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Strange Sounds

D. V. Khveshchenko
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599

This note addresses the effects of long-ranged and/or retarded interactions on the bosonic collective
modes in the so-called ’strange metals’. Recently, there have been conflicting reports on the very
existence of such stable collective excitations and their properties. Extending a number of approaches
that were previously used in the analyses of the standard Fermi liquid one finds evidence for, both,
conventional and novel behaviors of the non-Fermi-liquid counterparts of the zero-, shear-, and other
’sounds’.

Strange metals

There has been a strong interest in the hydrodynamic
behavior of electronic systems and some evidence in sup-
port of this interaction-dominated regime was reported
in a number of materials, including graphene, GaAs,
PdCoO2, etc.
The experimental findings suggestive of such behav-

ior also bolstered the attempts to discover hydrodynamic
features in the so-called ’strange metals’ which moniker
is often used in reference to the generic non-Fermi-liquids
(NFL) states of compressible fermion matter.
Despite the decades of intensive studies, a systematic

classification of the NFL is still missing and such states
are characterized largely by what they are not - namely,
not the ordinary Fermi liquids (FL). Therefore, one po-
tential NFL classification could be constructed on the
basis of spectroscopy of their bosonic collective excita-
tions or ’sounds’. Their spectra can be extracted from
the acoustic density response, electromagnetic polariza-
tion, optical conductivity, etc.
Many of, both, established and conjectured NFL sys-

tems fall within the broad category of (non-)relativistic
fermions coupled via an overdamped bosonic field with
the propagator

D(ω, q) =
1

|ω|/qα + qβ
(1)

Its non-relativistic (finite density) variant has been en-
countered in a whole variety of condensed matter prob-
lems: itinerant ferro- and anti-ferro- magnets [1], elec-
tromagnetic response in ordinary metals and plasmas [2],
spinon gauge theories of spin liquids [3–5], compressible
QHE [6], Ising nematics and other examples of Pomer-
anchuk instabilities and Lifshitz transitions [7]. This
topic has also been addressed in the nuclear and high-
energy studies where the mode in question is a genuine
(non-)abelian gauge field [8].
In d spatial dimensions and to first order in its

strength, the interaction (1) endows the fermions with a
singular and largely momentum-independent self-energy

Σ(ω) ∼ ω1/z z =
d− 1 + α

α+ β
(2)

Despite having been around for quite a while (and
contrary to the occasional claims to the opposite [9]),

this fundamental problem is still waiting for its satis-
factory solution. In particular, the ultimate form of
the fermion propagator - especially, at finite tempera-
tures and/or in the case of unbroken gauge symmetry
- is yet to be ascertained (see [10] and references therein).

Collective modes of interacting fermions

While many of the questions pertaining to the one-
fermion properties in the presence of singular interac-
tions remain unanswered, there has long existed a cer-
tain consensus regarding the two-particle ones. Namely,
at low transferred momenta and frequencies the density
and current response functions are normally expected to
manifest, by and large, the ordinary FL behavior [11].
A recent follow-up of the original work [11] addressed

the issue of a possible (non)existence of the undamped
zero- and other sound modes in the presence of the in-
teractions (1). In such work, this assertion was either
supported [12], refuted [13, 14], or found to depend on
the interaction strength [15].
Specifically, in Ref.[15] it was argued that whether or

not a zero sound mode can survive as an undamped ex-
citation depends on the competition between the (nearly
instantaneous) FL-like scattering processes with large
momentum transfers and those with small momenta that
are governed by the singularly frequency-dependent (re-
tarded) interaction responsible for the NFL behavior.
Generically, one could then expect the undamped zero-
sound mode to possibly exist in the weak coupling limit,
whereas at strong couplings it would be buried inside the
particle-hole continuum.
The above conclusions were drawn from the different

analyses of the quantum Boltzmann equation (QBE). To
that end, it has long been argued that the latter can be
used even in the absence of well-defined Landau-Fermi
quasiparticles, provided that the single-particle Green
function remains a sharp function of momentum around
the Fermi value kF .
The standard derivation of the QBE makes use of the

