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The ac Harman method has been used for the direct estimation of dimensionless thermoelectric
figure of merit (zT ) through ac/dc resistance measurements. However, accurate zT estimation
with a four-probe configuration is difficult owing to the occurrence of a thermal phase-delay in the
heat flow with a low frequency current. This study reports an exact solution for zT estimation by
solving the heat conduction equation. The analysis can explain the reverse heat flow, which is the
main source of the error in the four-probe configuration, and the experimentally obtained behavior
of the frequency dependence of zT of (Bi,Sb)2Te3. Approximately 20% of the error is caused by
a thermal phase-delay, unless an appropriate current frequency and voltage-terminal position are
chosen. Thus, an accurate zT evaluation using a four-probe configuration at any voltage terminal
position is achieved. These findings can lead to interesting thermoelectric metrology and could serve
as a powerful tool to search for promising thermoelectric materials.

I. INTRODUCTION

Thermoelectric (TE) materials are expected to con-
tribute to power generation in situ as they facilitate the
efficient conversion of waste heat into electrical energy
[1–3]. The conversion efficiency of TE materials depends
on the dimensionless figure of merit zT , which is defined
as zT ≡ S2T/(ρκ), where S, T , ρ, and κ denote the
Seebeck coefficient, absolute temperature, electrical re-
sistivity, and thermal conductivity, respectively [4]. The
accurate evaluation of the zT of TE materials requires
independent measurements of the three physical parame-
ters (S, ρ, and κ). Generally, such measurements are per-
formed by employing different experimental setups and
sample shapes, which can affect the accuracy of zT es-
timation. In a recent international round-robin test, the
interlaboratory uncertainty for zT was estimated to be
approximately 10% to 20% [5–8]. Consequently, the es-
tablishment of standardized and accurate measurement
techniques to realize the precise estimation of TE prop-
erties is desirable.

The ac Harman method is an alternative method to
determine zT . It enables the direct determination of zT
through ac and dc resistance measurements using the fol-
lowing formula

zT =
Rdc −Rac

Rac
, (1)

where Rdc and Rac denote the resistances of the sample
measured via application of dc and ac currents, respec-
tively [9]. The ac Harman method exploits the Peltier
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effect, which occurs at the sample edges upon the appli-
cation of the current I to the sample. The ac Harman
method has been extensively used for a simple zT esti-
mation procedure in the case of various targets, such as
minute crystals, thin films, and module composite struc-
tures, because it can be performed based on a simple
two-probe configuration [10–18].

To accurately perform resistance measurements, it is
generally more effective to use a four-probe configuration
rather than the two-probe configuration. The advantage
of the four-probe configuration is that it can discard the
influence of wiring (contact) resistance. However, impor-
tant error factors that are unique to a four-probe con-
figuration exist, which are caused by an inhomogeneous
temperature gradient in a particular low-frequency re-
gion (Fig. 1(a)). The experimentally estimated zT using
a four-probe configuration varies significantly as a func-
tion of the distances between the two voltage-terminals
LV [19]. Although this error factor is known phenomeno-
logically as a thermal phase delay when using the ac Har-
man method with the four-probe configuration [20, 21],
analytical and experimental validation are lacking.

This study reports a general expression for the ac Har-
man method with a four-probe configuration. The exact
solution of the temperature distribution in the sample
was derived from the heat conduction equation that in-
corporates the Joule effect. Moreover, experiments were
performed to estimate zT using Bi-Te materials, and the
results are consistent with the exact solution over a wide
frequency range. Thus, the proposed analysis facilitates
an accurate zT estimation using the ac Harman method
with a four-probe configuration at an arbitrary voltage
terminal distance.
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FIG. 1. (a) Schematic of temperature change by the Peltier
effect in a rectangular sample. Through the application of
a current I, Peltier heating and cooling is produced at the
edge of the sample. The sample length and voltage-terminal
distance are given by L and LV, respectively. The tempera-
ture distribution caused by the Peltier effect varies with the
current frequency f . (b) Schematic of the experimental setup
for the ac Harman method with the four-probe configuration
used in this study. The main sources of error in the measure-
ment are indicated in red text.

