
When does Subagging Work?

Christos Revelas c.revelas@tilburguniversity.edu

Otilia Boldea o.boldea@tilburguniversity.edu

Bas J.M. Werker b.j.m.werker@tilburguniversity.edu

Tilburg University

Department of Econometrics and Operations Research

Warandelaan 2, 5037 AB Tilburg, Netherlands

Abstract

We study the effectiveness of subagging, or subsample aggregating, on regression trees, a
popular non-parametric method in machine learning. First, we give sufficient conditions
for pointwise consistency of trees. We formalize that (i) the bias depends on the diameter
of cells, hence trees with few splits tend to be biased, and (ii) the variance depends on the
number of observations in cells, hence trees with many splits tend to have large variance.
While these statements for bias and variance are known to hold globally in the covariate
space, we show that, under some constraints, they are also true locally. Second, we compare
the performance of subagging to that of trees across different numbers of splits. We find
that (1) for any given number of splits, subagging improves upon a single tree, and (2)
this improvement is larger for many splits than it is for few splits. However, (3) a single
tree grown at optimal size can outperform subagging if the size of its individual trees
is not optimally chosen. This last result goes against common practice of growing large
randomized trees to eliminate bias and then averaging to reduce variance.

Keywords: CART, regression trees, pointwise consistency, bias-variance trade-off, bag-
ging, performance across sizes, performance at optimal sizes

1 Introduction

Decision trees are a popular method for non-parametric regression estimation in statistics,
machine learning, economics and data science practice. Given a dataset, a decision tree
partitions the covariate space and estimates the regression function locally, i.e., in each cell
of the partition, by a simple parametric form, typically a mean. CART1 is a prominent tree
construction methodology. Bagging2 is a randomization technique that consists of averaging
multiple trees grown on bootstrap samples of the dataset. Early experiments suggested that
bagging can improve the accuracy of learners, and in particular trees. On the one hand, this
led to the development of randomization variants and extensions, such as random forests3.
On the other hand, it led to many studies trying to clarify whether and why randomization
methods “work”.

1. Short for classification and regression trees, introduced by Breiman et al., 1984. In the present paper,
we refer to CART for regression trees constructed based on Breiman et al.’s methodology.

2. Bagging, introduced for CART by Breiman, 1996, is a blend word for bootstrap aggregating.
3. Random forests, introduced by Breiman, 2001, are averages of trees grown on bootstrap samples with

an additional randomization of the covariate selection at each split.

© Christos Revelas, Otilia Boldea and Bas J.M. Werker.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

ar
X

iv
:2

40
4.

01
83

2v
1

 [
st

at
.M

L
]

 2
 A

pr
 2

02
4

https://creativecommons.org/licenses/by/4.0/

Revelas, Boldea and Werker

Breiman, 1996 argued that bagging mimics having several datasets available for esti-
mation and heuristically showed that bagging can improve upon unstable4 learners, such
as trees, through aggregation. These arguments hold on average over covariates. In his
simulations, trees are fully grown and then pruned5, both for the single tree and the bagged
estimator. Improvement is measured as a reduction in average, over covariates, out-of-
sample mean-squared error. Bühlmann and Yu, 2002 were the first to establish rigorous
results for subagging in the context of trees. They argued that instability6 comes from hard
decisions, such as indicators, and that randomization helps in reducing the variance through
smoothing of hard decisions. They prove that subagging reduces mean-squared error locally
around the split point in the case of stumps, i.e., trees with a single split. In their simula-
tions, trees are grown large and without pruning, and improvement is also measured as a
reduction in average mean-squared error. What these two studies have in common, is that
they compare trees with (su)bagging trees of similar size7. Breiman compares pruned trees
with bagging of pruned trees. Bühlman and Yu at first compare stumps with subagged
stumps, then large trees with subagging of large trees. What neither of these two studies
does, is to compare trees with (su)bagging across sizes. For example, how does (su)bagging
small trees compare to a single large tree, and vice versa? Moreover, both studies place
tree instability at the centre of (su)bagging’s performance, but, are trees always unstable?
If not, how does (su)bagging perform for stable trees?