Keldysh ’lesser’ function which reduces to the generalized
distribution function

f(ǫ, θ|t, r) = −i

∫
dξp
2π

G<(ǫ,p|t, r) (3)

upon integrating over the quasiparticle energy ξp ≈ vp‖
proportional to the momentum normal to the fiducial
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Fermi surface (FS) and measured with respect to kF .
Hereafter θ is the angle (in the 2d case, the only one)
parametrizing the continuous FS and v is the Fermi ve-
locity in a generic (’non-flat’) electronic band.
By further integrating over the frequency one obtains

an angular-resolved variation of the chemical potential

ρ(θ|t, r) =

∫
dǫ

2π
f(ǫ, θ|t, r) (4)

which represents a local FS displacement and can
be expanded over the space-time Fourier components
ρ(θ|ω,q).
Alternatively, a pertinent kinetic equation can be ob-

tained from the Bethe-Salpeter one or, else, from the
equivalent eigenvalue problem for the two-particle scat-
tering vertex. Its analysis then yields spectra of the
particle-hole excitations, including their bound states (if
any) which correspond to the collective modes.
The standard form of the kinetic equation in the pres-

ence of an external electric field E reads

(ω − vq cos θ)ρ(θ)−

∫
dθ′

2π
F (θ − θ′|ω)(ρ(θ) − ρ(θ′)) =

= I[ρ(θ)] + vE cos θ (5)

where the quasiparticle interaction function F (θ|ω) is de-
termined by the real part of the same integral kernel
whose imaginary part yields the collision integral I[ρ(θ)].
For one, the singular coupling (1) gives rise to the typ-
ical energy transfer ω which is small compared to the
momentum one, q ≈ q⊥ ∼ ω1/z (hereafter, in the ab-
sence of tuning and other competing parameters all the
frequencies are measured in units of the Fermi energy of
order vkF ).
For comparison, the earlier work of Refs.[12–14] fo-

cused on the collisionless regime. Indeed, in several rel-
evant contexts the interaction (1) would be mediated by
a physical boson, and neglecting the collision integral
would be in line with the assumption that a rapidly ther-
malizing boson subsystem quickly attains equilibrium,
thus ceasing to act as a momentum sink for the fermions.
Conversely, if the bosons were out of equilibrium, they

would no longer serve as a heat bath for the fermions,
and the energy conservation would need to be applied to
the entire fermion-boson system, thus nullifying its over-
all collision integral. By introducing an additional bath
(e.g., phonons), one could shift the (otherwise, vanish-
ing) eigenvalue of the corresponding hybrid mode away
from zero, though. In what follows, no analysis of this
complex situation will be attempted.
Also, under the condition ω << vq the interaction-

induced scattering becomes quasi-elastic, thus allowing
one to approximately linearize the collision integral, akin
to the case of static disorder. Next, expanding over the
angular harmonics one can convert Eq.(5) into the system
of coupled equations

(ω + iγl)ρl(ω, q) =

=
v

2

∑
±

(q(1 + F0 − Fl)ρl±1(ω, q) + Eδl,±1) (6)

where γl and Fl are the l
th the angular harmonics of the

linearized collision integral and the Landau function.
Alternatively, the kinetic equation can be cast in the

form obtained in the original work of [11]

(ω(1 + F0 − Fl) + iγl)ρl(ω, q) =

=
v

2

∑
±

(qρl±1(ω, q) + Eδl,±1) (7)

Either of the recursion relations (6) and (7) can then
be viewed as a discretized Schroedinger equation on the
1d chain whose sites are labeled by l [16]. Technically,
the l-dependent hopping amplitudes in Eq.(6) might be
more difficult to handle. Therefore, Eq.(7) with all the
l-dependence being in the form of a (possibly, complex)
on-site potential is likely to be better amenable to some
analytic treatment.
Previously, the pure F0 model was shown to have no

odd collective mode (shear-sound) with the transverse
current - but no density - oscillations. In fact, in the 3d
FL there is a threshold for the minimal F1 required to de-
velop this mode. By further including the higher Fl one
gives rise to the additional collective modes. Moreover,
the Coulomb interactions drastically modify the spec-
trum of longitudinal current and density fluctuations,
thus producing gapped plasmon modes while the trans-
verse ones remain unaffected.
The earlier studies were either limited to the collision-

less limit (γl → 0) [13] or ignored the important cancel-
lations (due to the conservation laws) between the quasi-
particle self-energies Σ and the interaction function F
[12, 14]. Furthermore, the analyses of Refs.[12–14] were
oblivious to the intrinsically peculiar 2d kinematics that
tends to give rise to a strong disparity between the relax-
ation rates of the even and odd harmonics in the case of
a convex (albeit not a concave) FS [17]. It has been ex-
tensively studied in the conventional Fermi liquid [16, 17]
and also taken into account in the recent explorations of
the ’Ising-nematic’ variant of the problem (1) [18].
The crux of the matter is that while the even harmonics

can decay solely due to the FS shape fluctuations, the odd
ones can not be relaxed without changes to the Fermi
volume. This kinematic property gives rise to a delayed
onset of equilibration, thus resulting in the emergence of
a new, ’tomographic’, regime intertwining between the
ballistic (collisionless) and the ordinary hydrodynamic
(diffusive) ones [16, 17].
In what follows, we consider a generic NFL system

described by the singular momentum-independent self-
energy Σ(ω) ∼ ω1/z and the Landau function F (θ|ω) =
F (q‖/ω