II. THEORY

A. Exact solution of temperature distribution in a
material

Figure 1(b) shows a schematic of the setup of the ac
Harman method with a four-probe configuration. Herein,
the case where resistance measurement is performed on a
rectangular parallelepipedal sample with a sample length
L and cross-sectional area A using the four-probe config-
uration at a voltage terminal distance LV is considered.
The temperature distribution in the sample T (x,t) when
an ac current with a current density J(t) = J0 sinωt can
be obtained by solving the following one-dimensional un-
steady heat conduction equation,

∂2T (x, t)

∂x2
=

1

D

∂T (x, t)

∂t
− ρ(J0 sinωt)

2

κ
, (2)

where, x, t, J0, ω, and D represent the position, time,
peak current density, current angular velocity, and ther-
mal diffusivity, respectively. The second term on the
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FIG. 2. (a) Contour plot of the temperature change normal-
ized at one of the sample edges in the relative position x/(L/2)
and the dimensionless parameter F ≡ (L/2)2f/2D plane at
the time of the applied root-mean-square ac current, where D
denotes the thermal diffusivity of the sample. (b) Schematic
of the measured resistance with two and four-probe configu-
ration as a function of F . In the ac measurement, an ohmic
resistance, Rohm, is observed, while a thermoelectric voltage
S∆T/I is added in the dc measurement.

right-hand side represents the Joule effect. The Joule
heat ρJ2 was considered to incorporate the current am-
plitude dependence. It was assumed that the values of
the physical properties were independent of the tempera-
ture. To simplify the boundary condition, it was assumed
that only the Peltier heat SJT0 occurred at both ends of
the sample (x = ±L/2), where T0 denotes the average
temperature of the sample. Consequently, the boundary
condition is described as

∂T (x, t)

∂x

∣∣∣∣
x=±L/2

=
ST0J0

κ
sinωt. (3)

Under this boundary condition, T is expressed as follows:

T = TP + TJ, (4)
TP ≡ ST0J0 sinωt

κ

1− i

2β

e±(1+i)βx − e∓(1+i)βx

e−(1+i)βL/2 + e(1+i)βL/2
,

TJ ≡ DρJ2
0

κ

(
t− sin 2ωt

2ω

)
,

(5)
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where, β ≡ (ω/2D)1/2 and i denote the reciprocal of
thermal diffusion length and an imaginary number. TP

and TJ are defined as contribution of the Peltier and Joule
effects.
A characteristic dimensionless parameter, F ≡
(L/2)2f/2D, was introduced to represent the thermal re-
sponse of the sample, which can classify the behavior of
the temperature distribution [22]. Figure 2(a) shows a
contour plot of the temperature change in the x/(L/2)-
F plane when the root-mean-square (rms) ac current is
applied. The solid lines represent isothermal lines. The
temperature changes were normalized to one of the sam-
ple edges (x = −L/2). Evidently, a temperature differ-
ence ∆T in the opposite direction in the sample occurred
when F ∼ 1. The direction of the ∆T was periodically
inverted as the polarity of the current was reversed. Such
a non-uniform T (x, t) represents a thermal phase delay
with respect to the current, which corresponds to insuf-
ficient cancellation of the TE effect because the phase
of the thermal wave could not match the thermal re-
sponse of the sample. Thus, measurements using the

four-probe configuration in this region have a significant
effect on the measured resistance and is among the main
primary sources of error in the zT evaluation, as shown in
Fig. 2(b). An ac current of a sufficiently high frequency
can cancel the TE effect (i.e., F ≳ 15) to yield, a flat
∆T for the sample end. Consequently, sufficiently accu-
rate measurements can be performed by connecting the
voltage terminals at this flat temperature position.

B. Exact solution of the resistance for zT
estimation

Subsequently, using the obtained T (x,t), the measured
resistance R can be expressed as follows, with ohmic re-
sistance Rohm ≡ ρLV/A and resistance contributed from
the Joule effect RJ ≡ 2STJ(x = LV/2)/I:

R = Rohm {1 + zT0 (R1 + iR2) +RJ} , (6)

where R1 and R2 are expressed as the following functions:

R1,2 ≡ cosµ coshµ(sin ν cosh ν ± cos ν sinh ν) + sinµ sinhµ(sin ν cosh ν ∓ cos ν sinh ν)

2ν[(cosµ coshµ)2 + (sinµ sinhµ)2]
, (7)

where µ ≡ (2πF )1/2 and ν ≡ µLV/L are defined as func-
tions that are dependent on F and LV, respectively. To

perform the zT evaluation, Eq. (1) can be rewritten as
follows:

Rdc −Rac

Rac
=

zT0(1− zT0R2)− (1−RJ)(zT0R1 −RJ)− i{zT0R2(1 + zT0)}
(zT0)2(R2

1 +R2
2) + (1 +RJ){2zT0R1 + 1 +RJ}

. (8)

Equation (8) is a general expression for zT estimation
using the ac Harman method with a four-probe con-
figuration, considering the Joule effect in the time do-
main. It can appropriately explain the frequency char-
acteristics of zT measured with four-probe configura-
tion. See Appendix for further calculation details. In
Eq. (8), (Rdc − Rac)/Rac depends on the TE proper-
ties of the samples (S, ρ, κ) and the characteristic pa-
rameters (µ(F ) and ν(F,LV)). If the thermal diffusiv-
ity D, sample length L, and voltage terminal distance
LV are known in advance, the characteristic parameters
F ≡ (L/2)2f/2D,µ ≡ (2πF )1/2, and ν ≡ µLV/L can be
determined. Generally, for accurate zT estimation, the
current frequency f should be chosen such that the di-
mensionless parameter F ≳ 15, as shown in Fig. 2. In
our model, zT can be estimated at any voltage terminal
distance using Eq. (8). Furthermore, if the f dependence
of Rac can be measured, Eq. (8) can be used to estimate
the thermoelectric parameters (S and κ) through fitting.
The thermoelectric parameters (S and κ) are the fitting

parameters. The electrical resistivity ρ is estimated using
the measured Rac and sample length L.

III. EXPERIMENTAL SETUP

Experiments were performed using bulk samples to
validate the proposed analytical model. The measure-
ments were performed using a sintered polycrystalline
sample of p-type Bi0.3Sb1.7Te3 (Toshima Manufactur-
ing Co., Ltd.)[23]. The Bi–Te and Sb–Te powders were
sintered using the hot isostatic press (HIP) method
to obtain ingots. The dimensions of the samples are
16mm×4mm×1mm. Au/Ni electrodes were fabricated
via sputtering to sufficiently secure the Peltier heat gen-
erated at the edge of the sample. The heat loss from con-
duction through the wiring was suppressed by reducing
the thickness of the Au wires, which adhered to the sam-
ple with Ag paste. To suppress the influence of the heat
convection, the apparatus was assembled in a vacuum
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chamber, and measurements were performed at a high
vacuum of 10−3 Pa or less. The sample was suspended
using the thin Au wires of sufficient length to improve
its thermal isolation conditions. Additionally, the sam-
ple space was covered with a radiation shield to reduce
heat loss owing to thermal radiation. To realize quanti-
tative correction of the radiation effects, measurements
can be performed at higher temperatures and corrected
for the measurements of other TE properties [24]. The
ac and dc resistances of the samples were measured using
an impedance analyzer. A coaxial cable was used to con-
nect the case, and measurements were performed using a
four-probe configuration.

IV. RESULTS AND DISCUSSION

A. Current-frequency dependence of the resistance

We demonstrate the correctness of the exact solution
and zT evaluation using a four-probe configuration. Fig-
ure 3(a) shows the experimental and calculated results
of the current-frequency dependence of the resistance
for (Bi,Sb)2Te3. The open symbols represent the ex-
perimental results for I = 10mA and a wire diameter
of ϕAu = 30 µm. The normalized distance between the
voltage terminals LV/L is 0.6. The calculation used the
typical physical properties of (Bi,Sb)2Te3 at room tem-
perature (D = 1.25 × 10−6 m2/s, S = 166µV/K, ρ =
1.1× 10−5 Ωm, κ = 1.45W/mK). At current frequencies
less than 1mHz, the measured resistance approaches Rdc,
and the TE effect was sufficiently generated. However, it
gradually decreased to Rac as the current frequency f in-
creased. Moreover, a dip structure occurs at f ∼ 80mHz,
corresponding to F ∼ 1 in Fig. 2. It is caused by a phase
shift owing to the thermal wave and thermal response
of the sample. The voltage is detected at the points
(x = ±LV/2) where the temperature change is oppo-
site direction to the temperature difference between the
two ends of the sample (x = ±L/2). This is referred to
as the “thermoinductive effect”[22]. As described later,
this resulted in the overestimation of zT , which is evi-
dent from the F dependence of (Rdc − Rac)/Rac. Such
a dip structure is not observed in the two-probe config-
uration when LV/L = 1; however, it is underestimated
compared to zT unless a sufficiently high frequency is
chosen (Fig. 2(b)). This is consistent with the lack of a
dip structure in two-probe measurements [25–41]. Thus,
the ac Harman method can be used to determine zT over
a wide frequency range of the four-probe configuration
using the exact solution derived.

