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We developed an efficient numerical approach to compute the different components of the orbital
Hall responses in disordered materials from the Berry phase theory of magnetization. We propose a
theoretical framework based on the Chebyshev expansion of Green’s functions and the position op-
erator for systems under arbitrary boundary conditions. The capability of this scheme is illustrated
by computing the orbital Hall conductivity for gapped graphene and Haldane model in presence of
nonperturbative disorder effects. This methodology opens the door to realistic simulations of orbital
Hall responses in arbitrary complex models of disordered materials.

Similarly to spintronics, orbitronics operate on stim-
uli capable of generating nonequilibrium distributions
of orbital angular momentum1,2. Seminal works from
Bernevig et al. and Kontani et al. predicted the existence
of an orbital Hall effect (OHE) in doped semiconductors3
and transition metals4, where a longitudinal current
triggers a transverse flow of orbital angular momentum
(OAM) independently of the spin-orbit coupling (SOC)
of the material. Initially, the potential of the orbital de-
grees of freedom for technological applications has been
questioned under the assumption of the quenching of
the orbital angular momentum due to the crystal field5.
However, recently, Go et al. demonstrated that even in
systems with quenched orbital character, the application
of electric fields enables hybridization channels absent at
equilibrium, giving rise to the OHE6.

On the other hand, the experimental detection of the
OHE was first investigated indirectly through orbital
torque measurements7–12, orbital pumping13,14, and in-
verse orbital Hall effect15,16. In these studies, the confir-
mation of the OHE remains debated due to the similari-
ties in the symmetries obeyed by the OHE and the spin
Hall effect, but two independent experimental groups
have confirmed directly the existence of the OHE through
magneto-optical Kerr rotation measurements in Ti17 and
Cr18.

To date, most of those experimental results on the
electrical generation of orbital currents and their appli-
cation concentrate on three-dimensional (3D) systems.
Nonetheless, the tunability in the properties of two-
dimensional (2D) materials and the prospect of devel-
oping ultra-compact light-metal-based orbitronic devices
has gained significant attention. For instance, theoretical
works predicted that 1H transition metal dichalcogenides
(TMDs) could host orbital-Hall insulating phases19,20
characterized by an orbital Chern number and in-gap
OAM-carrying edge states21. Moreover, sizable OHE
was predicted for various semiconducting 1T TMDs22.
Additionally, the role of the orbital degrees of freedom
in the generation of real-space localized non-equilibrium
spin densities and their suitability for SOT was recently

revealed23; and beyond TMDs, phosphorene was also
identified as a suitable platform for unambiguous detec-
tion of orbital signals24.

Aside from the muffin-tin picture that considers the
contributions to the OAM from the immediacies of the
atomic environment encoded in the orbital character
of the wavefunctions, nonlocal contributions to the or-
bital moment arising from the electron wavepacket self-
rotation addressed through the Berry phase description
of the orbital magnetization25–29 can be dominant in sys-
tems with quenched orbital character such as gapped30,
bilayer31 and twisted bilayer graphene32,33, and kagome
lattices34. Furthermore, Kazantsev et al. demonstrated
that the net valley accumulation in gapped graphene
nanoribbons and their associated orbital moments does
not depend on the carrier diffusion lengths but on the
characteristics of the electronic wave function near the
edges35. However, despite all the theoretical and experi-
mental development, practical applications of orbitronics
require an understanding of the role of the disorder in
the generation of orbital currents and the relaxation of
nonequilibrium orbital densities.

