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ABSTRACT
Adversarial ranking attacks have gained increasing attention due to
their success in probing vulnerabilities, and, hence, enhancing the
robustness, of neural ranking models. Conventional attack methods
employ perturbations at a single granularity, e.g., word or sen-
tence level, to target documents. However, limiting perturbations
to a single level of granularity may reduce the flexibility of adver-
sarial examples, thereby diminishing the potential threat of the
attack. Therefore, we focus on generating high-quality adversarial
examples by incorporating multi-granular perturbations. Achieving
this objective involves tackling a combinatorial explosion problem,
which requires identifying an optimal combination of perturba-
tions across all possible levels of granularity, positions, and textual
pieces. To address this challenge, we transform the multi-granular
adversarial attack into a sequential decision-making process, where
perturbations in the next attack step build on the perturbed docu-
ment in the current attack step. Since the attack process can only
access the final state without direct intermediate signals, we use
reinforcement learning to perform multi-granular attacks. During
the reinforcement learning process, two agents work cooperatively
to identify multi-granular vulnerabilities as attack targets and or-
ganize perturbation candidates into a final perturbation sequence.
Experimental results show that our attack method surpasses pre-
vailing baselines in both attack effectiveness and imperceptibility.
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1 INTRODUCTION
With the advance of deep neural networks [25], neural ranking
models (NRMs) [9, 16, 41, 46] have achieved promising ranking
effectiveness in information retrieval (IR). Besides their proven
effectiveness, considerable attention has been directed toward as-
sessing the adversarial robustness of NRMs.
Adversarial ranking attacks. In IR, NRMs are prone to inher-
iting vulnerabilities to adversarial examples from general neural
networks [33, 51, 64]. Such adversarial examples are crafted by
introducing human-imperceptible perturbations to the input, ca-
pable of inducing model misbehavior. This discovery has sparked
legitimate concerns about potential exploitation by black-hat SEO
practitioners aiming to defeat meticulously designed search engines
[17]. Consequently, there is a need to develop robust and reliable
neural IR systems. A crucial step in this direction involves introduc-
ing adversarial ranking attacks to benchmark the vulnerability of
black-box NRMs [5, 33, 64]. Here, the aim of an adversary is to find
human-imperceptible perturbations injected into the document’s
text, to promote a low-ranked document to a higher position in the
ranked list produced for a given query [5, 64]. This attack approach
allows us to identify vulnerabilities in NRMs before deploying them
in real-world settings and devise effective countermeasures.
Single-granular ranking attacks. Existing studies on adversarial
attacks against NRMs are typically restricted to document pertur-
bation strategies that operate at a single level of granularity, such
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Phase level

various films

several movies

Sentence level

It attracted a fan

cohort and emerged

as an iconic symbol

It gained a devoted

fanbase and became

a cultural icon

[Rank] 98→ {    ,    ,    ,    } → 2

[Doc] Star Trek is a science fiction

media franchise created by Gene

Roddenberry, which began with the

eponymous 1960s television series.

It gained a devoted fanbase and

became a cultural icon. More-over

the franchise has expanded into

several movies and television series.

Word level

made 

created

begin   

began    

[Query] What is the Star Wars?

Figure 1: To prompt a target document in the rankings to a
query, we identify multi-granular texts within the document
as attack targets to generate effective adversarial examples.

as the word-level [51, 64] or sentence-level [5, 33]. These methods
face two main limitations: (i) Different perturbation granularities
for different query-document pairs: When dealing with different
query-document pairs, a priori limiting perturbations to a single
granularity could considerably restrict the choice of attack targets,
thereby impeding the overall effectiveness of the attack. (ii) Mul-
tiple perturbation granularities for a query-document pair : Despite
employing a meticulously chosen attack granularity tailored to spe-
cific query-document pairs, a fixed granularity falls short of fully
capturing the diverse relevance patterns inherent in the matching
between a query and a document [12]. An effective ranking attack
should possess the flexibility to simultaneously consider various
granularity perturbations in an adversarial example. In this sense,
we argue that the full potential of adversarial attacks has yet to be
harnessed for uncovering the vulnerabilities of NRMs.
Multi-granular adversarial ranking attacks. In this paper, we
develop multi-granular adversarial ranking attacks against NRMs;
see Figure 1 for an illustrative example. We incorporate word-level,
phrase-level, and sentence-level perturbations to generate fluent
and imperceptible adversarial examples. The generated examples
may not cover all three levels of granularity but allow for flexible
selection based on an optimization strategy. Compared to existing
single-granular attacks, this multi-granular approach broadens the
selection of attack targets and explores the vulnerability distribution
of NRMs at various granularities within a specific query-document
pair. Consequently, it can yield richer and more diverse forms of
adversarial examples, thereby enhancing campaign performance.
Learning multi-granular attack sequences. Achieving a multi-
granular attack is non-trivial due to the combinatorial explosion
arising from the numerous possible actions, e.g., perturbation gran-
ularities, target positions in the document, and replacement content,
posing a significant computational challenge. To address this chal-
lenge, we formulate the multi-granular ranking attack problem as
a sequential decision-making process [40, 42]. In this process, the
attacker sequentially introduces a perturbation at a specific level of
granularity, i.e., word-level, phrase-level, or sentence-level, guided
by the perturbations in the preceding steps.

Within the sequential decision-making process, the discrete and
non-differentiable nature of the text space presents a challenge in
finding a direct supervisory signal to facilitate the incorporation of
multi-granular perturbations. Therefore, we propose RL-MARA, a
novel reinforcement learning (RL) framework [59] to navigate an
appropriate sequential multi-granular ranking attack path.

Following [5, 33, 64], our focus is on a practical and challenging
decision-based black-box setting [2], where the adversary lacks
direct access to model information and can only query the target
NRM. We train a surrogate ranking model to substitute and achieve
comparable performance to the black-box target NRM. We combine
the surrogate ranking model with a large language model (LLM) to
form the complete environment, to provide rewards for assessing
the effectiveness of the multi-granular attack and the naturalness of
the perturbed document, respectively. We set up a multi-granular
attacker by building upon existing single-granular attack methods
agents. A sub-agent and a meta-agent are designed in a cooper-
ative manner: the sub-agent is tasked to identify multi-granular
vulnerabilities in the document as attack targets, while the meta-
agent is tasked to generate and organize perturbations into a final
perturbation sequence, respectively. During the RL process, the at-
tacker sequentially incorporates perturbations until the cumulative
perturbation exceeds a predefined budget.
Main findings.We conduct experiments on two web search bench-
mark datasets,MSMARCODocument Ranking [43] andClueWeb09-
B [7]. Experimental results demonstrate that RL-MARA signifi-
cantly improves the document ranking of target documents and
thus achieves a higher attack success rate than existing single-
granular ranking attack baselines. According to automatic and
human naturalness evaluations, RL-MARA could maintain the se-
mantic consistency and fluency of adversarial examples.