B. Influence of the Joule effect

Subsequently, the influence of the Joule effect was in-
vestigated. The red and green lines shown in Fig. 3(a)
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FIG. 3. (a) Experimental results of frequency dependence
of the resistance of (Bi,Sb)2Te3. Open symbols correspond
to experimental results with I = 10mA, ϕAu = 30 µm, and
LV/L = 0.6. Red and green lines represent calculation results
based on the exact solution with and without Joule effect, re-
spectively. Inset displays a photograph of the sample. (b)
Relationship between the (Rdc−Rac)/Rac and current ampli-
tude. Dotted lines show the exact solution with the Joule ef-
fect. Open symbols are the experimental results at f = 10Hz,
ϕAu = 50 µm, and LV/L = 0.6. The error bars show the stan-
dard deviation of the mean for repeated measurements of the
resistance.

represent the calculation results based on the exact so-
lution with and without considering the Joule effect, re-
spectively. As Joule heating is time-dependent, the mea-
sured resistance was calculated over the time of one mea-
surement cycle at each frequency. When I = 10mA, the
influence of the Joule effect was not observed at most
frequencies. Figure 3(b) illustrates the relationship be-
tween (Rdc − Rac)/Rac and the current amplitude. The
experimental results are shown for current values in the
range of 5mA to 40mA with f = 10Hz, ϕAu = 50 µm,
and LV/L = 0.6. The error bars represent the standard
deviation of the mean obtained from independent mea-
surements. (Rdc − Rac)/Rac increases linearly with the
current amplitude. The result is consistent with the cal-
culation line based on the exact solution.

At I = 10mA, (Rdc − Rac)/Rac was estimated to be
0.509, which increased to 0.511 at I = 40mA. If the
higher order TE effect, the Thomson heat induced by the
Joule effect, (Rdc − Rac)/Rac would be proportional to
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FIG. 4. (a) Calculation results based on the exact solution
of F dependence of (Rdc − Rac)/Rac for the variation of the
LV/L of (Bi,Sb)2Te3. (b) Experimental results of the fre-
quency dependence of (Rdc −Rac)/Rac. Open symbols repre-
sent experimental results, and solid lines represent calculation
results. Purple circles, blue triangles, green squares, and or-
ange reverse triangles correspond to the experimental results
for LV/L = 0.80, 0.63, 0.48, and 0.1, respectively. Solid lines
represent the calculation results of the exact solution. zT esti-
mated using standard formula zTs ≡ S2T/(ρκ) = 0.538±10%
is shown as the red area.

the square of the current at high current region. Upon
applying a large current of 50mA or more, the sample
and wiring heat up, which renders accurate evaluation
and correction difficult. The optimal current amplitude
can be determined by comparing the Peltier heat gener-
ated in the measurement system with the Joule heat and
then choosing a suitable compromise between the degree
of measurement noise generated by the setup and Joule
heat [38].

C. Suitable measurement conditions for the ac
Harman method with four-probe configuration

Figure 4 presents the experimental and calculated re-
sults based on the exact solution of (Rdc −Rac)/Rac for
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FIG. 5. Contour plot of the deviation from zT0 in F -LV/L
plane. zT0 of (Bi,Sb)2Te3 is estimated using the typical phys-
ical parameters at room temperature as describe in the text.

different LV/L values. Figure 4(a) shows the depen-
dence of F on the exact solution of (Rdc − Rac)/Rac,
where a smaller and larger F could be considered as dc
and ac limits, respectively. LV/L was varied from 0.1
to 1.0. For an F value of approximately 1, the smaller
the LV/L, the larger the dip structure. It can be at-
tributed to the thermal phase delay (as a thermoinduc-
tive effect) and is a measurement error that only occurs
in the four-probe configuration, as described above. The
intrinsic value of dimensionless figure of merit zT0 = 0.53
can be determined using Rac at the ac limit. The value
of (Rdc −Rac)/Rac changes significantly with respect to
LV/L, and it is evident that the maximum deviation is
20%. It was quantitatively shown that the choice of the
current frequency causes an error in zT evaluation for
the ac Harman method.

