v1 = (1,−1, 0, 0, 0)/

√
2, v2 = (0, 0, 1,−1, 0)/

√
2, v3 =

(0, 0, 0, 0, 1), v4 = (1,−1,−1, 1, 0)/2. Measurements performed on N = 10× 10 clusters at β = 30.

(π, π). In Fig. 1, we show all the eigenvalues for Γ(q)P̄ (q) at different momenta q. The pair-field susceptibilities
have both inversion and C4-rotational symmetry, so we show values just in one octant. We consider only nearest-
neighbor pairing giving 5 eigenvalues for each q. The largest negative eigenvalue for q = (π, π) has an additional
two-fold degeneracy, since eigenstates v = (a,−a,−b, b, 0) and v = (a, a,−b,−b, 0) are equivalent under C4 symmetry

(a, b ∈ C). For t⊥ ∼
√
2, the eigenvalue with q = (π, π) clearly is the smallest among all q.

A comparison to the results for hole dopings are shown in Fig. 2 and Fig. 3. Interestingly, when layer B is 1/8 hole
doped or layer A is hole doped up to 1/5, the largest negative eigenvalue resides at q = (π, 0) with v = (1, 0, 0, 0, 0),

being marginally smaller than those of other q in the t⊥ ∼
√
2 regime.

We also investigated finite-size effects in Fig. 4 by considering different clusters up to size 12 × 12. There is a
non-negligible finite-size effect on the eigenvalues of Γ(q)P̄ (q); however, the dominant eigenvalue for JK ∼ JH occurs
at q = (π, π) for all cluster sizes.

Pair-Field Measurements for Trial Vectors. To better understand the pairing structure, we estimate the
pairing strength for some trial vectors that correspond closely to expected eigenvectors for different values of t⊥. The
operator for a mode α as a function of the center-of-mass momentum q is commonly expressed as

∆̂α,ℓ(q) =
∑

k

fα(k)ĉ(k+q)ℓ↑ĉ(−k)ℓ↓. (3)

For example, the operators in the dx2−y2-wave channel, with form factor fd(k) = cos kx − cos ky, and the extended
s-wave channel, with fs∗(k) = cos kx + cos ky, are

∆̂d,ℓ(q) =
∑

i

eiq·ri(ς̂i,x,ℓ − ς̂i,y,ℓ),

∆̂s∗,ℓ(q) =
∑

i

eiq·ri(ς̂i,x,ℓ + ς̂i,y,ℓ),
(4)
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respectively, where ς̂i,a,ℓ = (ĉ(i+a)ℓ,↑ĉiℓ↓ + ĉiℓ↑ĉ(i+a)ℓ↓)/2 is the singlet pair operator on the bond from i to i + a in
layer ℓ. Then, the correlated pair-field susceptibility can be defined as

⟨P (q)⟩α,ℓ =
∫ β

0

dτ⟨∆̂α,ℓ(τ, q)∆̂
†
α,ℓ(q)⟩, (5)

and its disconnected part is denoted as ⟨P̄ (q)⟩α,ℓ.
Consider an arbitrary vector v in the basis (ς̂q,x,A, ς̂q,y,A, ς̂q,x,B , ς̂q,y,B , ς̂q,z), representing the form of a singlet pair,

as in the main text. For example, ∆d,A, as defined in Eqn. 3, implies v = (1,−1, 0, 0, 0)/
√
2; v = (1,−1,−1, 1, 0)/2

at q = (π, π) corresponds to a PDW with (ς̂q,x,A − ς̂q,y,A − ς̂q,x,B + ς̂q,y,B) at q = (π, π). Therefore, we can express
the correlated pair-field susceptibility for an arbitrary vector v as

⟨P (q)⟩v = ⟨v|P (q) |v⟩ . (6)

The nonsymmetric diagonalizable matrix Γ(q)P̄ (q), which has eigenvalues λi(q), right eigenvectors ϕ̃i(q) and left
eigenvectors ϕi(q), can be expressed as

ΓP̄ =
∑

i

|ϕ̃i⟩λi ⟨ϕi| , (7)

where the q-dependence is implied. For an invertible Hermitian matrix P̄ we have P̄ P̄−1 = I. Then,

P̄Γ |ϕi⟩ = λi |ϕi⟩ ,
Γ |ϕi⟩ = λiP̄

−1 |ϕi⟩ ,
ΓP̄

(
P̄−1 |ϕi⟩

)
= λi

(
P̄−1 |ϕi⟩

)
.