2 PROBLEM STATEMENT
In ad-hoc retrieval, given a query 𝑞 and a set of 𝑁 document can-
didates D = {𝑑1, 𝑑2, . . . , 𝑑𝑁 } from a corpus C, the objective of a
ranking model 𝑓 is to assign a relevance score 𝑓 (𝑞, 𝑑𝑛) to each pair
of 𝑞 and 𝑑𝑛 ∈ D, to obtain the ranked list 𝐿.
Adversarial ranking attack. Many studies have examined adver-
sarial ranking attacks against NRMs [5, 33, 37, 64]. Given a target
document 𝑑 and a query 𝑞, the primary goal is to construct a valid
adversarial example 𝑑adv capable of being ranked higher than the
original 𝑑 in response to 𝑞 by NRMs, all while closely resembling
𝑑 . The adversarial example 𝑑adv can be regarded as 𝑑 ⊕ P, where
P denotes the perturbation applied to 𝑑 . The perturbations P are
crafted to conform to the following properties [5, 33, 64]:

Rank(𝑞, 𝑑 ⊕ P) < Rank(𝑞, 𝑑)

such that ∥P∥ ≤ 𝜖, Sim(𝑑adv, 𝑑) ≥ 𝜆,
(1)

where Rank(𝑞, 𝑑 ⊕ P) and Rank(𝑞, 𝑑) denote the position of 𝑑adv
and 𝑑 in the ranked list with respect to 𝑞, respectively; a smaller
value of ranking position denotes a higher ranking; 𝜖 represents
the budget for the number of manipulated terms ∥P∥; 𝜆 is the
coefficient; and the function Sim(𝑑adv, 𝑑) assesses the semantic or
syntactic similarity [14, 64] between 𝑑 and its corresponding 𝑑adv.
Ideally, 𝑑adv should preserve the original semantics of 𝑑 , and be
imperceptible to human judges yet misleading to NRMs.
Decision-based black-box attacks. Following [33, 64], we focus
on decision-based black-box attacks against NRMs for the adver-
sarial ranking attack task. This choice is motivated by the fact that
the majority of real-world search engines operate as black boxes,
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granting adversaries access only to the final decision, i.e., the rank
positions within the partially retrieved list.
Perturbations at multiple levels of granularity. Existing work
mainly focuses on a single granularity of P to manipulate the target
document, esp. word-level word substitution [64] and sentence-
level trigger generation [33]. However, restricting perturbations
to a single granularity may fail to adequately capture the nuanced
and diverse vulnerability features, a limitation confirmed by our
experimental results (see Section 6.1). Thus, we propose to find
perturbations P at multiple levels of granularity.

Effective character-level [68] and phrase-level [26] modifications
have proven successful in textual attacks [68] within NLP, but
are underutilized in IR. However, character-level attacks tend to
create ungrammatical adversarial examples and are easily defended
against [49]. And considering the naturalness requirements of the
adversarial examples, introducing perturbations at higher levels of
granularity, e.g., paragraph level, may pose challenges in avoiding
suspicion. Therefore, we propose to launch an adversarial ranking
attack at three levels of perturbation granularity, i.e., word, phrase
and sentence levels.

3 PRELIMINARIES
Our approach relies on three single-granular adversarial ranking
attack methods, i.e., word-level, phrase-level and sentence-level.
Typically, single-granular attacks begin by training a surrogate
ranking model that imitates the target NRM. Subsequently, they
execute attacks guided by the surrogate model, which involve two
primary steps: (i) Identifying vulnerable positions in the target
document; and (ii) Perturbing the text at these identified positions.
Word-level attack. For word-level attacks against NRMs, the main
approaches include word substitution [64], word insertion [63], and
word removal [55]. In this study, we employ the word substitu-
tion ranking attack exemplified by PRADA [64], which has shown
promising results in terms of the attack success rate. Specifically,
PRADA first identifies vulnerable words in a document that sig-
nificantly influence the final ranking result through the surrogate
model; and then replaces these vulnerable words with synonyms, se-
lecting the one that provides the most substantial boost in rankings
from a pool of candidate synonyms.
Phrase-level attack. In textual attacks within natural language
processing (NLP), the predominant method for phrase-level attacks
[26, 69] is phrase substitution [26]. To the best of our knowledge,
there has been an absence of phrase-level attacks specifically tar-
geting NRMs in IR. PLAT [26] stands out in phrase-level textual
attacks, aiming to induce text misclassification. PLAT first identi-
fies the positions of vulnerable phrases that significantly influence
the classification scores predicted by the surrogate model. Then, it
utilizes BART [27] to generate multiple variations for each selected
vulnerable phrase. PLAT selects the variant that introduces the most
substantial interference in classification scores predicted by the sur-
rogate model, deviating from the original phrase. To adapt PLAT
from classification to ranking, we use a sub-agent (see Section 4.3.1)

𝑝𝑡
𝑑𝑡−1

𝑑𝑡Reward 𝑟𝑡

Sub-agent Meta-agent

ℙ𝐶1 𝐶2 𝐶4 𝐶𝑘…ℂ

Vulnerability distribution

𝐶3 𝑝1 𝑝2 𝑝4 𝑝𝑘𝑝3 …

Environment

Perturbation

Large language modelSurrogate ranking model

Word Phrase

Sentence

Figure 2: The RL-MARA framework.
to find positions of important phrases and replace classification
scores with relevance scores.
Sentence-level attack. For sentence-level attacks against NRMs,
key strategies encompass sentence substitution [33], sentence inser-
tion [5], and sentence rewriting [57]. Here, we employ the sentence
substitution ranking attack exemplified by PAT [33], which re-
places a sentence at a specific position in a document with a trigger.
Specifically, PAT first designates the beginning of the document as
the vulnerable sentence; and then optimizes the gradients of the
ranking loss to derive a continuous trigger representation, which
is mapped to the word space. In this work, we take a more flexi-
ble way, employing the sub-agent to identify important sentences,
potentially located anywhere within the document.
Combining single-granular attacks. In our multi-granular at-
tack: (i) Initially, a sub-agent, serving as a vulnerability indicator
(see Section 4.3.1), is employed to identify important positions at
each level of granularity. (ii) Then, the three aforementioned single–
granular attack methods are applied to generate a perturbation for
each identified important position (see Section 4.3.2). (iii) Finally,
an organization of all settled perturbations is executed to refine
and select the most effective perturbation sequence.
Discussions.Our framework can seamlessly integrate off-the-shelf
ranking attack methods. In this work, for each granularity level,
we choose a representative attack method, rather than involve
several attack methods. Involving more attack methods at the same
granularity may introduce additional variables and complexities,
potentially confounding our results and making it more challenging
to draw clear conclusions. In the future, we plan to consider more
granularity and add more attack methods at the same granularity
to make the perturbation even more diverse. Besides, the above
three single-granular attacks remain constant in our current multi-
granular attack method. In the future, we aim to make these attack
methods learnable and dynamically update them within the entire
framework to achieve enhanced interoperability.