Examples of this necessity are the results from the ex-
periments of Seifert et al. in magnetic bilayers, where
magnetic disorder suppresses nonequilibrium spin den-
sities and magnonic contributions, leaving their orbital
currents and densities unaffected, which help in identify-
ing a ballistic conduction of OAM15. On the other hand,
Choi et al. reported an orbital diffusion length lO, in Ti
between 61−74 nm17 that contrasts with the short orbital
diffusion length of lO = 6.6 nm estimated by Lyalin et al.
in Cr18. Such variation of lO might be related to crystal
field or disorder effects which remain mostly unexplored.
The work of Pezo et al. suggests that random impuri-
ties decrease the value of the orbital Hall conductivity in
Dirac materials36, while other study reports that weak
disorder can be the dominant source of current-induced
orbital currents in the valence and conduction bands of
Dirac materials37. Conversely, for triangular lattices, the
disorder appears to be detrimental38.

In that context, usual diagonalization methods to treat
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disorder effects become quickly prohibitive due to the
computational cost scaling cubically with the system size.
Accordingly, to further advance the field of orbitronics,
there is a need for realistic, accurate, and efficient simu-
lation tools capable of addressing non-perturbatively the
role of the disorder in the generation of orbital currents in
systems approaching experimentally relevant scales and
geometries.

In this letter, we present a new efficient linear-scaling
method that allows the computation of the orbital Hall
conductivity (OHC) in disordered materials from the
Berry phase theory of magnetization. Using the kernel
polynomial method (KPM), we expand the position
operator, the OAM, and use the Kubo-Bastin formula
in terms of Chebyshev polynomials. We illustrate the
methodology by studying the transport properties of or-
bital angular momentum in the topologically trivial and
non-trivial phases of the Haldane model and investigate
the effects of Anderson disorder. Our results suggest
that including disorder favors the appearance of extrinsic
Fermi -sea and -surface contributions that overcome
the intrinsic orbital Hall responses for the clean case.
The generality of the methodology enables the study of
various current-induced orbital responses in disordered
systems in a straightforward manner, independently of a
basis choice for any temperature and chemical potential.

To address the components of the conductivity tensor,
we use the linear response Kubo formalism. In the static
limit, the elements of the OHC tensor are given by the
Kubo-Bastin formula20,39,40

ση
αβ = − i2h̄e

Ω

∫ ∞

−∞
dεF (ε)ImTr⟨Jη

α∂εG
−(ε,H)vβδ(ε−H)⟩,

(1)

where Ω is the volume of the sample, vβ is the β compo-
nent of the velocity operator vβ ≡ i

h̄ [H, rβ ], G∓(ε,H) =
1

ε−H∓i0∓ is the retarded (advanced) Green’s function,
F (ε) is the Fermi-Dirac distribution for a given tem-
perature T and chemical potential µ, Jη

α = 1
2{Lη, vα}

is the orbital current operator. Though the eigenstate-
based representation of the Kubo formula has been ex-
tensively used in the study of orbital angular momen-
tum transport in clean systems1,21,30, equation (1) has
been instrumental in the investigation of electrical re-
sponses in disordered materials41–43. Following the ap-
proach proposed by Bhowal and Vignale30, we write
the symmetrized orbital angular momentum operator as
L⃗ = eh̄

4gLµB
(r⃗ × v⃗ − v⃗ × r⃗), where gL is the Landé g-

factor for the orbital angular momentum, and µB is the
Bohr magneton. From this definition, it is clear that
the difficulties in computing the orbital angular momen-
tum beyond the muffin-tin approximation are related to
the ill-defined nature of the position operator in periodic
systems. Nonetheless, as noted by Bianco and Resta44,
even if the diagonal elements in the energy eigenstates

of the position operator are ill-defined, the off-diagonal
elements can be easily written as ⟨i|rα|j⟩ = ih̄ ⟨i|vα|j⟩

Ej−Ei
.