(8)

With ΓP̄ |ϕ̃i⟩ = λi |ϕ̃i⟩ and the normalization of the inner product of left and right eigenvectors ⟨ϕi|ϕ̃j⟩ = δij , the
left and right eigenvectors are related by

|ϕi⟩ = NiP̄ |ϕ̃i⟩ , Ni = 1/
〈
ϕ̃i

∣∣∣ P̄
∣∣∣ϕ̃i

〉
. (9)

The full pair-field susceptibility can be written in terms of these eigenvectors by substituting ΓP̄ such that

P = P̄
(
1 + ΓP̄

)−1
=

∑

i

P̄ |ϕ̃i⟩ (1 + λi)
−1 ⟨ϕi|

=
∑

i

1

Ni
|ϕi⟩ (1 + λi)

−1 ⟨ϕi| ,
(10)

so the vector |ϕi⟩ having λi → −1 is then the leading eigenvector of P .
To better understand the tendencies for trial vectors v, they can be decomposed in the eigenbasis of ΓP̄ , such that

v =
∑

i ciϕi. A variational estimator, defined as

λ∗
v =

⟨v|Γ |v⟩
⟨v| P̄−1 |v⟩ =

∑
ij c

∗
i cjNj ⟨ϕi|ΓP̄ |ϕ̃j⟩∑

ij c
∗
i cjNj ⟨ϕi| P̄−1P̄ |ϕ̃j⟩

=

∑
ijk c

∗
i cjNj

〈
ϕi

∣∣∣ϕ̃k

〉
λk

〈
ϕk

∣∣∣ϕ̃j

〉

∑
i |ci|2Ni

=

∑
i |ci|2Ni λi∑
i |ci|2Ni

,

(11)

provides a direct measure as combinations of the eigenvalues λi(q) of Γ(q)P̄ (q) weighted by
|ci(q)|2Ni(q)/

(∑
i |ci(q)|2Ni(q)

)
.

Figure 5 illustrates ⟨P (q)⟩v, ⟨P̄ (q)⟩v, and λ∗
v, for selected trial vectors as a function of t⊥. For q = (0, 0),

the chosen vectors are: (1) v = (1,−1, 0, 0, 0)/
√
2, characterizing the leading eigenvector for 0 ≤ t⊥ < 0.7; (2)

v = (0, 0, 1,−1, 0)/
√
2, representing the uniform d-wave pairing in layer B, which surpasses the uniform d-wave

pairing in layer A when t⊥ >
√
2; (3) v = (0, 0, 0, 0, 1), signifying the interlayer pairing, which is enhanced as

JK ∼ JH . It is noteworthy that this uniform interlayer pair-field susceptibility outperforms in the large t⊥ regime,
while its pairing interaction peaks at t⊥ =

√
2. For q = (π, π), we focus on v = (1,−1,−1, 1, 0)/2, a representative

vector in the putative PDW region, where ⟨P (π, π)⟩v and |λ∗
v(π, π)| are notably enhanced at t⊥ =

√
2.
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FIG. 6: Transport properties. Left : Density of states at the Fermi energy, evaluated by the proxyN(ω = 0) =
∑

k βG(k, τ =
β
2
)/πN . Right : DC conductivity σdc. Top: Both N(0) and σdc are plotted against temperatures for various values of t⊥. An

increase in N(0) and σdc with decreasing T signifies metallic behavior, while a decreasing trend indicates insulating behavior.
Bottom: Temperature derivative of N(0) and σdc. Dashed lines mark the transition between metallic and insulating behaviors.
Temperature axes are displayed on a log scale. All results are obtained on 10× 10 lattices.