4 METHOD
In this section, we introduce the RL-MARA framework, specifically
crafted for achieving multi-granular attacks against NRMs.

4.1 Overview
To generate multi-granular perturbations for a target document,
we need to decide the granularity, position, and modified con-
tent of each single perturbation. We formulate multi-granular at-
tacks against target NRMs as a sequential decision-making process:
(i) The attackers manipulate the target document by introducing
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a perturbation that could be at any level of granularity; a surro-
gate model of the target NRM assesses the current ranking posi-
tion, while a large language model (LLM) evaluates its naturalness;
(ii) The attacker observes changes in ranking and naturalness and
further optimizes its attack strategy to generate the next perturba-
tion. The global objective is to optimize the final ranking improve-
ment of the target document with indiscernible perturbations.

During the sequential decision-making process, the discrete per-
turbed document leads to a lack of direct signals at each step. There-
fore, we employ reinforcement learning (RL) to identify an appro-
priate sequential attack path for generating adversaries. Specifically,
we introduce the RL-based framework RL-MARA to learn an opti-
mal multi-granular ranking attack strategy. As shown in Figure 2,
the RL-MARA framework comprises two major components: (i) A
surrogate model simulating the behavior of the target NRM, and
an advanced LLM evaluating the naturality of adversarial samples,
collectively serve as the whole environment to provide rewards;
and (ii) A multi-granular attacker, consisting of a sub-agent and a
meta-agent, receives rewards from the environment and collabo-
rates to generate perturbations at multiple levels of granularity.
4.2 Environment and reward
The multi-granular ranking attack problem is formally modeled
as a Markov decision process (Markov decision process (MDP))
[1], wherein its components are defined as follows: (i) State 𝑑
is the document, with the initial state 𝑑0 as a target document,
and the terminal state signifying a successful adversarial example;
(ii) Action 𝑝 denotes a multi-granular perturbation selected by the
agent for injection into the document; (iii) Transition T alters
the document state 𝑑 by applying a perturbation at each step; and
(iv) Reward 𝑟 is the attack reward provided by the environment,
guiding the agent with supervisory signals.
Environment. In the decision-based black-box scenario, obtaining
only hard-label predictions and lacking the relevance score for
each candidate document predicted by the target NRM, poses a
challenge. Besides, frequent queries to the target NRMmight arouse
suspicion. Consequently, we employ a surrogate ranking model
to function as an environment and offer the attack reward as a
proxy for the target NRM. Following [33, 64], we train a surrogate
ranking model based on the Pseudo Relevance Feedback idea [10]
and achieve comparable performance to the target NRM. Specific
training details can be found in Section 5.4. Simultaneously, we
introduce an advanced LLM as part of the environment to assess
the naturalness of the current perturbed document as a reward. To
sum up, the virtual environment for the RL Attacker comprises a
surrogate ranking model and an LLM.
Multi-granular reward design. An effective reward function for
multi-granular attacks should consider both attack effectiveness
and the naturalness of the perturbed document. At each step of the
sequential interactions, the attacker introduces a perturbation at a
specific level of granularity. The reward furnishes appropriate feed-
back based on the granularity of the current perturbation, guiding
the behavior of the attacker.

Specifically, the reward for each step is defined as follows: (i) If
the relevance score of the current perturbed document is higher
than before, the current attack succeeds. The reward not only eval-
uates the attack effectiveness and the naturalness of the perturbed

Perturbed Document: {Perturbed document}

Original Document: {Original document}

< Naturalness judgment >

Please evaluate the naturalness of the perturbed document. The

naturalness includes the similarity of the perturbed document to the

original document and its own fluency. Begin your evaluation by

providing an short explanation. After providing your explanation,

you must rate both similarity and fluency response on a scale of 0

to 1 by strictly following this format: "[Similarity: [], Fluency: []]".

[Similarity: 0.8, Fluency: 0.6]

Figure 3: Instruction for naturalness evaluation with chat-
GPT. The gray and dark blue blocks indicate the inputs and
outputs of the model, respectively.
document, but also considers the number of manipulated terms
introduced by different perturbation granularities; and (ii) Con-
versely, if the attack fails, we directly apply a fixed penalty factor
𝜉 as the reward. These assumptions lead us to define the attack
reward function 𝑟𝑡 at the step 𝑡 as follows:

𝑟𝑡 =

{
−𝜉, if 𝑓 (𝑞, 𝑑𝑡 ) < 𝑓 (𝑞, 𝑑𝑡−1)
𝑟𝑡att/|𝑝𝑡 | + 𝛽𝑟𝑡nat, else, (2)

where 𝑑𝑡 and 𝑑𝑡−1 are the perturbed document at step 𝑡 and 𝑡 − 1,
respectively; 𝑟𝑡att and 𝑟𝑡nat are the rewards with respect to attack
effectiveness and document naturalness, respectively. The penalty
factor 𝜉 is set to 1. The function 𝑓 (·) outputs the relevance score
judged by the surrogate ranking model 𝑓 , and the hyper-parameter
𝛽 balances attack effectiveness with document naturalness.

To emphasize the impact of different levels of granularity, we
introduce |𝑝𝑡 | as a reward discount of attack effectiveness, rep-
resenting the number of manipulated terms of 𝑝𝑡 . The value of
|𝑝𝑡 | varies significantly across perturbations at different levels of
granularity. For instance, when an attacker introduces a sentence-
level perturbation, it consumes a larger portion of the perturbation
budget. To normalize its effect, given its expected stronger attack
effects, we incorporate a corresponding discount factor.

Next, we detail 𝑟𝑡att and 𝑟𝑡nat:
• Attack effectiveness reward. 𝑟𝑡att incentivizes ranking improve-
ments of the perturbed document 𝑑𝑡 ; a perturbed document
should receive more rewards if it is ranked higher than before.
However, directly using ranking as a reward is sparse. We shape
the reward using the surrogate model’s relevance scores, i.e.,

𝑟𝑡att = 𝑓 (𝑞, 𝑑𝑡 ) − 𝑓 (𝑞, 𝑑𝑡−1), (3)

where 𝑓 (·) outputs the relevance score judged by 𝑓 . If the step 𝑡
attack is successful, 𝑟𝑡att is positive.

• Document naturalness reward. 𝑟𝑡nat guarantees that the per-
turbed document 𝑑𝑡 satisfies semantic and syntactic constraints
by an LLM [19, 30, 44]. In this work, we employ ChatGPT [47]
as the LLM. Specifically, we use the Prompts, shown in Figure 3,
to evaluate both the similarity and fluency of documents in each
state, defined as 𝑟𝑡sim and 𝑟𝑡flu, respectively.
■ 𝑟𝑡sim measures how semantically similar the perturbed docu-
ment 𝑑𝑡 is to the original document:

𝑟𝑡sim = LLMsim
(
𝑑𝑡 , 𝑑0

)
, (4)

where the function LLMsim (·) outputs the similarity score
judged by the LLM.
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■ 𝑟𝑡flu measures how fluent the perturbed document 𝑑𝑡 is:

𝑟𝑡flu = LLMflu
(
𝑑𝑡
)
, (5)

where the function LLMflu (·) outputs the fluency score judged
by the LLM.