Thus, using the definition of Green’s functions, we define
equivalent representations of the same position operator
as

⟨i|rIα|j⟩ = ih̄⟨i|
∫

dε′
[
G+(ε′, H)vαδ(H − ε′)

]
|j⟩

⟨i|rIIα |j⟩ = −ih̄⟨i|
∫

dε′
[
δ(H − ε′)vαG

−(ε′, H)
]
|j⟩ (2)

These representations of the rα operator in (2) are for-
mally equivalent in the limit of vanishing broadening.
However, for their numerical evaluation, both versions
of the operator must be considered to cancel any spu-
rious contributions due to the regularization of Green’s
functions. The numerical evaluation of equation (2) is in-
efficient if one uses the eigenstates of the system, at con-
trast with spectral methods such as the KPM which per-
form computation as matrix-vector operations. Follow-
ing the Chebyshev expansion technique42,45, we rescale
the Hamiltonian H and the energies ε between the (−1, 1)
interval and expand the Green’s and spectral functions
as a polynomial series of the rescaled Hamiltonian H̃ and
energies ε̃. Thus the expanded expression for rI in (2) is

⟨i|rIα|j⟩ = ih̄
2

∆E

∫ 1

−1

dε̃′⟨i|

(
M∑
µ

cµ(ε̃
′)Tµ(H)

)
vα

×

(
M∑
ν

fν(ε̃
′)Tν(H̃)

)
|j⟩. (3)

The coefficients cµ(ε) = −2i√
1−ε2

gµe
iµ arccos(ε)

(δµ,0+1) and fν(ε) =

2
π
√
1−ε2

gνTν(ε)
(δµ,0+1) are related to the polynomial expansion of

G+(ε,H) and δ(H − ε), respectively46, ∆E is the energy
width of the spectrum defined as ∆E = (Emax−Emin)/2,
Tm(x) = cos(m arccos(x)) is the m−th Chebyshev poly-
nomial of first-kind and gµ is a damping factor added
to the series to smooth the Gibbs oscillations result-
ing from the truncation of the polynomial expansion at
order M45. The components of rII are obtained from
the relation rIIα =

(
rIα
)†. Using these expansions, the

orbital angular momentum operator Lη is written as

Lη = ϵαβη
eh̄2

4gLµB
(
rIα
h̄ vβ − vα

rIIβ
h̄ ) = eh̄2

4gLµB
ℓη, with ϵαβη,

being the Levi-Civita symbol. Inserting the expansion of
the Lη operator into (1) and using the polynomial expan-
sion of the Green and spectral functions, the components
of the OHC tensor reads as:

ση
αβ = − 8

∆E3

ie2h̄3

4gLµBΩ

×
∫ 1

−1

dẼ
F (Ẽ)

(1− Ẽ)2

∑
m,n

2µα,β,η
m,n Im

(
Γm,n(Ẽ)

)
, (4)
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µα,β,η
m,n = gmgn

(1+δm,0)(1+δn,0)
Tr⟨ 12{ℓη, vα}Tm(H̃)vβTn(H̃)⟩

contains all the information related to the Hamiltonian
and the orbital current operator. It neither depends on
the energy nor the specific basis chosen for describing the
system and comprises the most expensive part of the cal-
culation (details on the computation of these coefficients
are shown in SM47). In contrast, Γm,n(Ẽ) is an energy-
dependent scalar that does not depend on the specific
features of the Hamiltonian and reads as

Γm,n(Ẽ) =
(
Ẽ + im

√
1− Ẽ2

)
e−im arccos(Ẽ)Tn(Ẽ). (5)

Equation (4) constitutes the main result of our work.
After determining the coefficient matrix µα,β,η

m,n , we can
compute the energy-resolved OHC for all the tempera-
tures. To evaluate the traces, we use the random phase
approximation which allows the expansion of the trace in
terms of a subset of elements45.

To illustrate the method, we apply it to study the
transport of orbital currents in the Haldane model48.
The Hamiltonian is given as H = −t

∑
⟨i,j⟩ c

†
i cj +

i t2
3
√
3

∑
⟨⟨i,j⟩⟩ νijc

†
i cj+

∑
i(∆i+ξi)c

†
i ci, where t and t2 are

the first and second nearest neighbor hoppings, respec-
tively. νij = +1(−1) if the second nearest neighbor hop-
ping from the sites j to i occurs in the counter-clockwise
(clockwise) direction. ∆i = ∆(−∆), is the onsite energy
for i ∈ A(i ∈ B) sublattice and ξi is an on-site Anderson
disorder term whose values are selected from a uniform
random distribution in the interval [−W/2,W/2]. Fol-
lowing Ref. 30, we fix t = 2.8 eV and the carbon-carbon
distance a = 1.42 Å.