II. METAL-INSULATOR TRANSITION AT HALF-FILLING

To distinguish between metallic and insulating behavior, we can use the density of states, through the single-particle

spectral function A(ω). The imaginary time Green’s function G(k, τ) = ⟨ck(τ)c†k⟩ by

G(k, τ) =

∫ ∞

−∞
dω

e−ωτ

1 + e−βω
A(k, ω) =

∫ ∞

−∞
dω

e−ω(τ−β/2)

2 cosh (βω/2)
A(k, ω), (12)

and analytic continuation can be used to determine the single-particle density of states N(ω) =
∑

k A(k, ω)/N from
the imaginary-time QMC data. To avoid numerical complications associated with analytic continuation, we can
estimate

N(0) ≈ β

πN

∑

k

G

(
k, τ =

β

2

)
. (13)

Figure 6 identifies the location of the metal-insulator transition boundary (dashed line). The temperature behavior
of the single-particle density of states at the Fermi energy N(0) indicates a metallic phase in the blue shaded region
at low t⊥, where N(0) increases as T decreases, and an insulating phase in the red shaded region at high t⊥, where
N(0) decreases as T decreases.

The metal-insulator transition also can be characterized by the dc conductivity σdc, which is related to the current-
current correlation function Λ. The imaginary time current-current correlatorΛ(τ) at momentum zero can be obtained
through DQMC simulations by measuring

Λ(τ) = ⟨ĵ(τ)ĵ⟩, (14)
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where

ĵ = i
∑

ijσ

tij(ri − rj)ĉ
†
iσ ĉjσ. (15)

To obtain the dc conductivity from the imaginary time response, we can either perform analytic continuation to
compute ImΛ(ω) for all frequencies, which is related to Λ(τ) through the following relation:

Λ(τ) =

∫ ∞

−∞

dω

π

e−ωτ

1− e−βω
ImΛ(ω). (16)

or estimate the low frequency behavior of ImΛ ≈ ωσdc at sufficient low temperatures from

Λxx

(
τ =

β

2

)
≈ πσdc

β2
. (17)

Figure 6 captures the metal-insulator transition boundary from the conductivity σdc, which decreases as T decreases
indicating insulating behavior, or increasing as T decreases indicating metallic behavior. This generally matches the
boundary obtained from the density of states at the Fermi energy. At β = 30, the metal-insulator transition occurs
at t⊥ ∼ 0.5, which coincides with the peak in AFM correlations and is concommitant to the crossover from uniform
pairing to PDW in Fig. 2 of the main text.
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FIG. 7: Equal-time spin-spin correlations for various hole dopings in (top) layer B and (bottom) layer A. This figure is
similar to Fig. 1 in the main text, except the common parameters for all plots are N = 8× 8, β = 8, and (top) nA = 1± 0.004
and (bottom) nB = 1± 0.03. To mitigate the severe sign problem at β = 8 when layer A is doped and t⊥ < 1, we restrict the
range of t⊥ to larger values.
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III. SPIN AND CHARGE IN DOPED SYSTEMS

Figure 7 shows the variation of the equal-time spin correlations at the antiferromagnetic wavevector S(π, π, π), the
interlayer spin singlet correlations SAB(r = (0, 0)) and SAB(π, π) with hole doping in layer A or B (keeping the other
layer fixed at half-filling). It shows that doping layer B slightly suppresses the AFM correlations while doping layer
A destroys them.

Since the particle-particle interaction vertex is introduced for pairing, the particle-hole interaction vertex can also
be calculated for magnetic susceptibilities. Here we introduce the magnetic susceptibility tensor