There has been a tendency to grow large trees, i.e., with many splits, when considering
ensemble methods such as (su)bagging and random forests8,9, the idea being that by growing
large trees, bias is eliminated, and by averaging, the variance is reduced. This idea goes
back to Breiman, 2001, who suggested that in a forest, trees should be fully grown and not
be pruned, and claimed that random forests do not overfit10. As Segal, 2004 pointed out,
while fully growing trees indeed reduces the bias, there is a trade-off with variance. He
argued that the datasets used by Breiman where inherently difficult to overfit using forests
and provided a counter-example in which indeed, contradicting Breiman, random forests
overfit if grown deeply. In the same direction, Lin and Jeon, 2006 showed, by establishing

4. Defined in Breiman, 1996 as learners for which small changes in the data can lead to large changes in
predictions: in other words, estimators with high variance.

5. Pruning, introduced in Breiman et al., 1984, is a procedure consisting of merging one-by-one the terminal
nodes of a fully grown tree and choosing as final tree the one with smallest out-of-sample mean-squared
error.

6. Defined in Bühlmann and Yu, 2002 as predictors that have non-zero asymptotic variance. Stability is
defined locally in the covariates, contrary to Breiman, 1996 where, implicitly, stability refers to global,
i.e., on average over covariates, low variance.

7. The size of a tree is defined as the number of terminal nodes, also known as leaves, or cells. The size of
a tree is therefore equal to one plus the number of splits. Tree size is not to be confused with tree depth,
defined as the maximum distance between the root and a terminal node. A tree of depth δ can have up
to 2δ cells, and two trees of same depth can have different sizes.

8. See e.g. Hastie et al., 2009 and James et al., 2013.
9. See also the randomForest package in , version 4.7-1.1: the default minimum node size is five

observations, and by default there is no bound on the number of nodes allowed.
10. Overfitting describes the situation in which a learner has small “training” mean-squared error, i.e.,

performs well in the sample used for estimation, and large “test” mean-squared error, i.e., performs
poorly out-of-sample.

2

When does Subagging Work?

lower bounds on the rate of convergence of the prediction error of nonadaptive11 random
forests and via simulations for the classical, i.e., adaptive, forests, that growing large trees
does not always give the best out-of-sample performance. In line with these studies, we
ask the following question: how does (su)bagging perform, compared to optimally - in terms
of bias and variance - grown trees, if its subtrees12, either are, or are not, also optimally
grown?

The present paper contributes to the literature on tree-based methods in two ways.

First, we formalize the bias-variance trade-off associated with tree size by establishing
pointwise consistency of trees under assumptions similar to those of Breiman et al., 1984.
To our knowledge, pointwise consistency has not previously been established for CART.
Trees are a particular case of local averaging estimators. A general proof of consistency
for such estimators dates back to Stone, 1977 in the case where weights only depend on
the covariates and not on the target variable. For data-driven partitions13, i.e., partitions
in which weights depend on both covariates and the target variable, Breiman et al., 1984
give sufficient conditions for L2 consistency but do not show that CART satisfies those
conditions. The first proof of consistency for CART was given in Scornet et al., 2015 in
the context of random forests with subsampling instead of bootstrapping: they show L2

consistency assuming an additive regression function. Mentch and Hooker, 2016 showed
pointwise asymptotic normality of subagging and random forests, but their limiting normal
distributions are centered at the expected prediction and not necessarily the true regression
function. Wager and Athey, 2018 showed pointwise consistency of random forests, but their
result is not applicable to trees as they assume that the subsample size is asymptotically
negligible compared to the dataset size. Recently Klusowski and Tian, 2023 also proved,
among other things, L2 consistency for an additive regression function. In the present paper,
in order to guarantee pointwise consistency, we assume in particular that the number of
observations in a cell grows at a certain rate with the dataset size. The classical CART
is not guaranteed to satisfy these assumptions and we give an explanation as to why that
might be the case: depending on the dataset at hand, CART might not split enough in
some regions of the feature space. However, we provide an algorithm14 that satisfies our
theorem’s assumptions while still partitioning based on the CART criterion: we simply do
not allow for splits to be performed if they were to give cells with fewer observations than
a well-chosen lower bound. In some sense, we uniformize the number of observations across
cells in order to guarantee pointwise consistency. In our proof, we use honesty15 to explicitly
calculate the bias and variance of a tree estimate locally, i.e., at a given value of interest. We
show that the bias depends on the diameter of the partition’s cell containing this value of
interest, and that the variance depends on the number of observations inside the cell. This
allows us to formalize the bias-variance trade-off associated with tree size. In simulations,
we illustrate this trade-off by comparing “small”, “large” and “consistent” trees. Moreover,

11. Term used in Lin and Jeon, 2006 to describe a random forest the partition of which is independent of
the target variable.