1/z‖ , q⊥/ω
1/z⊥). The latter favors small-angle

scattering through the parametrically different scales of
the normal and tangential

q⊥ ∼ ω1/z⊥ q‖ ∼ ω1/z‖ (8)

components of the transferred momentum, thus implying
q‖/q⊥ << 1 at low ω, provided that z‖ < z⊥.
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For instance, the Landau function corresponding to the
interaction (1) takes the schematic form

F (θ|ω) ∼ (max[|θ|, ω1/(α+β)])d−2−β (9)

which results in the singular angular harmonics Fl(ω) ∼
ωd−1−β/(α+β) with l <∼ 1/ω1/(α+β) for d− 1− β ≤ 0.
Alternatively, for a generalized bare quasiparticle dis-

persion ξp = Apη‖ + Bpζ⊥ the scaling of the normal and

tangential FS fluctuations can be alternatively influenced
by the sheer kinematics

q⊥ ∼ (ω +Σ)1/ζ ∼ ω1/zζ

q‖ ∼ (ω +Σ)1/η ∼ ω1/zη (10)

In the NFL regime where Σ >> ω the estimates (8) and
(10) would not necessarily be in agreement, thereby pro-
ducing different regimes and crossovers between them.
However, the situation simplifies significantly if z⊥ = zζ
and z‖ = zη, thus implying

z⊥/z‖ = ζ/η (11)

In the case of Eq.(1) this happens for all α = 3 − d,
including the physically important case of the 2d Landau-
damped boson (α = 1) coupled to the fermions with an
ordinary near-linear dispersion (η = 1) and a quadratic
curvature (ζ = 2).
Concomitantly, the two components of momentum

scale differently with a characteristic scattering angle
q⊥ ∼ θ and q‖ ∼ θz⊥/z‖ , any power-law dependence upon
which brings about a matching power of the angular mo-
mentum l ∼ 1/θ.
As previously mentioned, the scattering processes with

θ <∼ θ0 ∼ ω1/z⊥ are dominated by the singular frequency
dependence while for θ >∼ θ0 all the scattering is essen-
tially momentum dependent, hence quasi-elastic.
It is worth mentioning that the (un)conventional FL

with z ≤ 1 can also be fit into the above scaling laws,
provided that instead of Σ one takes ω as the greater of
the two in Eq.(10).
As regards the scattering rates, the 2d parity (equiva-

lent to 1d reflection, θ → −θ) and particle-hole (ξ → −ξ)
symmetries require them to be proportional to the even
powers of either, thus resulting in the following estimates
(here n and m are non-negative integers)

γ+l (ω) ∼ Σ(ω)(q⊥l)
2n ∼ ω1/z+2n/z⊥ l2n

γ−l (ω) ∼ γ+l (ω)(q‖(l
2 − 1))2m

∼ ω1/z+2n/z⊥+2m/z‖ l2n(l2 − 1)2m (12)

for the even and odd angular harmonics, respectively. In
accordance with the earlier discussions [17], the general
structure of (12) accounts for the fact that the even-l
modes can be relaxed by the shape fluctuations of an
incompressible FS (hence, factors of q⊥) while the odd
ones would also require changes to the FS volume (hence,
factors of q‖).

Based on this argument, the minimal values of the in-
teger factors in (12) are n = 0,m = 1. However, to keep
the discussion as general as possible and allow for an
additional suppression of scattering through the matrix
elements one might want to keep n,m ≥ 0. Conceivably,
this additional suppression will affect the odd rates in the
case of a convex FS, but not necessarily a concave one
[16, 17].
Despite being much lower at small l, the faster-growing

odd rate catches up with the even one at the momenta
of order l‖ = ω−η/z‖ζ , while at the still higher l the two
rates remain comparable.
Also, at the momenta in excess of l⊥ = ω−1/z⊥ the

small-angle suppression in (12) ceases to exist. Thus,
for l > max[l‖, l⊥] both the even and odd rates become
of order the imaginary part of the self-energy Σ. Also,
as mentioned above, under the condition (11) one finds
l⊥ = l‖ ≡ l0 and the above crossovers merge into one and
same.
In general, even a limited disparity between the even

and odd rates introduces new scales of order (γ+2lγ
−
2l+1)