Finally, the overall reward with respect to document naturalness
𝑟𝑡nat is defined as 𝑟𝑡nat = 𝑟

𝑡
sim + 𝑟𝑡flu.

4.3 Multi-granular attacker
The objective of the multi-granular attacker is to identify possible
attack positions at all granularities and organize them into a final
perturbation sequence. Developing such a composite strategy is
challenging for a single agent. Consequently, we adopt two agents in
a cooperative manner to accomplish this goal. (i) The vulnerability
indicator serves as a sub-agent, aiming to identify all vulnerable
positions in the document at each level of perturbation granularity.
(ii) The perturbation aggregator acts as a meta-agent, aiming to
generate specific perturbations for each selected vulnerable position
and organize them to filter out the final perturbation sequence.

4.3.1 Sub-agent: vulnerability indicator. The aim of the vulnerabil-
ity indicator is to identify all vulnerable positions within the target
document and the corresponding level of perturbation granularity
of each position.
Policy network.We employ BERT [21] as the backbone of the sub-
agent policy network 𝐼𝜙 . Given a target document 𝑑 and a query 𝑞,
the process proceeds as follows:

• We employ the surrogate model 𝑓 to compute the pairwise loss
Lpair =

∑
𝑑 ′∈𝐿\𝑑 L

𝑓
(𝑞, 𝑑, 𝑑′), where 𝑑′ is the remaining docu-

ments in the ranked list 𝐿 excluding the target document 𝑑 .
• We compute the average gradient 𝒈𝑑 ∈ R𝑚∗𝑙 of Lpair concerning
each position (i.e., each word) in the target document 𝑑 . Here,𝑚
represents the dimensions of the hidden state, and 𝑙 denotes the
length of the target document 𝑑 .

• We feed 𝒈𝑑 into the vulnerability indicator 𝐼𝜙 , to derive the vul-
nerability distribution 𝒖. The vulnerability distribution 𝒖 repre-
sents a list of confidence scores indicating the confidence level
for each position in the target document across various levels of
perturbation granularity, which is calculated by:

𝒖 = 𝐼𝜙
(
𝒈𝑑

)
, (6)

where 𝒖 = {𝒖1, 𝒖2, . . . , 𝒖𝑙 } ⊆ R4∗𝑙 . Each 𝒖𝑖 ∈ R4, 𝑖 ∈ [1, 𝑙],
represents the confidence scores at each level of perturbation
granularity at position 𝑖 . The four dimensions correspond to
perturbation at word-level (W), phrase-level (P), sentence-level
(S), and no perturbation (N), respectively.

• To condense the vulnerability distribution into a specific pertur-
bation type, we apply the softmax function to 𝒖, yielding the
vulnerable word positions 𝒄 for the target document 𝑑 , i.e.,

𝒄 = softmax (𝒖) , (7)

where 𝒄 = {𝑐1, 𝑐2, . . . , 𝑐𝑙 } ⊆ R1∗𝑙 , and each 𝑐𝑖 ∈ {W, P, S,N}, 𝑖 ∈
[1, 𝑙], is the granularity of perturbation at each word position 𝑖 .

During the above process, to ensure the continuity of vulnerable
positions at the phrase and sentence granularity, we constrain the
output of the vulnerability indicator as part of a sequence labeling

process, as detailed in Section 5.4. Based on this, we canmap the vul-
nerable word positions to corresponding span positions at the word,
phrase, and sentence levels, denoted as C = {𝐶1,𝐶2, . . . ,𝐶𝑘 } ∈
R1∗𝑘 , 𝑘 < 𝑙 . Each 𝐶 𝑗 ∈ {W, P, S}, 𝑗 ∈ [1, 𝑘], represents the level of
perturbation granularity at each span 𝑗 .
4.3.2 Meta-agent: perturbation aggregator. The target of the per-
turbation aggregator is to generate specific perturbations for each
selected vulnerable span position and organize them into a final
perturbation sequence.
Generating specific perturbations for each selected span po-
sition via static single-granular attack methods. Once we have
identified the vulnerable span positions with the corresponding
perturbation granularity C with the vulnerability indicator, we em-
ploy the respective attack method (outlined in Section 3) for each of
these span positions to generate the specific perturbations P ∈ R𝑘 .
Based on P, we design the policy network, which sequentially se-
lects a perturbation 𝑝𝑡 from P, adding to the target document until
the budget of manipulated words number 𝜖 is reached.
Policy network. We employ a multi-layer perception (MLP) [53]
as the backbone of the meta-agent policy network 𝐺𝜑 . For each
step 𝑡 , 𝐺𝜑 takes the perturbed document 𝑑𝑡−1 and vulnerability
distribution 𝒖 as inputs. The action 𝑝𝑡 is to select the 𝑡-th specific
perturbation added to the document. The process is as follows:

• We use the surrogate model 𝑓 to obtain the hidden states of
the perturbed document 𝑑𝑡−1 as 𝒉𝑡−1 = [𝒉𝑡−11 ,𝒉𝑡−12 , . . . ,𝒉𝑡−1

𝑙
],

where 𝑙 is the length of 𝑑𝑡−1. 𝒉𝑡−1𝑖 ∈ R𝑚 is the hidden state of
the 𝑖-th word in 𝑑𝑡−1, where𝑚 is the dimension of hidden states.

• For each span (e.g., word, phrase, sentence), let’s consider the
𝑗-th span. From its starting position 𝑗-start to its ending position
𝑗-end, we concatenate the corresponding hidden state with the
confidence score. Then, we sum them up to create the concate-
nated representation, denoted as,

∑𝑗,𝑒𝑛𝑑
𝑜=𝑗,𝑠𝑡𝑎𝑟𝑡

[
𝒉𝑡−1𝑜 ; 𝒖𝑜

]
, where

[; ] is the concatenation operation.
• We divide the concatenated representation by the length of the
span to derive the final representation 𝒆𝑡−1

𝑗
for the current state:

𝒆𝑡−1𝑗 =

(∑︁𝑗,𝑒𝑛𝑑

𝑜=𝑗,𝑠𝑡𝑎𝑟𝑡

[
𝒉𝑡−1𝑜 ; 𝒖𝑜

] )
/
��𝑝 𝑗 �� , 𝑗 ∈ [1, 𝑘] , (8)

where
��𝑝 𝑗 �� is length of the specific perturbation of 𝑗-th span in P.

• The probability distribution of each specific perturbation 𝑝 (𝑝 𝑗 |
𝑑𝑡−1) at 𝑡-step can be calculated by perturbation aggregator 𝐺𝜑 :

𝑃 (𝑝 𝑗 | 𝑑𝑡−1) = 𝐺𝜑 (𝒆𝑡−1𝑗 ), 𝑝 𝑗 ∈ P. (9)

The aggregator samples the perturbation 𝑝𝑡 at step 𝑡 with the
highest probability from the distribution to be injected into 𝑑 .