Figure 4(b) illustrates the experimental results of the
frequency dependence of (Rdc−Rac)/Rac. LV/L was var-
ied from 0.28 to 0.80. For the LV/L value of 0.28, a large
dip structure was observed at approximately 40mHz. For
all LV/L results, consistency was obtained with the exact
solution over a wide frequency range. As the dimension-
less resistance R1,2 in Eq. (8) depends on F , the current
frequency to be selected differs based on sample length
L and thermal diffusivity D. Therefore, it is not al-
ways necessary to select an appropriate current frequency
when measuring samples of different sizes and composi-
tions. However, for an ac bridge used for accurate re-
sistance measurement, the selection of the measurement
frequency must be focused upon. When measuring higher
frequencies, the influence of the parasitic effects, inherent
to the high frequency, depends on the circuit; therefore,
the frequency must be checked for each instance. As de-
picted in Fig. 5, the suitable experimental condition for
the ac Harman method was identified visually.

To verify the estimated zT value, independent mea-
surements of the Seebeck coefficient, electrical resistivity,
and thermal conductivity were performed at 300 K. The
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rectangular bars cut from the ingots were used to measure
the electrical resistivity (ρ) and the Seebeck coefficient
(S) using ZEM-3 (ULVAC Co., Ltd.). The power fac-
tor, defined as S2/ρ, was calculated (S = 158µV/K, ρ =
6.6 × 10−6 Ωm). The materials demonstrate a rela-
tively high power-factor of approximately 3.8mWmK−2

at 300K. The thermal conductivity (κ) of the mate-
rials was determined using the formula κ = DdCp, in
which D is the thermal diffusivity, d represents the den-
sity, and Cp denotes the specific heat of the materials.
The thermal diffusivity was measured via a laser flash
method (D = 1.6×10−6 m2/s), and the density was mea-
sured using the Archimedes method (d = 6.64 g/cm3).
The specific heat of the material was determined to be
Cp = 0.199 J/gK based on the literature values for Bi2Te3
(124.4 J/Kmol) and Sb2Te3 (128.8 J/Kmol) [42]. The
thermal conductivity was calculated using the measured
D, d, and the estimated Cp(κ = 2.11W/mK). The di-
mensionless figure of merit was calculated using the stan-
dard formula zTs = S2T/(ρκ) and is 0.538. In a report
on the international round-robin test using bulk bismuth
telluride, the scatter for zT was estimated to be approxi-
mately 10% at 300 K [5]. The typical error in estimating
zT from resistance measurement using the Harman for-
mula (Rdc −Rac)/Rac is reported to be about 15% [43].
The zT evaluation results using the standard formula are
in agreement with those obtained using the ac Harman
method, as shown in Fig. 4(b).

D. Examination of accuracy and influence of other
error factors

Thus far, we presented error factors such as the current
frequency f , current amplitude I, and voltage terminal
distance LV, which have not been quantitatively identi-
fied using exact solutions. Subsequently, we discuss the
other significant error factors, excluding dimensionless
parameter F , LV, and the Joule effect. The ac Harman
method assumes that all Peltier heat generated at the
sample edge flows into the sample. In an actual exper-
imental environment, various heat losses occur, such as
conduction through the lead wire Qw, and heat convec-
tion Qcon, which results in a crucial error factor in the
zT estimation [44–52]. The exact solutions comprehen-
sively consider Qw and Qcon combined with other TE
effects; however, it is extremely difficult to introduce us-
ing the unsteady heat conduction equation. Our results
of the resistance measurements for different wire diame-
ters ϕAu with I = 10mA, f = 10Hz, and T = 300K are
shown in Fig. 6(a). Considering an energy balance[44],
the ratio of the thermal conductance of the lead wire
Kw to that of the sample K determines Qw. The re-
sults of the resistance measurements with wire diame-
ter ϕAu in the range of 30µm to 150µm exhibits that
(Rdc−Rac)/Rac is underestimated as Kw increases. The
result is quantitatively consistent with the relationship
expressed as (Rdc−Rac)/Rac ∝ 1/Kw derived by a linear

(b)

(Bi,Sb)2Te3
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f = 10 Hz
T = 300 K
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(R
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−R
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) /
 R
ac Linear fit