1/2

that mark transitions between some additional, different
from, both, the ballistic and hydrodynamic, regimes.
To apply (12) to the extensively studied case of the 2d

FL with large-angle scattering and Σ ∼ ω2 lnω one has
to choose z = 1/2, z‖ = 1, z⊥ = ∞, n = 0, and m = 1,
thus obtaining

γ+(ω, l) ∼ ω2 γ−(ω, l) ∼ ω4(l2 − 1)2 (13)

where l > 0. Upon a closer inspection, the rates (13)
acquire an additional ln l factor originating from the log-
arithmic kinematic divergence in 2d [17].
By contrast, in the problem of the overdamped 2d

bosonic mode (1) with z = z‖ = 3/2, z⊥ = 3 and
n = m = 1 one readily recovers the results of Ref.[18]

γ+(ω, l) ∼ ω4/3l2 γ−(ω, l) ∼ ω8/3l2(l2 − 1)2 (14)

In the kinetic equation (5), the imaginary terms are ac-
companied by their real-valued counterparts associated
with the Landau function. Generically, they appear to
be of the same order for any z > 1.
Formally, both rates γ±0 vanish due to the differences

F0 − Fl in Eqs.(6,7) which implement a cancellation
between the quasiparticle self-energy and Landau func-
tion, as demanded by the particle number conservation.
Likewise, the vanishing of the odd rates γ−±1 is due
to momentum conservation and can be traced back to
the factors F±1 − Fl = (F0 − Fl) − (F0 − F±1) in the
integrand of (5).

Solving the kinetic equation

Any essential l-dependence of either the on-site poten-
tials or the on-bond factors in both variants (6) and (7) of
the kinetic equation precludes one from solving it analyt-
ically by deriving a closed formula for the infinite series∑

l=0 ρlx
l [16], although a numerical solution might still

be fairly straightforward.
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Likewise, a direct solution of the 1d Schrodinger equa-
tion is complicated by the fact that the pertinent 1d po-
tential oscillates strongly between the even and odd sites,
apart from the overall power-law growth of its envelop
function up to the momenta l ∼ l0. Despite the difficulty
of finding even the classical turning points in such stag-
gered potential, its leveling off at l > l0 suggests that
any potential discrete eigenstates would be confined to
the range of momenta |l| <∼ max[l‖, l⊥] where the effec-
tive 1d potential continues to grow with |l|. At still higher
harmonics the 1d potential levels off and its eigenvalues
form a continuum of non-normalizable scattering states
above the plateaux. In contrast, collective zero-, shear-,
and other sound modes correspond to the normalizable
bound-state solutions, if any.
This picture is consistent with an interpretation of the

collective modes as soft FS oscillations with low l that
are delocalized over the FS while the particle-hole con-
tinuum represents rough local fluctuations which include
arbitrarily large l. To get a preliminary insight into the
spectra of the ’strange sounds’ one can first eliminate
the even (fast) modes in favor of the odd (slow) ones
in the kinetic equation, thereby deriving dispersion rela-
tions ωl(q) for the different values of l.
Separating out the angular dependence, assuming (11),

and extending the expressions (12) for the rates (imag-
inary parts) to the full (complex-valued) bosonic ’self-
energies’ (for z > 1 they would be, generally, of a compa-
rable magnitude), one then arrives at the schematic form
of the spectral equation

(ω + iγ+2l(ω))(ω + iγ−2l+1(ω)) = (vq)2 (15)

Using this equation one can determine the exponent ν in
the power-law dispersion relation ω(q) ∼ qν .
At low momenta, l <∼ l+ = ω(1−1/z)/2n−1/z⊥ , the self-

energies can be neglected and the corresponding collec-
tive modes described by (15) exhibit the ordinary linear
dispersion, ν = 1.
At the higher momenta, l+ <

∼ l <
∼ l− =

ω(1−1/z)/(2n+4m)−1/z⊥ , the exponent in the al-
gebraic dependence dispersion changes to ν =
2/(1 + 1/z + 2n/z⊥).
In the next interval, l− <

∼ l <∼ l0, where l0 was defined
below Eq.(12) the spectrum once again changes to ν =
1/(1/z + 2n/z⊥ +m/z‖).
Finally, for l > l0 the dispersion approaches the

naive non-hydrodynamic asymptotic with ν = z which
was previously interpreted as marking the crossover be-
tween a particle-hole ’quasi-continuum’ and (possibly)
non-hydrodynamic modes [11–14]. The earlier studies
differed, though, on whether the former would be com-
posed of the modes lying below [11, 12, 14] or above [13]
this divide.
The above analysis is approximate and, albeit yielding

the anticipated results in the limits of, both, low and
large l, lacks accuracy in the intermediate regime. A
further effort towards solving (5) with the kernal (9)

would definitely be warranted.