12. In the present paper, we use the term subtree to describe a tree grown on a subsample.
13. See Györfi et al., 2002’s chapter on data-dependent partitioning for general consistency results.
14. See Implementation 1 in Section 2.2.
15. Honesty is a concept that allows to get rid of some dependencies to the data when constructing an

estimator. See e.g. Athey and Imbens, 2016 for a use of honesty in the context of trees.

3

Revelas, Boldea and Werker

we point out that consistency implies stability16, which means that trees can be stable, if
appropriately grown. This goes against the commonly stated view that “randomization
works because trees are unstable”17. We show in simulations that subagging can improve
consistent trees by variance reduction. In other words, we find that subagging can also
improve upon stable learners.

Second, we study in simulations how subagging18 performs for trees of different sizes.
We measure performance in terms of mean-squared error. We fix the same number of splits
among a single tree and every randomized tree constituting subagging when comparing the
performance of the two methods. This can be obtained using, e.g., the randomForest
package in but we implemented our own versions of CART and subagging19 in order to
extract additional information. Starting with stumps, we look at the effect of subagging on
the weight of observations around the value of interest. We illustrate that subagging assigns
positive weight to observations that had zero weight in the tree, conditionally on the dataset.
To our knowledge, we are the first to show this explicitly for CART. The idea however
that bagging stabilizes predictions by balancing the importance of observations in the data
goes back to Grandvalet, 2004. They argued that bagging can improve or deteriorate the
base learner depending on the quality of influential observations in the context of point
estimation and regression, but not for trees. In Grandvalet, 2006 classification trees are
considered, but the effect of bagging on weights is not illustrated as in the present paper.
Then, we find that subagging reduces the variance of a tree around split points, which is in
line with Bühlmann and Yu, 2002’s “instability regions”20. The more we split, the larger
the instability region, and improvement is larger for trees with many splits than it is for
small trees. However, a single tree grown at optimal size can outperform subagging with large
trees. Therefore, subagging large trees is not always a good idea. Nonetheless, subagging
can still improve upon a single tree if both methods are optimally grown, and hence to be
preferred in practice. Additionally, both for the single tree and subagging, our simulations
suggest that there is a linear relation between the number of observations in the data and
the optimal number of splits. In practice, this means that one can first find the optimal size
for a single tree in the usually way, e.g., with cross-validation, and then deduce the right
size for the ensemble method at hand.

Related work. We are not the first to consider the importance of size in tree-based
methods. The closest existing study that we are aware of is Zhou and Mentch, 202321. They
argue that tree depth22 has a regularizing effect on randomized ensembles. They compare
the performance of random forests versus bagging as a function of size for different signal-
to-noise ratios and find that small trees are advantageous when the ratio is low while larger

16. Here stability is defined as in Bühlmann and Yu, 2002, i.e., locally and asymptotically.
17. For example, Soloff et al., 2023 have established “algorithmic” stability of bagging, a finite sample

definition that formalizes the heuristic definition originally given by Breiman. They show in simulations
that subagging has a highly stabilizing effect on regression trees, concluding that trees are very unstable,
but their trees are grown large in the first place: they use a depth of 50 for a dataset of 500 observations.

18. Subagging has previously been used instead of bagging in the context of trees in e.g. Scornet et al., 2015,
Wager and Athey, 2018 and Klusowski and Tian, 2023.

19. See Implementation 2 in Section 2.2, and Section 7.2 for replication details.
20. Defined as a neighbourhoods around the split points. See Section 5.2.
21. Our respective starting problematics partially overlap, as both build on the observations made by Segal,

2004 and Lin and Jeon, 2006.
22. Note that, in their simulations, size, rather than depth, is considered, “as a proxy for depth”.

4

When does Subagging Work?

trees should be used when the ratio is high. Duroux and Scornet, 2018 show that the global
mean-squared error of fully grown quantile forests23 with subsampling and that of small
randomized trees without subsampling have the same bounds. Both studies always keep
the randomization of feature selection in their simulations, while we compare subagging with
deterministic, i.e., non-random given the data, trees. Very recently, Curth et al., 2024 were
able to quantify the degree of smoothing of forests, by looking at forests through the lens of
nearest neighbours (Lin and Jeon, 2006). Moreover they bridge a gap between the notions
of bias in statistics and in machine learning (Dietterich and Kong, 1995) and disentangle
multiple distinct mechanisms through which forests improve on trees. In relation to tree
size, in their Figure 4, the smoothing effect of ensembling is compared for small and large
trees, but trees are also randomized through feature selection.