• We get the final perturbation P = {𝑝1, 𝑝2, . . . , 𝑝𝑡 , . . . , 𝑝𝑇 }, where
𝑇 < |P| and 𝑇 is the number of steps.

4.4 Training with policy gradient
We solve the MDP problem with the policy gradient algorithm RE-
INFORCE [59]. In each episode, a trajectory 𝜏 = 𝑑1, 𝑝1, . . . , 𝑑𝑇 , 𝑝𝑇 is
sampled using policy𝜋 . The episode terminates at step𝑇 , when term
manipulation budget 𝜖 is reached, i.e.

∑𝑇
𝑡=1

��𝑝𝑡 �� ≤ 𝜖 <
∑𝑇+1
𝑡=1

��𝑝𝑡 ��.
The aim of training is to learn an optimal policy 𝜋∗ by maximiz-

ing the expected cumulative reward 𝑅(𝜏) = E
[∑𝑇

𝑡=1 𝛾
𝑡𝑟𝑡

]
, where
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𝛾 ∈ [0, 1) is the discount factor for future rewards. The training
objective is to maximize 𝐽 (𝜙, 𝜑) via:

∇𝜙,𝜑 𝐽 (𝜙, 𝜑) = E𝜋𝜙,𝜑
[
∇𝜙,𝜑 log𝜋𝜙,𝜑𝑅(𝜏)

]
, (10)

where 𝜙 and 𝜑 denote the parameter for sub-agent 𝐼𝜙 and meta-
agent 𝐺𝜑 , respectively. In RL-MARA, the policy networks of two
agents are spliced together to be optimized together.

The solution can be approximated by a Monte Carlo estimator
[22], i.e., ∇𝜙,𝜑 𝐽 (𝜙, 𝜑) ∝

∑𝑈
𝑢=1

∑𝑇
𝑡=1 ∇𝜙,𝜑 log𝜋𝜙,𝜑

(
𝑝𝑢,𝑡 | 𝑑𝑢,𝑡

)
𝑅𝑢,𝑡 ,

where𝑈 is the number of samples and 𝑇 is the number of steps.

4.5 Discussion
It is important to point out two key differences between RL-MARA
and mixture-of-experts (MoE) frameworks in IR [3, 71], which seem
more straightforward in assembling existing ranking attack meth-
ods. For MoE methods: (i) The MoE requires optimization of each
expert (attacker) during training. However, mainstream attackmeth-
ods primarily use a series of search algorithms with two detached
steps, finding vulnerable positions and adding perturbations, both of
which are non-trainable. While it is feasible to design an algorithm
for the first step, the second step poses a challenge, as generating
discrete textual perturbations makes it difficult to obtain direct
supervised signals. (ii) Constrained by the gating, the outcome of
MoE frameworks is determined by one of a single expert and a
weighting of all experts, introducing a sense of rigidity.

In contrast, for RL-MARA: (i) RL-MARA integrates existing sin-
gle-granular attack methods in a trainable manner. In addressing
the two non-trainable steps present in existing attacks (see Section
3): to identify vulnerable positions, RL-MARA employs a sub-a-
gent called vulnerability indicator (see Section 4.3.1); to perturb
the discrete text space, RL-MARA uses a meta-agent called per-
turbation aggregator to master the perturbation addition strategy
(see Section 4.3.2); and (ii) RL-MARA chooses a perturbation of any
granularity at each step. Consequently, by the end of the attack, we
can achieve either a single-granular perturbation or a combination
of different levels of perturbation granularity with flexibility.

5 EXPERIMENTAL SETTINGS
5.1 Datasets
Benchmark datasets. Like previous work [37, 64], we conduct
experiments on two benchmark datasets: (i) The MS MARCO
Document Ranking dataset [43] (MS MARCO) is a large-scale
benchmark dataset for Web document retrieval, with about 3.21
million documents. (ii) TheClueWeb09-B dataset [7] (ClueWeb09)
comprises 150 queries with a collection of 50 million documents,
with 242 additional queries from the TREC Web Track 2012 [8].
Target queries and documents. Following [5, 37], we randomly
sample 1000 Dev queries from MS MARCO and use 242 additional
queries from ClueWeb09 as target queries for each dataset evalua-
tion, respectively. For each target query, we adopt two categories
of target documents based on the top-100 ranked results of the tar-
get NRM, considering different levels of attack difficulty, i.e., Easy
and Hard. Specifically, we randomly choose 5 documents ranked
between [30, 60] as Easy target documents and select the 5 bottom-
ranked documents as Hard target documents. In addition to the
two types, we incorporateMixture target documents for a thorough

analysis. These consist of 5 documents randomly sampled from
both the Easy and Hard target document sets.

5.2 Evaluation metrics
Attack performance. We use three automatic metrics: (i) Attack
success rate (ASR) (%), which evaluates the percentage of target doc-
uments successfully boosted under the corresponding target query.
(ii) Average boosted ranks (Boost), which evaluates the average im-
proved rankings for each target document under the corresponding
target query. (iii) Boosted top-𝐾 rate (T𝐾R) (%), which evaluates the
percentage of target documents that are boosted into top-𝐾 under
the corresponding target query. The effectiveness of an adversary
is better with a higher value for all these metrics.
Naturalness performance. Here, we use four metrics: (i) Spamic-
ity detection, which detects whether target web pages are spam. Fol-
lowing [33, 64], we adopt a utility-based term spamicity detection
method, OSD [70], to detect the after-attack documents. (ii) Gram-
mar checking, which calculates the average number of errors in
the after-attack documents. Specifically, we use, Grammarly [15],
an online grammar checker following [33]. (iii) Language model
perplexity (PPL), which measures the fluency using the average
perplexity calculated using a pre-trained GPT-2 model [50]. (iv) Hu-
man evaluation, which measures the quality of the after-attack
documents following the criteria in [33, 64].

5.3 Models
Target NRMs.We choose three typical NRMs as target NRMs: (i) a
pre-trained model, BERT [21]; (ii) a pre-trained model tailored for
IR, PROP [39]; and (iii) a model distilled from the ranking capabil-
ity of LLMs, RankLLM [58]. For RankLLM, we employ the model
introduced by [58], distilling the ranking capabilities of an LLM,
i.e., ChatGPT, into DeBERTa-large [18] in a permutation distillation
manner on LLM-generated permutations within MS MARCO.
Baselines.We compare the following attackmethods against NRMs:
(i) Term spamming (TS) [17] randomly selects a starting position
in the target document and replaces the subsequent words with
terms randomly sampled from the target query. (ii) PRADA [64],
PLAT [26] and PAT [33] are representative word-level, phrase-level
and sentence-level ranking attack method against NRMs, intro-
duced in Section 3. (iii) IDEM [5] is sentence-level ranking attack
that inserts the generated connection sentence in the document.
Model variants.We implement three variants of RL-MARA: (i)RL-
MARAsingle selects a single level of perturbation for each document.
After generating a vulnerability distribution, it sums confidence
scores for each perturbation level. The one with the highest total
score is chosen, while others are ignored and their scores are reset to
zero. (ii) RL-MARAtriple incorporates all three perturbation levels
in each document. It calculates average confidence scores for each
level across vulnerable spans, ranks them from high to low, and then
sequentially selects the highest-ranked span at each level until the
term manipulation budget is reached, ensuring each perturbation
level occurs at least once. (iii) RL-MARAgreedy greedily chooses
vulnerable spans with the highest confidence for perturbation. It
computes and ranks average confidence scores for vulnerable spans,
regardless of granularity, and applies perturbations in descending
order until the term manipulation budget is exhausted.
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Table 1: Attack performance of RL-MARA and baselines; ∗ indicates significant improvements over the best baseline (𝑝 ≤ 0.05).
MS MARCO ClueWeb09