Response functions and transport rates

A zero-sound mode would generally be observable as
a peak in the (even) density and longitudinal current re-
sponses < ρ|ρ >∼< J‖|J‖ > at the momenta where it
separates from the particle-hole continuum. Likewise,
the shear sound mode would manifest itself through the
(odd) transverse current response function < J⊥|J⊥ >.
Generalized (possibly, off-diagonal) response functions

χAB involving pairs of local fields |A > and |B > are
given by the general formula

χAB =
∑
O

< A|O >
1

iω + λO
< O|B > (16)

where the sum is taken over all the operators |O > with
eigenvalues λO that have non-vanishing overlaps with the
fields |A > and |B >.
In the case of electrical conductivity the current op-

erator normally overlaps with momentum. If so, the so-
called ’coherent’ (Drude-like) term in the conductivity
remains finite only as long as momentum can relax. Al-
ternatively, the current has to overlap with other con-
duction channels, as the result of which the conductivity
may acquire some unconventional (’incoherent’) contri-
butions.
In the FL theory, the collective modes spectra can then

be read off directly from the poles of the fully dressed
polarizabilities. Conceivably, this might still hold for the
NFL, albeit in addition to (of instead of) the poles one
might need to look into the possible branch cuts as well.
In particular, the singularities of a (generally, non-

local) conductivity σ⊥,‖(ω,q) = χJ⊥,‖J⊥,‖
/iω represent

contributions of all the modes (l = 0,±1, . . .) that have
sizable overlaps with the current operator.
While the rate γ1 given by (12) vanishes for the

isotropic FS, in any realistic situation it would be fi-
nite due to the combination of all the momentum non-
conserving scattering processes (impurities, umklapp,
phonons, etc.).
Even in the absence of such processes, the odd rates

with higher l can still produce the optical (q = 0) con-
ductivity featuring a power-law tail at sufficiently high
(yet, small compared to the Fermi energy) ω

σconv(ω, 0) ∼ Re
∑
±,l

| < J |O±
l > |2

iω + γ±l

∼ ω1/z+2n/z⊥+2m/z‖−2 (17)

in the more restrictive case of a convex FS where m ≥
1 and σconc(ω, 0) ∼ ω1/z+2n/z⊥−2 in the less restrictive
concave one where the leading term is given by Eq.(12)
with m = 0.
For instance, in the theory (1) it would result in the

growing (∼ ω2/3) vs decaying (∼ ω−2/3) behavior for
the convex and concave FS, respectively, in agreement
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with the conclusions drawn in Refs.[19]. The former can
then be recognized as the result of a cancellation of the
leading terms by virtue of the vertex Ward identity due
to momentum conservation.
At finite q, by keeping only the lowest γ−1 and γ+2 rates

and equating the denominator in (17) to zero one finds
the approximate dispersion relations

ω± =
i

2
(γ+2 + γ−1 )±

i

2
[(γ+2 − γ−1 )2 − 4(vq)2]1/2 (18)

which evolve from the ballistic linear dispersion at large
q all the way down to the viscous one ω = −iq2/γ+2 at
small q and γ−1 → 0.
Notably, the strong ω-dependence of the rates γ±l re-

sults in an unusual viscous behavior, as compared to the
conventional hydrodynamic (Stokes) one (cf. [17]).
To further elaborate on this topic and better assess

the possible departures from the standard hydrodynam-
ics one can also try to evaluate the eigenvalues λO by
accommodating the slow angular diffusion directly in
the effective kinetic equation for the odd-parity fluctu-
ations ρ−(θ) = −ρ−(−θ). This equation can be ob-
tained by integrating out the parity-even modes ρ+(θ) =
ρ+(−θ) which procedure results in the highly non-local
(super)diffusion equation generalizing that derived in
Refs.[17]

(iω +
(vq)2

γ+
θ2∂−2n

θ + γ−∂2n+4m
θ )ρ−(θ) = 0 (19)

The minimal eigenvalue of this operator can be esti-
mated by minimizing the l.h.s.of (19) at the angle θmin ∼
(γ+γ−/v2q2)1/(2+4n+4m).
Estimated at this value, the conductivity exhibits a

characteristic frequency ω(q) whose scaling with q yields
a new exponent

ν =
2n+ 4m

1 + 2n+ 2m+ (1z + 2n
z⊥

)(2m− 1)− 2m(1+n)
z‖

(20)

signifying the unconventional hydrodynamics.
To further improve on the estimate (20) and account

for the l-dependence in Eq.(12) one can also evaluate
the specific conductivity-related decay rate [17]. In this
approach, the (non-local) conductivity

σ(ω, q) ∼
1

iω + q2/Γ2(ω, q)
(21)

is expressed in terms of the effective rate Γ2(ω, q) which is
itself is given by the l = 2 value of the continued fraction

Γl = γl +
(vq)2

γl+1 +
(vq)2

γl+2+...