Organization. Section 2 sets the statistical framework and notation, and discusses the
considered methods. In particular we give some intuition as to why CART “avoids” splitting
near the edges of the covariate space. Moreover, we heuristically establish a relation between
the bias and variance of subagging to that of a single tree grown on the full sample24. Our
theorem for pointwise consistency of trees, and an illustration of the bias-variance trade-off
associated with tree size, are given in Section 3. The effect of subagging on consistent
trees is illustrated in Section 4. Section 5 examines small trees. We illustrate the effect of
subagging on weights conditionally on the data as well as the effect of subagging on stumps
conditionally on the covariates. The persistence of smoothing and stabilizing with more
splits is discussed. In Section 6 we show that a single tree can outperform subagging if
the size of its subtrees is not well chosen. The optimal number of splits as a function of
the dataset size is also shown. The effect of subsample size and bootstrapping, as well as
the replication of our results with readily-available implementations, are finally presented
in Section 7. Section 8 concludes and proofs are gathered in appendix.

2 Decision-Tree Methods for Regression

We consider a regression model of the form

Y = f(X) + ε (1)

with (X,Y) ∈ [0, 1]p × R and ε ∈ R such that E[ε|X] = 0 and E[ε2|X] = σ2. Given an
random sample Dn = {(X1, Y1), . . . , (Xn, Yn)} drawn from (1), we want to construct an
estimator of f(x) = E[Y |X = x] based on Dn.

A decision tree partitions [0, 1]p into rectangular cells and, for any x, gives as estimator
for f(x) the average, noted Tn(x), of all the Yi’s that fall in the same cell as x:

Tn(x) =

n∑
i=1

Wn,i(x)Yi with Wn,i(x) =
1Xi∈Cn(x)∑n
j=1 1Xj∈Cn(x)

(2)

where Cn(x) is the cell that contains x. A decision tree, given Dn, is fully deterministic.
The partition depends on Dn and is obtained by recursive binary splitting of [0, 1]p based

23. A special type of forests in which splits only depend on the covariates but not on the target.
24. We do not expect this relation to be difficult to formalize, but leave it for future research.

5

Revelas, Boldea and Werker

on a splitting criterion and a stopping rule. In the case of CART, the splitting criterion is
the maximization over splits of the sample analogue of

V[Y |X ∈ C]− P(X ∈ CL)

P(X ∈ C)
V[Y |X ∈ CL]−

P(X ∈ CR)

P(X ∈ CR)
V[Y |X ∈ CR] (3)

where V denotes the variance, C is a cell to be split and CL and CR are the two cells
that we obtain after splitting C. CART splits aim at reducing the variation in Yi’s. The
stopping rule can be the number of splits, a minimum number of observations in each cell,
or a minimum gain in variance reduction.

Bagging is an ensemble method which gives as estimator for f(x) the average, noted
T̄ ∗
n(x), of multiple trees, which are i.i.d. conditionally on Dn:

T̄ ∗
n(x) =

1

B

B∑
b=1

n∑
i=1

W ∗
n,i,b(x)Yi (4)

where B is the number of trees and W ∗
n,i,b(x) is the random weight for Yi in the bth tree.

Randomization comes from bootstrapping: for every b, we generate a bootstrap sample
D∗

n(b) of Dn, i.e., a sample of n observations drawn independently and with replacement,
and grow a tree on D∗

n(b). Defining W ∗
n,i(x) =

1
B

∑B
b=1W

∗
n,i,b(x), then (4) can be re-written

as

T̄ ∗
n(x) =

n∑
i=1

W ∗
n,i(x)Yi. (5)

Note that all weights sum up to one:
∑n

i=1Wn,i(x) = 1,
∑n

i=1W
∗
n,i,b(x) = 1 for all b and∑n

i=1W
∗
n,i(x) = 1. Defining T ∗

n,b(x) =
∑n

i=1W
∗
n,i,b(x)Yi, then (4) can also be re-written as

T̄ ∗
n(x) =

1

B

B∑
b=1

T ∗
n,b(x). (6)

In this paper we consider subagging, where bootstrap sampling is replaced by subsampling
of size k: each replicate D∗

n(b) of Dn on which a subtree is grown is obtained by drawing,
without replacement, k ≤ n observations from Dn. Several studies, e.g., Bühlmann and Yu,
2002, Grandvalet, 2004, Buja and Stuetzle, 2006, Friedman and Hall, 2007, have suggested
that subagging with half the observations has a similar performance to bagging. Buja
and Stuetzle, 2006 proved more than that in the case where the base learner is a U -statistic
(Hoeffding, 1992), and supported with simulations that the same may hold for trees: bagging
with αwn observations is equivalent to subagging with αw/on observations if αw =

αw/o

1−αw/o
.