Method Easy Hard Easy Hard
BERT ASR Boost T10R T5R ASR Boost T10R T5R ASR Boost T10R T5R ASR Boost T10R T5R
TS 100.0 38.1 84.3 26.9 89.5 68.2 23.6 5.9 100.0 36.2 81.0 23.6 90.5 65.9 21.8 4.6
PRADA 98.3 26.1 69.3 18.3 78.9 55.9 9.6 1.8 97.6 24.8 66.9 16.5 77.1 53.9 8.2 1.2
PLAT 93.6 24.3 63.1 15.6 72.1 50.0 8.5 1.1 92.1 23.1 61.9 14.0 70.2 48.2 7.2 0.8
PAT 100.0 35.1 78.1 23.8 82.3 60.3 18.3 3.9 100.0 34.3 75.6 20.6 78.3 54.1 14.9 2.1
IDEM 100.0 39.6 85.6 26.8 90.2 69.6 25.8 7.2 100.0 37.1 82.6 24.9 87.2 65.2 22.1 5.1
RL-MARAsingle 100.0 36.4 82.6 26.0 88.7 67.2 23.9 6.1 100.0 35.4 81.0 24.3 86.3 65.6 21.8 5.3
RL-MARAtriple 100.0 40.3 87.1 27.9 93.5 75.1∗ 30.6∗ 8.6∗ 100.0 38.9 85.7∗ 26.8 91.7∗ 73.2∗ 28.9∗ 7.8∗
RL-MARAgreedy 100.0 40.8 88.3∗ 28.3∗ 94.6∗ 78.3∗ 31.3∗ 9.3∗ 100.0 38.8 86.1∗ 26.9∗ 93.7∗ 74.1∗ 29.2∗ 8.4∗
RL-MARA 100.0 42.2∗ 90.2∗ 30.2∗ 98.9∗ 88.1∗ 36.9∗ 9.9∗ 100.0 40.1∗ 87.9∗ 28.6∗ 97.2∗ 85.8∗ 35.3∗ 9.5∗

PROP ASR Boost T10R T5R ASR Boost T10R T5R ASR Boost T10R T5R ASR Boost T10R T5R
TS 100.0 37.6 83.0 25.8 89.7 67.3 22.8 5.1 100.0 35.0 79.6 22.8 90.5 64.8 20.9 4.3
PRADA 95.2 23.4 66.6 16.4 75.8 53.4 8.6 1.2 93.4 22.5 63.4 14.1 74.9 51.2 6.8 0.9
PLAT 91.2 22.0 60.5 13.5 69.9 48.2 7.5 0.8 89.8 21.4 59.8 12.1 68.0 46.3 6.7 0.5
PAT 98.6 33.6 75.9 22.5 80.2 58.7 17.3 3.1 96.3 31.1 72.2 20.1 77.3 53.9 15.1 2.4
IDEM 100.0 37.3 83.0 25.0 87.9 67.5 24.0 6.5 100.0 35.8 80.1 23.1 85.8 65.1 21.7 4.1
RL-MARAsingle 100.0 35.3 80.2 24.5 86.4 65.1 23.0 5.8 100.0 34.6 79.9 23.1 84.5 63.5 20.0 4.9
RL-MARAtriple 100.0 37.9 85.6 26.5 91.2 73.8∗ 28.9∗ 8.0∗ 100.0 37.5 83.8∗ 25.3∗ 90.1∗ 71.8∗ 27.2∗ 6.3∗
RL-MARAgreedy 100.0 38.4 87.9∗ 27.6∗ 92.3∗ 77.6∗ 30.8∗ 8.7∗ 100.0 36.3 85.1∗ 25.4∗ 91.9∗ 72.5∗ 28.5∗ 7.9∗
RL-MARA 100.0 41.0∗ 88.7∗ 28.9∗ 97.5∗ 87.0∗ 36.0∗ 9.1∗ 100.0 39.2∗ 85.6∗ 27.4∗ 95.8∗ 83.6∗ 33.8∗ 8.9∗

RankLLM ASR Boost T10R T5R ASR Boost T10R T5R ASR Boost T10R T5R ASR Boost T10R T5R
TS 100.0 34.3 79.4 22.5 89.8 63.9 19.7 3.2 99.2 32.1 73.0 19.3 89.9 59.8 18.4 2.8
PRADA 92.1 21.1 60.9 13.4 68.9 50.2 6.7 0.7 89.6 20.2 59.8 12.3 70.3 48.9 5.2 0.5
PLAT 88.9 19.1 55.8 11.5 63.5 45.9 5.9 0.5 85.6 18.6 55.9 10.0 64.8 42.6 5.2 0.3
PAT 95.6 30.2 72.1 19.8 75.6 54.3 14.9 2.8 93.9 28.7 68.6 18.4 73.5 49.8 12.8 1.7
IDEM 98.9 34.8 79.2 22.2 84.8 63.2 21.8 5.2 98.2 33.2 77.9 21.1 82.3 61.8 18.9 3.2
RL-MARAsingle 97.9 33.6 77.9 22.3 83.8 62.6 21.2 4.3 97.5 32.1 76.7 21.2 81.8 60.2 18.1 3.7
RL-MARAtriple 99.8 35.8 82.9 24.3 89.0 71.8∗ 27.0∗ 7.1∗ 99.2 35.2 81.2∗ 22.8∗ 88.7∗ 69.8∗ 25.4∗ 5.8∗
RL-MARAgreedy 100.0 36.2∗ 85.3∗ 25.1∗ 89.7∗ 74.8∗ 28.9∗ 8.1∗ 99.7 34.6 82.3∗ 22.7∗ 89.2∗ 70.1∗ 26.4∗ 7.2∗
RL-MARA 100.0 39.7∗ 85.8∗ 27.0∗ 95.6∗ 85.0∗ 34.3∗ 8.6∗ 100.0 37.0∗ 82.4∗ 25.2∗ 92.1∗ 81.1∗ 31.3∗ 8.2∗

5.4 Implementation details
For MS MARCO and ClueWeb09, following [64], we truncate each
document to 512. The initial retrieval is performed using theAnserini
toolkit [66] with the BM25 model to obtain the top 100 ranked doc-
uments following [37, 64]. For the environment, following [33, 64],
we use BERT𝑏𝑎𝑠𝑒 as the surrogate model, and the training details
are consistent with [37, 64]. For the reward, the balance hyper-
parameter 𝛽 is 0.2 and the discount factor 𝛾 is 0.9.