(22)

that satisfies the finite-difference equation

(γl − Γl + Γl+2)((vq)
2 + γl+1Γl+2) = γl+1Γ

2
l+2 (23)

In the continuum limit, this equation can be converted
into a differential one. Namely, by virtue of a smart
parametrization [17]

Γl =
(vq)2

γl−1
(
ψl

ψl+2
− 1) ≈ −2

(vq)2

γ−
d lnψ(l)

dl
(24)

the function Γl can be cast in terms of a solution ψ(l) to
the equation

d2ψ

dl2
−

1

γ−

dγ−
dl

dψ

dl
−
γ+γ−
4(vq)2

ψ = 0 (25)

which take the form

ψ(l) ∼ xµKµ(x) (26)

where µ = (1 + 2n + 4m)/(2 + 4n + 4m) while Kµ(x)
is the modified Bessel function of the second kind, and
x = (γ+γ−)

1/2l1+2n+2m/2(vq)(1 + 2n+ 2m) is its di-
mensionless argument.
Thus, the rate of interest shows a significant spatio-

temporal dispersion

Γ2(ω, q) ∼ (vq)2−2µ (γ+)
µ

(γ−)1−µ
+#γ+ (27)

where the q-dependent term dominates over the constant
in the range of momenta (γ−γ+)

1/2 <
∼ q <

∼ γ+ which
defines the intermediate ’tomographic’ regime.
In the NFL regime Σ >> ω Eq.(27) reads

Γ2(ω, q) ∼ (q1+2nω
2m
z

+ 4nm
z⊥

−m(1+2n)
z‖ )1/(1+2n+2m) (28)

The position of the pole in (21) then yields yet another
exponent

ν =
1 + 2n

1 + 2n+ 2m+ 2m/z + 4nm/z⊥ −m(1 + 2n)/z‖
(29)

For instance, in the 2d FL with z = 2 = 2z‖ and z⊥ = ∞

the rate is Γ2 ∼ q1/3ω [17]. In the universality class of a
2d Ising nematic with z = 3/2 = z‖ = z⊥/2 one obtains

Γ2 ∼ q3/5ω2/15, as in Ref.[18].
Notably, the above exponents appear to be consistently

smaller and, therefore, more relevant than the larger ones
controlling the quasiparticle self-energies. Even in the
FL case the rate (27) turns out to be linear in tempera-
ture - despite the intrinsically non-linear rates (12) - thus
creating the appearance of a NFL behavior in those ex-
periments that measure the non-local conductivity [17].
Thus, the damping rate Γ2 manifested by the non-

local conductivity and associated with kinematic vis-
cosity turns out to be larger than its counterparts in,
both, the ballistic (linear) regime, as well as the viscus
(quadratic) one. In light of this observation one might
want to revisit, both, the issue of relative (un)importance
of the higher-order hydrodynamic corrections as well as
that of the (ostensibly) NFL-like effects in realistic sys-
tems.
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On a cautionary note, the previous work on the
tomographic regime in FL dealt exclusively with the
well-defined temperature-dependent rates. However,
at finite temperatures the interaction (1) gives rise to
the strongly enhanced (potentially divergent) thermal
fluctuations at the zero Matsubara frequency, unless
the overdamped boson develops a finite ’thermal mass’
which regularizes the pertinent infrared divergence
[3]. While this formal problem remains lingering in
the case of an unbroken gauge symmetry, one might
surmise that it can be overcome by operating in terms of
manifestly gauge-invariant fermion amplitudes instead
of the ordinary (gauge non-invariant) ones [20].