In such case, subagging has the advantage of being computationally cheaper than bagging
(because trees are grown on samples of smaller size). In the present paper we use subagging
with half the observations, i.e., we take k = 0.5n, and show, in Section 7.1, that our
simulation results are still valid when we vary the subsample size k as well as when we use
bagging instead of subagging.

6

When does Subagging Work?

2.1 CART Criterion and the Location of Splits

CART, as opposed to other partitioning estimators such as kernel regression (Nadaraya,
1964; Watson, 1964), do not split the covariate space uniformly. In order to better under-
stand how CART splits behave, we show the following.

Proposition 1 The criterion (3) can be re-written as

P(X ∈ CL)P(X ∈ CR)

P(X ∈ C)
{E[Y |X ∈ CL]− E[Y |X ∈ CR]}2. (7)

A proof is given in the appendix. Expression (7) is the product of two factors. To understand
them, consider the one-dimensional case (p = 1), assume X is uniformly distributed in [0, 1],
and let c and cl be the lengths of intervals C and CL respectively. The first factor in (7)

is then cl(c−cl)
c . The length c is fixed when we search for a split inside C, and maximizing

cl(c − cl) over cl ∈ [0, c] gives cl =
c
2 . In other words, the first factor in (7) is maximized

in the middle of C, and this is true irrespectively of the distribution of Y . The second
factor is more complex as it depends on f . Note that E[Y |X ∈ CL] = E[f(X)|X ∈ CL]
and similarly for CR. If f is constant, then the second factor in (7) is zero for any split,
therefore the entire expression equals zero for any split. If f is linear, then the second factor
is constant25 for any split and therefore (7) is maximized in the middle of C (because the
first factor is maximized in the middle of C). Suppose that f(x) = x2. Then the second
factor is maximized where f is steeper, i.e., at the extremity x = 1. The first factor being
maximized in the middle, i.e., at x = 1

2 , this brings the overall argmax at x = 0.64, which
is away from the extremity x = 1. In other words, CART tends to split away from the
boundaries of a cell, and, by extension, CART tends to split away from the boundaries of
the feature space. This supports previous knowledge (Wager and Athey, 2018) that CART
can be inconsistent at the boundaries of the feature space. Intuitively, not splitting close
to the boundaries implies that some cells (precisely those at the boundaries) remain large
and hence tree estimates inside those cells will tend to be biased. In order to guarantee
pointwise consistency we therefore need somehow to force trees to sometimes split close to
the boundary, in order to guarantee that cells become smaller throughout the feature space.
How we enforce it is given in Section 3.

CART partitions the feature space not based on (7) but instead based on its empirical
analogue, which incorporates the noise variable ε. On the one hand, the larger the noise
variance σ2, the more a CART split can deviate from its theoretical counter-part obtained
by maximizing (7). On the other hand, the more the observations in a given cell, the closer
a CART split will be to its theoretical counter-part.

2.2 Stopping Rules and Tree Size

A decision tree is obtained by recursive binary splitting of the data. A CART tree cannot
be grown further if any of its cells either contains a single observation or yields the same
CART criterion for every possible split. A stopping rule is a constraint that makes the tree

25. To see that the terms in s cancel each other out, use the identity (u− v)2 = (u+ v)(u− v).

7

Revelas, Boldea and Werker

stop growing earlier. When there is no stopping rule, we say that the tree is unconstrained.
A tree is fully grown when each cell contains a single observation. In Proposition 2 we show
that, if unconstrained, CART trees are necessarily fully grown. More precisely, let C be a
cell and let ν be the number of observations from Dn that are in C. Denote L(s) the CART
criterion at a split value s.

Proposition 2 If ν ≥ 3, then there exists s1 and s2 such that L(s1) ̸= L(s2).