For the perturbations, we set the term manipulation budget
𝜖 = 25 for RL-MARA and all baselines. We specify a word length of
1 for word-level perturbations, 2 to 5 for phrase-level perturbations,
and 6 to 10 for sentence-level perturbations. For the sub-agent, we
supervise its training in a sequence labeling manner [60] to ensure
that the labeling of each perturbation position is a continuous span.
We set the learning rate to 3𝑒−6 with Adam as the optimizer to train
RL-MARA. Following [37], when the training process ends, we stop
the updating of policy networks while running another epoch on
the full dataset as a testing phase to evaluate the performance.

6 EXPERIMENTAL RESULTS
6.1 Attack evaluation
Table 1 showcases the attack performance among three target NRMs
with different attack methods, evaluated on both Easy and Hard
target documents. We have the following observations: (i) Overall,
the attack methods have effects on all three NRMs, exposing the
prevalence of adversarial vulnerability. RankLLM is more resistant
to adversarial attacks than other NRMs, indicating that distilling
the ranking capabilities with LLMs helps to enhance the adversar-
ial robustness of NRMs. (ii) The attack efficacy of most methods
on ClueWeb09 is observed to be inferior compared to their perfor-
mance on MS MARCO. This disparity may stem from the noise
present in ClueWeb09’s documents, which potentially renders the
model less responsive to adversarial perturbations. This observation
aligns with previous findings reported in [37]. (iii) Hard documents
exhibit lower ASR and T𝐾R compared to Easy ones, due to the
higher prevalence of irrelevant information in bottom-ranked docu-
ments, which challenges effective attacks with limited perturbation.
(iv) Sentence-level attack methods yield better attack results than
word-level and phrase-level methods. The reason may be that the
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Table 2: The MRR@10 (%) performance on MS MARCO and
ClueWeb09 of target NRMs (BERT, PROP and RankLLM) and
their corresponding surrogate models (SNRM).
NRM BERT SBERT RROP SRROP RankLLM SRankLLM
MS MARCO 38.48 35.41 39.01 36.24 39.89 37.86
ClueWeb09 27.50 24.93 28.25 25.46 28.96 26.65
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Figure 4: The impact of hyper-parameter 𝛽 on the attack
performance of RL-MARA against RankLLM onMSMARCO.
sentence-level perturbation is a continuous optimization of an en-
tire vulnerable span in a document, thus increasing the likelihood
of misleading the relevance judgment of NRMs to a greater extent.
However, these sentence-level attack methods run the risk of be-
ing suspect due to naturalness flaws in respective aspects. We will
discuss this further in Section 6.3.

RL-MARA significantly outperforms all baselines. In Hard doc-
uments of MS MARCO, while attacking RankLLM, RL-MARA im-
proves over the best baseline, IDEM, by 65.4% in T5R and by 34.5%
in Boost, highlighting the attack effect of perturbations at mul-
tiple levels of granularity. (i) The superiority of RL-MARA over
RL-MARAsingle suggests that the single granularity of perturbation
is not sufficient to fully utilize the diverse vulnerability distributions
in documents. Moreover, the synergy between perturbations of dif-
ferent levels of granularity can lead to more threatening adversarial
examples. (ii) The advantage of RL-MARA over RL-MARAtriple in-
dicates that the sequential decision-making in adding perturbations
of each granularity, based on RL rather than mechanically applying
perturbations across all levels of granularity, enables more effective
exploitation of each document’s vulnerability distribution. (iii) The
improvement of RL-MARA over RL-MARAgreedy demonstrates that
the cooperative approach of two agents in flexibly organizing multi-
-granular perturbations is instrumental in generating high-quality
perturbation sequences, posing significant threats to NRMs.

For the Mixture target documents, the performance of all attack
methods remains consistent with that observed in each NRM for
Easy and Hard documents. Even attacking the most defensive Rank-
LLM on MS MARCO, RL-MARA outperforms the best baseline by
34.8% in T5R and 25.1% in Boost.

Furthermore, the performance of the surrogate ranking model
plays an important role in the success of the black-box attack. As
shown in Table 2, for all target NRMs, the corresponding surrogate
model can imitate their performance to some extent. This allows
the vulnerabilities identified on the surrogate ranking model to be
effectively transferred to the target NRM.
The impact of the balance hyper-parameter. 𝛽 is an important
hyper-parameter in our multi-granular reward, since it balances
the attack performance and the naturalness of adversarial example.
We investigate the impact of 𝛽 on the performance of RL-MARA.
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Figure 5: (Left): Attack performance changes of RL-MARA
against RankLLM on MS MARCO in the white-box setting,
compared to black-box setting. (Right): Attack performance
changes of RL-MARA against RankLLM on MS MARCO in
the OOD scenario, compared to the IID scenario.

Lower values of 𝛽 imply a less emphasis on the naturalness and
a greater emphasis on the attack effectiveness. We take attacking
RankLLM onMixture documents of MSMARCO as an example. The
trend of the attack performance with 𝛽 is shown in Figure 5. As 𝛽
decreases, the attack performance gradually increases and plateaus,
since the naturalness reward no longer dominates the update of the
attack strategy. However, trivializing naturalness reward signals
can lead to susceptibility to suspicion, as discussed in Section 6.3.

When serving as a benchmark, RL-MARA can create adversarial
examples of varying naturalness by tuning the hyper-parameter 𝛽 ,
enabling a comprehensive analysis for model robustness.

6.2 Capability of surrogate models
Black-box vs. white-box attack.We further focus on the white-
box scenario, which is valuable for enhancing understanding of
our method. In white-box attacks, we directly substitute the surro-
gate ranking model as the target NRM and keep other components
the same in RL-MARA. We consider the most defensive RankLLM,
which has a 4.4% higher ranking performance than its surrogate
model, as shown in Table 2. The result on the Mixture target doc-
uments of MS MARCO is shown in Figure 5 (Left), with similar
findings on other target documents. Compared with the white-box
setting, RL-MARA still obtains competitive performance in black-
box scenarios. The results demonstrate that the training method
of the surrogate model is sufficient to simulate the vulnerability
performance of the target NRM at different levels of granularity,
thus making our multi-granular attack effects transferable.
Training a surrogate model in the out-of-distribution (OOD)
setting. In our experiments, the training data of the surrogate
model is directly adopted from the Eval queries of the target model,
i.e., the same distribution as the query used to train the target NRM.
However, in realistic search scenarios, obtaining an identically dis-
tributed query set is difficult. Following [5], we show the results
for the IID and OOD scenarios in Figure 5 (Right). Specifically, we
take the Mixture target documents as an example and evaluate
the attack performance against RankLLM on MS MARCO. For our
IID scenarios, we use Eval queries of MS MARCO for surrogate
model training. For OOD scenarios, we use Eval queries of Natural
Questions (NQ) [24] to train the surrogate model and observe a
25.7% decrease on MRR@10 relative to the IID surrogate model.
The results reveal that despite compromised attack performance
when the IID data is unavailable, RL-MARA continues to perform
an effective attack method that can identify model vulnerabilities.
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Table 3: The online grammar checker, perplexity, and human
evaluation results for attacking RankLLM on MS MARCO.
Method Grammar PPL Impercept. kappa Fluency Kendall
Original 59 44.2 0.90 0.52 4.57 0.65
TS 67 59.7 0.06 0.53 2.42 0.73
PRADA 108 113.4 0.53 0.48 3.21 0.82
PLAT 98 86.3 0.62 0.58 3.30 0.74
PAT 83 72.1 0.58 0.61 3.42 0.76
IDEM 67 55.6 0.79 0.46 3.75 0.82
RL-MARA−NC 103 89.5 0.58 0.47 2.97 0.69
RL-MARA 65 53.5 0.87 0.58 3.90 0.76