χℓℓ′

σσ′ (q) =

∫
dτ

1

N

∑

i,j

eiq·(ri−rj)⟨n̂iℓσ(τ)n̂iℓ′σ′(0)⟩, (18)

and the bare magnetic susceptibility tensor

χ̄ℓℓ′

σσ′ (q) = δσ,σ′

∫
dτ

1

N

∑

i,j

eiq·(ri−rj)⟨ĉ†iℓσ(τ)ĉjℓ′σ′⟩⟨ĉiℓσ(τ)ĉ†jℓ′σ′⟩

= δσσ′

∫
dτ

1

N

∑

i,j

eiq·(ri−rj)Gℓ′ℓ
ji;σ(β − τ)Gℓℓ′

ij;σ(τ),

(19)

where ℓ = A,B and σ =↑, ↓.
Based on the Dyson-like expression, the particle-particle interaction vertex Λℓℓ′

σσ′ (q) relates the susceptibility χℓℓ′

σσ′ (q)

to its disconnected part χ̄ℓℓ′

σσ′ (q):

χℓℓ′
σσ′ = χ̄ℓℓ′

σσ′ + χ̄ℓℓ1
σσ1

Λℓ1ℓ2
σ1σ2

χ̄ℓ2ℓ
′

σ2σ′ + χ̄ℓℓ1
σσ1

Λℓ1ℓ2
σ1σ2

χ̄ℓ2ℓ3
σ2σ3

Λℓ3ℓ4
σ3σ4

χ̄ℓ4ℓ
′

σ4σ′ + ..., (20)

where we left the q dependence implicitly and truncate the vertex as it can also be relevant to the relative momentum
k and imaginary time τ . We convert the spin susceptibility tensors to matrices in a new basis {A ↑, A ↓, B ↑, B ↓} so
that the eigenvectors of χ(q) represent either charge or spin modes:
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FIG. 9: The maximum eigenvalue of Λc(q)χc(q) for various hole dopings in (top) layer B and (bottom) layer A. The
common parameters for all plots are N = 8× 8, β = 8, and (top) nA = 1± 0.004 and (bottom) nB = 1± 0.03.

when v = (a, a, b, b),

vχvT =

∫
dτ

2

N

∑

i,j

eiq·(ri−rj)
〈
(an̂iA(τ) + bn̂iB(τ))(an̂jA + bn̂jB)

〉
; (21)

when v = (a,−a, b,−b),

vχvT =

∫
dτ

8

N

∑

i,j

eiq·(ri−rj)
〈
(am̂iA(τ) + bm̂iB(τ))(am̂jA + bm̂jB)

〉
, (22)

where n̂iℓ = n̂iℓ↑ + n̂iℓ↓ and m̂iℓ =
1
2 (n̂iℓ↑ − n̂iℓ↓).

Therefore Eqn. 20 can be written in a matrix form as

χ(q) = χ̄(q) + χ̄(q)Λ(q)χ̄(q) + χ̄(q)Λ(q)χ̄(q)Λ(q)χ̄(q) + ...

=
χ̄(q)

1− Λ(q)χ̄(q)
.

(23)

In Fig. 8, we plot the maximum eigenvalue of Λ(q)χ̄(q) in the spin mode, labeled as Λs(q)χ̄s(q), under various
dopings. When both layers are half-filled, a sharp peak at (π, π) appears, which is suppressed by t⊥ and doping. In
the underdoped region, a subleading peak at (π, 0) reaches its maximum when t⊥ ∼ 1.4. We also show the maximum
eigenvalue of Λ(q)χ̄(q) in the charge mode, labeled as Λc(q)χ̄c(q), in Fig. 9. We observe that the peaks in those plots
shift away from (π, π) as t⊥ increases.

IV. FERMI SURFACE IN DOPED SYSTEMS

In Fig. 10, we plot the imaginary time Green function βGℓ(k, τ = β/2) as a proxy for the Fermi surface of each
layer (ℓ = A,B). For both layers at half-filling, two Fermi pockets centered at (0, 0) and (π, π) as t⊥ ∼ 1.4 likely
contribute to the weak-coupling PDW instability.
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FIG. 10: Fermi surfaces proxy. The proxy of the zero frequency single-particle spectral weight, βGℓ(k, τ = β/2) with
ℓ = A,B for various electron densities in (top) layer B and (bottom) layer A. The common parameters for all plots are
N = 8× 8, β = 8, and (top) nA = 1± 0.004 and (bottom) nB = 1± 0.03.