In other words, the CART criterion cannot be constant in any cell with at least three
observations. A proof is given in the appendix. Because fully grown trees have large
variance, stopping rules are needed to guarantee consistency. In this paper we consider
two stopping rules. First, referred to as Implementation 1 hereafter, we use bounds on
the number of observations in a cell. Second, referred to as Implementation 2 hereafter,
we control for the number of splits. Bounds on the number of observations indirectly also
control for the number of splits: if we start with a hundred observations and constrain cells
to have between ten and twenty observations, then there can only be between five and ten
splits. Bounds on the number of observations to some extent also control the location of
splits. Indeed, consider the one-dimensional case (p = 1) and the extreme scenario where
we impose a lower bound of fifty observations per cell. Then there is only one admissible
split, leaving exactly fifty observations on both sides of the split, precisely between the
fiftieth and the fifty-first observations ordered with respect to their X value. Conversely,
controlling the number of splits controls the average, across cells, number of observations.
For example, four splits of a hundred observations will give five cells. Noting the number
of observations in each cell by c1, . . . , c5, then

∑5
i=1 ci = 100, i.e., (

∑5
i=1 ci)/5 = 20. The

greater the number of splits, the smaller the average number of observations. However,
controlling the number of splits alone, gives no control over the location of splits: they are
chosen based on the CART criterion.

Implementation 1: control the number of observations. We implemented a
recursive function that takes as input a dataset Dn and a minimum cell size hn and returns
a partition in which each cell contains at least hn and at most 2hn−1 observations. To do so,
at each splitting step, we define admissible splits as those that leave at least hn observations
on each side and we choose among the admissible splits the one that maximizes the CART
criterion. On the one hand, this implementation plays an important role in our results on
consistency of Section 3: we show that consistency is guaranteed if hn is of the form nα for
some α > 1

2 . By controlling for both the minimum and maximum number of observations
allowed in a cell, we are able to guarantee pointwise consistency: we uniformize number of
observations across cells. On the other hand, this implementation does not always choose
the best split in terms of CART criterion, which can happen if such split would yield a cell
with fewer than hn observations.

Implementation 2: control the number of splits. Also recursive, takes as input
a dataset Dn and a number of splits N and returns a partition with exactly N splits.
This implementation is used in later sections where we study the performance of trees and
subagging as a function of the number of splits. It always finds the best split in terms of
CART criterion, but it does not provide exact control over the size of cells obtained from
such splits. This implementation replicates existing implementations in 26, but we used

26. See Section 7.2 for details and an illustration.

8

When does Subagging Work?

it in order to be able to extract and illustrate the balancing effect of subagging on weights
(see Section 5.1).

Tree size. We say that a tree is small, if either hn is large or N is small. The smallest
possible tree is called a stump, for which hn = 0.5n and N = 1. Conversely, we say that
a tree is large, if either hn is small relative to n or if N is large relative to n. The largest
possible tree is the fully grown tree for which hn = 1 and N = n− 1. In Section 3 we look
at a particular range for hn that guarantees consistency of trees and in Section 4 we look at
the effect of subagging on consistent trees. The case N = 1 is detailed in Section 5. Section
6 shows the performance of subagging compared to trees as a function of N .

2.3 Bias and Variance of Subagging

Here we heuristically establish a relation between the statistical bias and variance of sub-
agging and that of a single tree grown on the full sample. Fix x0 a feature value of interest
and let Tn := Tn(x0) and T̄ ∗

n,k := T̄ ∗
n,k(x0) denote the tree and subagged estimates for f(x0)

as in (2) and (6) respectively, simplifying in notation the dependency in x0 and making
explicit the dependency in the subsample size k. Also note T ∗

n,k,1, . . . , T
∗
n,k,B the subtrees

constituting T̄ ∗
n,k.

Proposition 3 We have

E[T̄ ∗
n,k] = E[T ∗

n,k,1] (8)

and

V[T̄ ∗
n,k] = VE[T ∗

n,k,1|Dn] +
1

B
EV[T ∗

n,k,1|Dn]. (9)

The proof follows immediately27 from the fact that T ∗
n,k,1, . . . , T

∗
n,k,B are i.i.d. conditionally

on Dn.