Betterment of the kinetic equation

Prior to the recent revival of interest in the firmly es-
tablished conservative approaches, such as the FL the-
ory and kinetic equation, the problem of compressible
strange metals was also attacked with such ’experimen-
tal’ techniques as multi-dimensional bosonization and ap-
plied holography.
As regards the former, apart from the straightfor-

ward attempts to discretize the FS into a collection of
(pseudo)-1d ’patches’ [21] (which method would be in-
trinsically plagued with the lack of a proper account of
the FS curvature [5]), there was also some (apparently,
premature) effort made towards formulating a purely ge-
ometrical approach to bosonization in the framework of
the Kostant-Kirillov method of coadjoint orbit quantiza-
tion [22].
Recently, the latter approach was re-discovered anew

[23] - incidentally, after it had been invoked in the context
of a potentially even more fundamental approach of a
path integral over the Wigner distribution function-like
variables defined in the phase space [24].
Thus far, though, the recent expositions of this method

[23] were largely limited to the discussions of the math-
ematical aspects of the formalism itself, straightforward
RPA-like analyses, and multi-point correlations of the
free density operators. Such correlations are controlled
by the fermion kinematics and stem from the cubic and
quartic terms in the effective free-fermion bosonic action
due to its intrinsic non-linearity even in the absence of
any physical interactions.
At the core of all the different variants of the bosoniza-

tion method, is the (approximately) quadratic bosonic
action

S = i

∫
r,t

∮
n

n∇φn(
∂

∂t
− vn∇)φn (30)

for the field φ representing density fluctuations via
ρ(t, r) =

∮
n
n∇φn and governed by the propagator

< φnφn′ >=
δ(n− n

′)

(nq)(ω − v(nq)− Σ)
+

F (n,n′)

(ω − v(nq)− Σ)(ω − v(n′q)− Σ)
(31)

The task of computing this function is essentially equiva-
lent to inverting the collision operator or, for that matter,
solving the linearized kinetic equation (5).
When applied to the interaction (1) it results in the

equations

(ω − v(nq) +Aω2/3)φ‖,⊥
n

= Bω2/3

∮
n

′

(n‖,⊥n
′
‖,⊥)φ

‖,⊥
n

′

(32)
which were used in the early exploration of this problem
to produce the anomalous dispersion relation ω ∼ k6/5

(see the second of Refs.[4]) which was recently reproduced
in [14], in addition to the obvious one, ω ∼ k3/2.
While the latter was identified early on as marking a

crossover between the particle-hole continuum and possi-
ble non-hydrodynamic modes [11], the former mode was
argued to evolve into the ordinary linear zero-sound at
higher momenta [14]. Notably, this mode was found in
the parity-even - but not the parity-odd - sector.
In order to further improve the above estimates and

better ascertain the nature of the modes in question, it
might be possible to advance the bosonization calcula-
tions by advancing the eikonal technique of the early
Refs.[4]. Apart from the low-q regime, this method can
also be used to compute the response functions at the
transferred momenta close to 2kF .
The hydrodynamics of strange metals was also actively

pursued in the framework of the so-called applied holog-
raphy [25]. By now this speculative (a.k.a. ’bottom-up’)
bulk-boundary correspondence ’which has proven in re-
cent years to effectively describe low-energy properties
of strongly interacting systems’ (as quoted in, e.g., the
last of Refs.[26]) has already withdrawn from much of the
territory in condensed matter physics that it held since
2007. Nowadays it focuses almost exclusively on (and
claims to provide new insights into) the various hydro-
dynamic aspects of strongly (or weakly, as in a typical
holographic calculation the coupling strength is not even
a factor) interacting matter.
Among its many broadly publicized (yet, either uncon-

firmed or refutable [27]) propositions, there is a recent -
rather specific and purportedly quantitative - prediction
of an overdamped acoustic plasmon mode and its prop-
erties in the double-layered cuprates [26]. Similar to the
overwhelming majority of other calculations in ’ortho-
dox’ holography this one was performed far outside the
regime of applicability of the underlying theory, thus rais-
ing questions about the status of any quantitative agree-
ment with data, should such be found (a spoiler: unless
such an agreement is deemed purely fortuitous, that the-
ory would probably have much more explaining to do, as
compared to a situation of no agreement).
Specifically, apart from the generally missing trans-

lational, rotational, and/or super-symmetry of a large
number of fermion species (which would be of order unity
in any metal - strange or not), the physically tangible in-
teractions normally do not happen to be in the regime
of extremely strong couplings that would be required to
potentially justify the purely classical treatment of the



7

bulk gravity. Besides, the ubiquitous holographic custom
of picking out that bulk theory at will (or on the basis
of such ’anthropic’ factors as technical convenience and
prior insight) and regardless of the material in question
does not help the holographic cause either [27].

The prediction of Refs.[26] was argued to be in con-
flict with the earlier resonant inelastic X-ray scatter-
ing (RIXS) [28] and Electron Energy Loss Spectroscopy
(EELS) [29] studies which detect a well-defined acous-
tic plasmon at small momenta, followed by a transition
into a featureless momentum-independent continuum at
larger momenta.