Curve fit
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Experiment

ΦAu = 30 μm

FIG. 6. (a) Results of the thermal conductance of the lead
wires as a function of (Rdc − Rac)/Rac with I = 10mA, f =
10Hz, and T = 300K. The blue circles denote the experi-
mental results when the Au wire diameter is changed from
ϕAu = 30 µm to 150µm. The green line denotes the linear fit
line. (b) Pressure dependence results of (Rdc−Rac)/Rac using
(Bi,Sb)2Te3 with I = 10mA, f = 10Hz, ϕAu = 30µm, and
T = 300K. The red circles correspond to the experimental
results. The blue line corresponds to the calculation results.

fitting. Thus, reduction in ϕAu can alleviate the under-
estimation of zT owing to the Qw. A wire with a smaller
diameter has the effect of lowering the upper limit of the
maximum applied current, which is a trade-off in an ac-
tual experimental environment. As shown in Fig. 6(b),
resistance measurements were performed by varying the
pressure in the sample chamber from ambient pressure to
10−3 Pa with I = 10mA, f = 10Hz, ϕAu = 30 µm, and
T = 300K. At ambient pressure, (Rdc − Rac)/Rac can
be underestimated by up to 40% compared with that in
a high vacuum. A sharp decrease in (Rdc − Rac)/Rac

was observed from 1Pa to 10Pa. This can be at-
tributed to the transition from the viscous to the molec-
ular flow regime, resulting in an increase in the num-
ber of molecules responsible for heat conduction, lead-
ing to increased convective heat loss Qcon. Analytically,
the introduction of the heat transfer term hP (T − T0)
within the heat conduction equation yields the relation-

ship (Rdc − Rac)/Rac ∝ tanh (hPL/2κA)
1/2

, where h
and P are the heat-transfer coefficient and perimeter of
the sample, respectively. Fitting with this relationship
yielded results that are consistent with the experimental
results over a wide range of pressures. For our setup, the
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FIG. 7. Experimental results of frequency dependence of the
resistance and (Rdc −Rac)/Rac of n-type Bi2Te3. Open sym-
bols correspond to experimental results with LV/L = 0.3,
I = 10mA and ϕAu = 30 µm. Solid lines represent calcula-
tion results based on the exact solution.

influence of Qcon can be neglected in a vacuum environ-
ment above 10−1 Pa.

The existence of inhomogeneous Peltier heating at the
edge of the sample/electrode junctions also causes a 12%
underestimation for zT [53]. In our setup, the effect of
inhomogeneous current application was avoided through
the formation of Ni/Au electrodes at both ends of the
(Bi,Sb)2Te3. Furthermore, the heat radiation leads to
significant underestimation up to 9% at high tempera-
tures, 440K [24]. With proper installation of radiation
shielding, the influence of the radiation heat loss can be
reduced at room temperature.

The primary error factors were identified as described
above. The insights gained in this analysis enable ac-
curate zT estimation measured using four-probe config-
uration measurements. Notably, some known physical
parameters are required to fully compensate for error
factors, which is also true for other evaluation meth-
ods. For example, in the two-probe based impedance
measurement, which is an accurate measurement tech-
nique with a similar concept, the frequency dependence
of impedance is measured in advance over a wide range
[25–41]. Consequently, several thermophysical properties
can be estimated using analytical models in the frequency
domain. Since the TE module system tends to be rela-
tively complex within the time domain, the analysis is
used within the frequency domain [37]. In the two-probe
configuration, the contact resistance between the sample
and electrode must be considered, which necessitates its
analysis. Furthermore, the influence of contact resistance
is inevitable. Experimental studies, such as preparing a
sample shape, wherein this influence can be ignored, are
necessary [53]. For accurate resistance measurement, the
use of a four-probe configuration that requires knowl-
edge of the voltage terminal distance is beneficial. Note
that the error in the evaluation of the voltage terminal

distance and the thermal diffusivity has an influence on
our analysis. The measurement of the voltage terminal
distance is more influenced by shorter sample lengths or
larger wire diameters. It has been suggested that the er-
ror of length measurement tend to be quite large (≧ 10%)
in small samples [8].