Bias. From (8) we deduce that the bias of subagging with subsample size k is the same
as the bias of a single of its subtrees, i.e., a tree grown on a subsample of size k. This in
turn implies that, for large n, we expect subagging with subsample size k to have similar
bias to a single tree grown on the full sample, as long as we use the same number of splits
for both methods. To our knowledge, we are the first to point this out. In later sections we
support this statement with simulations. Here we give an informal explanation. Assume
that k grows proportionally with n, for example, k = 0.5n. If n is large, then k is large as
well. In this case, a tree grown on the entire sample (n observations) and a tree grown on a
subsample (k observations) will give splits that are close to each other. Therefore, the cell
containing x0 will be of similar diameter for both trees. In Section 3, we show that the bias
of a tree at x0 depends on the diameter of the cell that contains x0. Therefore, since a tree
grown on n observations and a tree grown on k observations give cells of similar diameter
for large n, we expect indeed both trees to have similar bias.

Variance. Equation (9) is more complex. Again, we proceed with an informal treat-
ment. If the number of subtrees, or subsamples, B, is large, then the second term in (9) is

27. Use that E[A] = E[E[A|B]] and V[A] = V[E[A|B]] + E[V[A|B]] for random variables A and B.

9

Revelas, Boldea and Werker

negligible. The first term, i.e., VE[T ∗
n,k,1|Dn], is the variance of a U -statistic. Indeed,

E[T ∗
n,k,1|Dn] =

1(
n
k

) ∑
1≤i1<···<ik≤n

Tik (10)

where Tik := Tik(Xi1 , Yi1 , . . . , Xik , Yik) is the prediction for f(x0) based on a single, deter-
ministic given Dn, tree grown on (Xi1 , Yi1), . . . , (Xik , Yik)

28. Because (10) is a projection,
its variance is smaller than the variance of a single tree based on (X1, Y1), . . . , (Xk, Yk)

29.
Following the same reasoning as for the bias, for large n, the variance of the subagged esti-
mator with subsample size k cannot exceed the variance of a single tree estimator grown on
the full dataset by more than a factor of n

k , provided that the same number of splits is used
for both methods. To our knowledge, we are the first to state this. Indeed, in Section 3 we
show that the variance of a single tree is inversely related to the number of observations used
to estimate f(x0). For large n, a tree on the full sample and a tree grown on a subsample
will give approximately the same splits, and hence, if ν is the number of observations in the
cell of interest for the full tree, then the subtree will give cells of roughly k

nν observations.
In particular, if a single tree has close to zero variance for some x0, something that happens
away from split points, as we will see Section 5, then subagging will also have close to zero
variance around the same x0.

3 Pointwise Consistency of Trees and the Bias-Variance Trade-Off
Associated with Tree Size

In line with other non-parametric methods, such as kernel regression, the main intuition be-
hind consistency still holds for trees: the finer the partition of the feature space, the smaller
the bias30 of the estimator, while its variance decreases when the number of observations
in each cell increases. Therefore, we want trees to be grown deeper when the dataset size
n increases, but slowly enough so that the number of observations in each cell increases
when n increases. In this section, we consolidate this intuition by showing in Theorem 1
that trees are pointwise consistent when grown under some constraints. In particular, our
first implementation described in Section 2.2 satisfies these constraints. We start with some
assumptions.

Assumption 1 (DGP) X ∼ U([0, 1]p), f continuous, E[ε|X] = 0, E[ε2|X] = σ2.

The continuity of f together with the compactness of the feature space allow us to calculate
limits of integrals.

Assumption 2 (honesty) For all n, for all i, Yi ⊥⊥ Wn,i|X1, . . . , Xn.

In other words, for all i, Yi is independent of Wn,i conditionally on X1, . . . , Xn. Honesty
allows us to compute the bias and variance of the tree estimator locally.

28. Note that if we would define subagging as the average over all possible subsamples of size k, then its
variance would be precisely the variance of (10). In fact subagging would be a U -statistic. See Mentch
and Hooker, 2016 for an in-depth analysis of subagging as U -statistics.

29. See for example Section 12.1 in Van der Vaart, 2000.
30. To be precise, this holds locally where the regression function being estimated is monotone.

10

When does Subagging Work?

Assumption 3 (number of observations) There exists 1
2 < α < 1 such that for all n

and all x0, noting hn = nα, almost surely

hn ≤
n∑

i=1

1Xi∈Cn(x0) ≤ 2hn − 1 (11)

where Cn(x0) again denotes the cell containing x0. This assumption guarantees that the
empirical measure of cells tends to zero, and hence, by the Glivenko-Cantelli theorem, the
Lebesgue measure of cells will also tend to zero.

Assumption 4 (diameter) For all x0, almost surely
⋂

n≥1Cn(x0) = {x0}.