FIG. 1. Real-space orbital Hall conductivity of the Haldane
model with t2 = 0, ∆ = 1.0 eV, and W = 0 (for different
number of moments M , and compared with the diagonaliza-
tion result (dashed line)). The shaded curve represents the
DOS computed for M=512.

Our starting point is the study of the convergence of
the OHC plateau for various values of M . Figure 1 shows
the orbital Hall conductivities obtained using the recip-
rocal space procedure described in Ref. 30 and our real-
space method for clean gapped graphene (t2 = 0). We

consider systems composed of 256 × 256 unit cells with
an onsite potential ∆ = 1 eV, using the Jackson kernel.
As the figure shows, for smaller values of M the orbital-
Hall conductivity plateau is broadened and it goes to
a slightly higher value than the exact (reciprocal-space
computed) OHC plateau. Nonetheless, as M increases
the agreement between the two methods increases re-
markably. The improvement in the description is due
to the reduction of the numerical broadening associated
with the Chebyshev polynomial expansion, which for the
Jackson kernel decreases as ∼ 1/M42,45.

FIG. 2. (a) Energy bands of the Haldane model in the trivial
(blue lines) phase with ∆ = 1.0 eV and t2 = 0, and the non-
trivial (red lines) phase t2 = 1.0 eV and ∆ = 0. (b) Orbital
Hall conductivity for the Haldane model in the trivial and
nontrivial phases, computed for systems with 256× 256 unit
cells and M = 512. (c) Berry curvature of the lowest energy
band of the Haldane model in the trivial and nontrivial topo-
logical phases. (d) Orbital magnetic moment for the lowest
energy band of the Haldane model in both phases.

Following this, we study the interplay between non-
trivial topologies and the transport of orbital currents.
To make a fair comparison, we set the energy gaps of the
trivial and nontrivial phases to have the same value (see
FIG. 2 (a)) and compute their OHC. FIG. 2 (b) shows
the results of the calculations. Upon inspection, it is clear
that the OHC for both cases does not exhibit quantized
values due to the nonconserved nature of the orbital an-
gular momentum, with the topologically nontrivial case
having a slightly larger OHC than the trivial phase. As
Refs. 30, 34, 49, and 50 pointed out, the transport of the
orbital angular momentum in systems with quenched or-
bital character occurs solely due to the combined action
of the Berry curvature and the orbital moment distribu-
tion in reciprocal space. Thus, it is clear that the si-
multaneous inversion of the Berry curvature and orbital
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FIG. 3. Total (grey line), Fermi sea (red line) and Fermi surface (blue shaded area) contributions of the orbital Hall conductivity
for the Haldane model in the trivial phase for t2 = 0, ∆ = 1.0 eV, and W = 0.1 eV (a), and the topologically nontrivial phase
for t2 = 1.0 eV, ∆ = 0.0, and W = 0.1 eV (b) computed for systems with 256× 256 unit cells, M = 512 and averaged over 72
disorder configurations. The case for W = 0.0 (dashed line) is shown as a guide to the eye. (c) Variation of the orbital Hall
conductivity with W for the three energies highlighted in panel (a), the solid and dashed lines correspond to the trivial and
topologically nontrivial phases of the Haldane model, respectively. Inset: Percentual variation of the orbital Hall conductivity
plateau with respect to the case with W = 0 for the topologically trivial and nontrivial phases.

moment that occurs in the trivial phase due to the time-
reversal symmetry (see FIG. 2 (c) and FIG. 2 (d)) leads
to an overall smaller OHC for the topologically trivial
case. These results highlight the dependence of the or-
bital Hall conductivity on the geometric features of the
energy states of the system through the Brillouin zone
and add up to the previous theoretical evidence show-
ing that in topologically nontrivial phases, such as the
quantum spin-Hall and quantum anomalous-Hall phases,
the topologically protected edge states can carry finite
orbital angular momentum39.