In accord with such conclusions, the most recent EELS
studies report that ’there are no signs of over-damped
plasmons predicted by holographic theories’, ’the the-
oretical predictions of an over-damped plasmon are in
stark conflict with early EELS studies on cuprates’ or
’the plasmons which are calculated by theory are unlikely
candidates to explain the dispersion curves’ (see the first
and second of Refs.[30], respectively).

In that regard, it might be instructive to quote the
work of the last of Refs.[26] for a rare example of unequiv-
ocal self-confidence (albeit somewhat less of a healthy
self-criticism): ’Our theoretical predictions appear to
contradict the EELS results which are obtained by our
experimental research group, in which no acoustic plas-
mon was observed [see [30]]. This apparent contradiction
certainly challenges the experimentalist to either discover
the right experimental conditions to observe the acous-
tic plasmon contribution or come up with arguments to
explain why an acoustic plasmon cannot be measured.’

As to a potential relevance of the holographic claims
towards hydrodynamics, such predictions tend to be lim-
ited to the linear (transformed into a square-root in the
presence of the unscreened Coulomb interactions) and
quadratic modes for the longitudinal (sound) and trans-
verse (shear) modes, respectively. Therefore, reproduc-
ing any of the above (in general, non-analytical) disper-
sion relations as quasi-normal modes in a certain gravita-
tional background metric would pose an interesting chal-
lenge to the ’orthodox’ holography. In contrast to the
situation in higher dimensions, reconciling the results of
solving the kinetic eqiation with those based on the 2d
hydrodynamics can be particularly involved because of
the presence of the intermediate ’tomographic’ regime.
Likewise, it would be interesting to ascertain a possible
role of the much-discussed holographic phenomenon of
’pole-skipping’ in the context of the kinetic equation and
its improved versions.

On the other hand, one might find some intriguing
hints of a conformally symmetric behavior (hence, some
potential of an underlying gravitational physics) because
of the factor l(l2 − 1) in (12) which is inconspicuously
reminiscent of the Virasoro commutations relations on
the algebra of 1d diffeomorphisms.

As another tantalizing observation, in the ’tomo-
graphic’ regime the kinetic equation (5) can formally
be converted to the 1d quantum mechanics of a par-

ticle in the solvable (supersymmetric) potential f0(1 −
f0) ∼ 1/ cosh2 x [17], which simple problem played an
important role in the recent studies of the Sachdev-Ye-
Kitaev (SYK) [31] and related ultra-local models that
can be viewed as low-dimensional examples of the ’Hall-
ographic’ bulk-boundary correspondence [32].
Some difference, though, is that in terms of the two-

point fermion amplitude (3) the SYK quantummechanics
emerges along the direction of the relative (thermal) time
variable τ , whereas in the kinetic equation the role of the
1d coordinate x is played by the (dimensionless) energy
ǫ/T dual to the center-of-mass time variable.
Possible rationalization of these and related observa-

tions in the framework of the ’phase-space holography’
introduced in Ref.[24] will be presented elsewhere.

Reflections and repercussions

The above discussion suggests that the question of the
existence of well-defined collective modes (’sounds’) in
strongly interacting (’strange’) metals may lie outside
the standard FL paradigm of stable (undamped) bound
states positioned above the particle-hole continuum. It
was observed that, while remaining nearly linear (as long
as the Coulomb interactions are excluded) and relatively
weakly damped at large momenta, such modes tend to ac-
quire non-linear dispersion and strong damping at lower
momenta.
Moreover, such transport characteristics as a non-local

conductivity might exhibit certain NFL-like features that
would be routinely associated with the ’strange metals’.
Even such an alleged hallmark of the NFL behavior as
linear resistivity was shown in [17] to occur even in the
ordinary FL transport, if measured in a certain regime.
As proposed earlier [33], the poles and branch cuts

of the charge/current response functions manifest them-
selves through their distinct behavior in the time do-
main, χ(t,q) ∼ e−iω(q)t, which might be accessible with
the experimental pump-probe techniques. In particular,
one can discuss specific features associated with the de-
tectable vs hidden (or ’mirage’) poles of the charge sus-
ceptibility [33].
Intriguingly, in Ref.[18] it was conjectured that the

negative real part of the analytically continued odd rate
(12) may signal a potential instability of the system with
a convex FS. While being in line with the general ar-
gument, this conclusion would seem rather puzzling as,
under the same conditions, the much greater even rate
would not indicate any instability. Therefore, it would
seem unlikely that the less relevant (containing a higher
power of ω) rate would be indicative of an instability
while the more relevant (proportional a lower power) does
not.
These and related issues are definitely worth pursuing.
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