E. zT estimation of other sample

To demonstrate the universality of our technique, we
have also applied the ac Harman method to estimate
the zT of n-type Bi2Te3 (Toshima Manufacturing Co.,
Ltd.) using the same sample geometry as the p-type
Bi0.3Sb1.7Te3. Figure 7 shows the frequency depen-
dence of the resistance and (Rdc − Rac)/Rac of n-type
Bi2Te3 with I = 10mA and ϕAu = 30 µm. The nor-
malized distance between the voltage terminals LV/L
is 0.3. Notable dip structures were observed around 50
mHz in the frequency dependences of the resistance and
(Rdc − Rac)/Rac. This frequency region roughly corre-
sponds to F = 1. The plots developed using the ex-
act solution, agreed well with the experimental results
over a wide frequency range. The value of dimension-
less figure of merit zT0 = 0.41 can be determined us-
ing the measurement data. The physical properties of
n-type Bi2Te3 (D = 1.6 × 10−6 m2/s, S = −133 µV/K,
ρ = 6.2 × 10−6 Ωm and κ = 2.11W/mK) at 300K were
used in the calculation. As with the case of p-type
Bi0.3Sb1.7Te3, the Seebeck coefficient and electrical re-
sistivity were measured using ZEM-3 and found to be
−131 µV/K and 5.9 × 10−6 Ωm, respectively. The di-
mensionless figure of merit using the standard formula
zTs is calculated 0.39, in which the thermal conductivity
is assumed the same value as the p-type Bi0.3Sb1.7Te3
(κ = 2.11W/mK). The zT evaluation results using the
standard formula are in agreement with those obtained
using the ac Harman method. The present analysis is
applicable to other thermoelectric materials.

V. CONCLUSION

In this study, the evaluation equation of the ac Har-
man method was derived for a four-probe configuration
from the exact solution, which was then experimentally
verified. The effects of the distance between the voltage
terminals, current frequency, Joule effect, and convective
heat transfer, which have been empirically avoided, were
clarified. Using the evaluation formula, each error fac-
tor was avoided or corrected. The analysis performed
provided information on zT evaluation errors caused by
the position of the voltage terminal attachments, as well
as heat losses owing to thermal convection, heat conduc-
tion of the lead wires, and the Joule effect. As described
above, this study realized the correction of various heat
losses that are inevitable when measuring zT using the ac
Harman method, and a more accurate determination of
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zT can be realized through further systematic empirical
research.
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APPENDIX: CALCULATION DETAILS FOR EXACT SOLUTION OF zT ESTIMATION

The temperature distribution in the sample T (x, t) at position x and time t is expressed as Eq. (4) and Eq. (5). The
contribution from the Peltier effects TP(x, t) can be obtained by solving the following one-dimensional unsteady-state
heat transfer equation [22, 54]:

∂2TP(x, t)

∂x2
=

1

D

∂TP(x, t)

∂t
. (9)

According to the method of separation of variables, the general solution of Eq. (9) is described as

TP(x, t) = B1e
±(1+i)βx−iωt +B2e

∓(1+i)βx−iωt, (10)

where B1 and B2 are arbitrary constants. β ≡ (ω/2D)1/2 is the reciprocal of thermal diffusion length Dth =
(D/πf)1/2. Under the boundary condition Eq. (3), B1 and B2 are obtained.

 (1 + i)βe(1+i)βL/2−iωt −(1 + i)βe−(1+i)βL/2−iωt

(1 + i)βe−(1+i)βL/2−iωt −(1 + i)βe(1+i)βL/2−iωt

B1

B2

 =


ST0J0

κ
sinωt

ST0J0
κ

sinωt

 , (11)


B1 =

ST0J0 sinωt

κ

1 + i

2iβ

eiωt

e−βL/2(1+i) + eβL/2(1+i)

B2 =
ST0J0 sinωt

κ

1 + i

2iβ

−eiωt

e−βL/2(1+i) + eβL/2(1+i)

. (12)

TP(x, t) is given by Eq. (5). The contribution from the Joule effects TJ(x, t) can be obtained by solving the following
equation under the boundary condition [55–57]:

∂2TJ(x, t)

∂x2
=

1

D

∂TJ(x, t)

∂t
− ρ(J0 sinωt)

2

κ
,

∂TJ(x, t)

∂x

∣∣∣∣
x=±L/2

= 0. (13)

Using T = TP + TJ obtained from Eq. (5), the voltage V measured between ±LV/2 is expressed as follows:

V = LVρJ0 sinωt+

∫ L/2

−L/2

S
∂T (x, t)

∂x
dx

= LVρJ0 sinωt+ 2ST (LV/2, t)