We further investigate the effects of Anderson disor-
der on the OHC in both trivial and topologically non-
trivial phases of the Haldane model. To highlight the
modifications to the OHC induced by the disorder, we
use the decomposition of the Kubo formula proposed by
Bonbien and Manchon51 to separate the Fermi sea and
Fermi surface contributions to the total OHC. FIG. 3
(a) and FIG. 3 (b) show the OHC for the trivial and
topological phases, respectively, for W = 0.1 eV (curves
for other values of W are shown in the supplementary
material47), together with the clean cases as a guide to
the eye (dashed lines). From the two figures, it is clear
that the orbital-Hall conductivity plateaux remain un-
changed by the disorder, indicating its robustness. Aside
from this, outside the energy gap, peaks in the OHC in
both the Fermi surface and sea contributions appear and
attain their maximum value at energies comparable to
t. To inquire about these disorder-enabled effects, we
tracked the evolution of the OHC as a function of W
for three energies of interest signaled by the arrows in

FIG. 3 (a), which correspond to the middle of the en-
ergy gap (purple arrow), 100 meV below the lowest gap
edge (orange arrow) and −2.8 eV (green arrow). FIG. 3
(c) shows the changes in the Fermi sea contributions to
the OHC at these energies, where the solid and dashed
lines correspond to the trivial and the topologically non-
trivial phases, respectively. As seen in the figure, con-
tributions at E = −2.8 eV increase monotonically with
W , and saturate for W ∼ 1.5 eV, where multiple scatter-
ing and localization effects start to dominate and reduce
the OHC. In contrast, the OHC plateau presents small
changes with the disorder. The inset illustrates this bet-
ter by showing the percental change concerning the clean
case. Here, it shows that for W between [0, 1] eV, the
change in the height of the plateau is below 5% with the
plateau for the topological case decreasing in contrast
with the trivial case. Increasing values of W accentuate
this tendency, and the OHC for the topological case is
reduced by almost 20% of its height, and for the trivial
case, it is increased by 10%. The permanence and rela-
tively small changes in the OHC go along with the anal-
ysis of Bernevig et al.3. Moreover, our results show some
discrepancies with the tendencies presented by Pezo et
al.; we attribute this to the small size of their systems36.
Regarding the increasing contributions at E = −2.8 eV,
we argue that they might be related to the formation
of disorder-enabled current loops similar to those previ-
ously observed in graphene nanoribbons52 and quantum
dots53, which have been overlooked in this type of calcu-
lations due to the difficulties in addressing the position
operator in systems with periodic boundaries.



5

In conclusion, we have presented a numerical method
based on the Chebyshev expansion technique to evaluate
the components of the orbital Hall conductivity tensors
as described by the Berry phase formulation of the or-
bital magnetization. Combining Green’s function theory
with the KPM, we obtained a systematic form to evaluate
the position operator whatever the boundary conditions.
We have validated and illustrated the capability of the
method through the analysis of the Haldane model and
disorder effects on the transport of orbital angular mo-
mentum in its topologically trivial and nontrivial phases.
Our findings evidence that the orbital Hall conductivity
plateau is robust and demonstrate that for graphene-like
systems, the effects of disorder break the symmetries of
the systems while creating new channels for the electrical
generation of orbital currents within the bulk of the sys-
tems, in analogy with prior results in graphene nanorib-
bons. This novel approach enables the real-space inves-
tigation of the role of the disorder in the orbital angular
momentum transport and other position-dependent ob-
servables in disordered systems of arbitrary complexity.
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