Table 4: The detection rate (%) via a representative anti-
spamming method for attacking RankLLM on MS MARCO.

Threshold 0.08 0.06 0.04 0.02
TS 40.3 53.4 76.3 94.5
PRADA 13.4 22.6 40.1 64.2
PLAT 11.6 20.6 32.5 58.7
PAT 9.3 15.2 26.4 49.8
IDEM 17.2 29.4 48.3 72.9
RL-MARA−NC 15.8 26.3 42.4 68.6
RL-MARA 6.2 10.6 20.2 40.3

6.3 Naturalness evaluation
Next, we report on the naturalness of generated adversarial exam-
ples against RankLLM on MS MARCO, with similar findings on
ClueWeb09. Here, we set the balance hyper-parameter 𝛽 to 0 of
RL-MARA, denoted as RL-MARA−NC, for comparison.
Grammar checking, PPL, and human evaluation. Table 3 lists
the results of the automatic grammar checker, PPL, and human
evaluation. For human evaluation, we recruit five annotators to
annotate 32 randomly sampled Mixture adversarial examples from
each attack method [5]; The annotators score the Fluency from 1 to
5; higher scores indicate more fluent examples; the Imperceptibility
is to determine whether an example is attacked (0) or not (1); includ-
ing the annotation consistency (the Kappa value and Kendall’s Tau
coefficient) [37, 64]. We observe that: (i) TS demonstrates subpar
performance in all naturalness evaluations because it abruptly in-
serts the query terms into the document without regard to semantic
coherence. (ii) The single-granular attack methods fall short when
compared to the original documents, a possible reason is that a
priori restricting perturbations to a specific level of granularity car-
ries the risk of generating unnatural perturbations. (iii) Although
discarding the fluency constraint may improve attack efficacy, the
adversarial examples produced by RL-MARA−𝑁𝐶 tend to arouse
suspicion. (iv) RL-MARA outperforms the baselines, demonstrating
the effectiveness of the naturalness reward provided by the LLM.
Spamicity detection. Table 4 shows the automatic spamicity de-
tection results on Mixture documents with similar findings on other
target documents. If the spamicity score of a document exceeds
the detection threshold, it is identified as suspected spam content.
Even with the effective attack performance, IDEM is easier to detect
among other single-granular attack baselines because it ignores
the avoidance of query terms in prompting the language model to
generate perturbed sentences. RL-MARA outperforms the baselines
significantly (p-value ≤ 0.05), demonstrating the similarity reward

provided by an LLM is effective in preventing attack methods from
abusing query terms and thus being suspected.

7 RELATEDWORK
Neural ranking models. Ranking models have evolved from early
heuristic models [54] to probabilistic [48, 52], and modern learning-
to-rank models [28, 34]. NRMs [9, 16, 46] emerged with deep learn-
ing and demonstrated excellent ranking performance through pow-
erful relevance modeling capabilities. Research has also explored
integrating potent pre-trained language models into ranking tasks,
including tailoring specific pre-training [39], fine-tuning [45], and
distilling techniques [58], leading to state-of-the-art performance
[13]. However, these NRMs also exhibit disconcerting adversarial
vulnerabilities inherited from neural networks [35, 38, 51, 63].
Adversarial ranking attacks.With the development of deep learn-
ing, many fields such as retrieval augmentation [67], recommender
systems [61, 62], and knowledge graphs [31, 32] have begun to focus
on the robustness challenge. In the field of IR, the challenge of black-
hat search engine optimization (SEO) has been significant since
the inception of (web) search engines [17]. Typically, the goal of
black-hat SEO is to boost a page’s rank by maliciously manipulating
documents in a way that is unethical or non-compliant with search
engine guidelines [4, 23]. It usually causes erosion of search quality
and deterioration of the user experience. To safeguard NRMs from
exploitation, research has focused on adversarial ranking attacks
[33, 64], in order to expose the vulnerability of NRMs. The goal of
adversarial ranking attacks is to manipulate the target document
through imperceptible perturbations to improve its ranking for
an individual or a small group of target queries [37, 64]. Previous
studies have mainly explored attacks against NRMs with a single
granularity of perturbations, e.g., word-level [36, 37, 51, 63, 64]
and sentence-level [5, 33, 37, 56]. However, these efforts lack the
flexibility needed for the comprehensive exploitation of NRM vul-
nerabilities. In this paper, we launch attacks with perturbations at
multiple levels of granularity.
Multi-granular adversarial attack. Multi-granular attacks, in
contrast to single-granular ones, engage different levels of perturba-
tion granularity [68]. In CV [20, 65] and NLP [6, 11, 29], they exploit
model vulnerabilities by freely combining varying perturbation
granularities to produce threatening adversarial examples. How-
ever, in NLP, existing multi-granular attack methods are mainly
confined to selecting one granularity from several options in a
predetermined manner [6, 11]. Unlike these studies, we combine
perturbations at multiple levels of granularity, allowing them to
coexist in an adversarial example to enhance the effectiveness of
adversarial ranking attacks.

8 CONCLUSION
In this work, we investigated a multi-granular ranking attack frame-
work against black-box NRMs. We modeled multi-granular attacks
as a sequential decision-making process and proposed a reinforce-
ment learning-based framework, RL-MARA, to address it. Our ex-
tensive experimental results reveal that the proposed method can
effectively boost the target document through multi-granularity
perturbations with imperceptibility.
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In future work, we would like to explore how to efficiently opti-
mize the combinatorial explosion problem due to multi-granular
attacks from a theoretical perspective. Beyond the current single-
granular attack methods, we will explore integrating more granu-
larity and different attack methods into our framework and making
them learnable. Our method proves effective against NRMs dis-
tilled from LLMs, as exemplified by RankLLM. However, directly
attacking LLMs as rankers and, in turn, leveraging their advanced
capabilities for attacks presents promising future research avenues.
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