= LVρJ0 sinωt+ 2S

{
ST0J0 sinωt

κ

1− i

2β

e±(1+i)βLV/2 − e∓(1+i)βLV/2

e−(1+i)βL/2 + e(1+i)βL/2
+

DρJ2
0

κ

(
t− sin 2ωt

2ω

)}
. (14)

The first term on the right side represents the ohmic voltage between LV, and the second term represents the Seebeck
voltage. In actual measurements, the temperature rise caused by the Peltier and Joule effects at low current region is
considered small (∼ 0.1K), so the integral part can be replaced with 2ST (x = LV/2, t). The measured resistance R
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in Eq. (6) can be introduced as R = V/I:

R =
V

I
=

V

JA

= ρ
LV

A
+ 2S

{
ST0

κA

1− i

2β

e±(1+i)βLV/2 − e∓(1+i)βLV/2

e−(1+i)βL/2 + e(1+i)βL/2
+

DρJ0
κA sinωt

(
t− sin 2ωt

2ω

)}
= Rohm

{
1 +

S2T0

κρ

1− i

2βLV/2

e±(1+i)βLV/2 − e∓(1+i)βLV/2

e−(1+i)βL/2 + e(1+i)βL/2
+

2SDJ0
κLV sinωt

(
t− sin 2ωt

2ω

)}
. (15)

The equation can be rewritten using µ ≡ βL/2 and ν ≡ βLV/2:

R = Rohm

{
1 + zT0

1− i

2ν

e±(1+i)ν − e∓(1+i)ν

e−(1+i)µ + e(1+i)µ
+

2SDJ0
κLV sinωt

(
t− sin 2ωt

2ω

)}
, (16)

where

1− i

2ν

e±(1+i)ν − e∓(1+i)ν

e−(1+i)µ + e(1+i)µ
=
1 + i

2ν

sin ν cosh ν − i cos ν sinh ν

cosµ coshµ+ i sinµ sinhµ
(17)

=
cosµ coshµ(sin ν cosh ν + cos ν sinh ν) + sinµ sinhµ(sin ν cosh ν − cos ν sinh ν)

2ν(cosµ coshµ+ i sinµ sinhµ)(cosµ coshµ− i sinµ sinhµ)

+
i {cosµ coshµ(sin ν cosh ν − cos ν sinh ν)− sinµ sinhµ(sin ν cosh ν + cos ν sinh ν}

2ν(cosµ coshµ+ i sinµ sinhµ(cosµ coshµ− i sinµ sinhµ)
.

(18)

Using Eq. (7), the resistance R can be expressed as Eq. (6). In the dc limit, the current frequency f → 0, TP and TJ

is expressed as:

TP =
ST0J0

κ
, TJ =

DρJ2
0

κ
. (19)

The resistances of the sample measured via application of dc and ac currents, Rdc and Rac are obtained as:

Rdc = Rohm

(
1 + zT0 +

2SDJ0
κLV

t

)
, (20)

Rac = Rohm

{
1 + zT0

1− i

2ν

e±(1+i)ν − e∓(1+i)ν

e−(1+i)µ + e(1+i)µ
+

2SDJ0
κLV sinωt

(
t− sin 2ωt

2ω

)}
. (21)

To perform the zT evaluation, Eq. (1) can be rewritten as follows:

Rdc −Rac

Rac
=

Rdc

Rac
− 1

=

Rohm

(
1 + zT0 +

2SDJ0
κLV

t

)
Rohm

{
1 + zT0

1− i

2ν

e±(1+i)ν − e∓(1+i)ν

e−(1+i)µ + e(1+i)µ
+

2SDJ0
κLV sinωt

(
t− sin 2ωt

2ω

)} − 1. (22)
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S. Bai, T. M. Tritt, A. Mayolet, J. Senawiratne, C. Smith,
F. Harris, P. Girbert, J. W. Sharp, J. Lo, H. Kleinke, and

L. Kiss, J. Electron. Mater. 42, 654 (2013).
[6] H. Wang, S. Bai, L. Chen, A. Cuenat, G. Joshi,

H. Kleinke, J. König, H. W. Lee, J. Martin, M.-W. Oh,
W. D. Porter, Z. Ren, J. Salvador, J. Sharp, P. Taylor,
A. J. Thompson, and Y. C. Tseng, J. Electron. Mater.
44, 4482 (2015).

[7] E. Alleno, D. Bérardan, C. Byl, C. Candolfi, R. Daou,



10

R. Decourt, E. Guilmeau, S. Hébert, J. Hejtmanek,
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