This additional assumption is imposed to avoid the scenario in which from a certain point
onwards, all splits are performed along the same direction. For example, if p = 2, this would
mean obtaining asymptotically a segment in the two-dimensional space, in which case our
estimate for f(x0) would be the average of f over the segment, and hence not necessarily
equal to f(x0). Although Assumption 4 is useful for our proof, the above scenario does not
occur in simulations.

Theorem 1 Under Assumptions 1-4, for all x0, Tn(x0) → f(x0) in probability.

Here we give a sketch of the proof of Theorem 1 in order to illustrate the bias-variance trade-
off between cell size and number of observations. A complete proof is given in the appendix.
Using honesty, we calculate the squared bias and the variance of the tree estimator at a
given x0. We obtain three terms:

• the squared bias of Tn(x0), of the form(
E

[∫
Cn(x0)

f(x)dx∫
Cn(x0)

dx

]
− f(x0)

)2

, (12)

• the variance of the error term
∑n

i=1Wn,i(x0)εi, of the form

E

[
σ2∑n

i=1 1Xi∈Cn(x0)

]
, (13)

• and the variance of the regression term
∑n

i=1Wn,i(x0)f(Xi), of the form

E

[∫
Cn(x0)

f2(x)dx∫
Cn(x0)

dx

]
− E

[∫
Cn(x0)

f(x)dx∫
Cn(x0)

dx

]2
. (14)

Consistency is obtained when all three terms converge to zero. On the one hand, the diam-
eter of Cn(x0) needs to tend to zero as n increases, so that the terms (12) and (14) tend to
zero. Indeed, if that’s the case, we use the uniform continuity of f to guarantee for example

that

∫
Cn(x0)

f(x)dx∫
Cn(x0)

dx
converges to f(x0). On the other hand, the number of observations in

11

Revelas, Boldea and Werker

500 1000 1500 2000

0
.0

5
0

.1
5

0
.2

5
0

.3
5

Dataset Size

E
s
ti
m

a
te

s
 a

t
 x

0
=

0
.5

(a) Small Tree

500 1000 1500 2000

0
.0

5
0

.1
5

0
.2

5
0

.3
5

Dataset Size

E
s
ti
m

a
te

s
 a

t
 x

0
=

0
.5

(b) Consistent Tree

500 1000 1500 2000

0
.0

5
0

.1
5

0
.2

5
0

.3
5

Dataset Size

E
s
ti
m

a
te

s
 a

t
 x

0
=

0
.5

(c) Large Tree

Figure 1: (In)consistency of trees: on the x-axis is n; the solid (resp. dotted) line represents
the sample mean (resp. mean ± one standard deviation) of the tree estimate for f(x0) (grey
line) in each scenario a), b) and c).

Cn(x0) needs to tend to infinity, so that the term (13) converges to zero. Therefore, the
diameter of Cn(x0) should not tend to zero too quickly. This summarizes the bias-variance
trade-off when choosing how much to grow a regression tree.

Small trees, as defined in Section 2.2, generate partitions of large cells, hence tend to
have small variance while remaining biased. Large trees generate finer partitions, and will
tend to have small bias but large variance. Trees that satisfy Assumption 3 are somewhere
in between small and large trees: they tend to have a smaller bias compared to small trees
and a smaller variance compared to large trees. We illustrate this with a simulation based
on our first implementation of Section 2.2. We consider three scenarios:

a) small tree: hn = n
3 which gives a small number of splits for any n,

b) consistent tree: hn = n0.65, i.e., satisfying Assumption 3, and

c) large tree: hn = 4, i.e., cells have between 4 and 7 observations for any n.

Simulation I. We take f(x) = x2, X ∼ U(0, 1) and ε ∼ N (0, 0.22) in (1). We generate 200
datasets of size 2000, all of which have the same realization ofXi’s. For each dataset, and for
n = 50, 100, 150, . . . , 2000, we grow a tree on the first n of the 2000 observations following
each of the three scenarios a,b,c). Figure 1 shows the empirical mean and the mean ± one
standard deviation conditionally onX of the tree estimate for f(0.5) = 0.52 across replicates
for each n and each scenario. The left plot shows scenario a): small trees. The middle plot
shows scenario b): consistent trees. The right plot shows scenario c): large trees. These
graphs illustrate the bias-variance trade-off: small trees have low variance but are biased
while large trees are unbiased but have high variance. Trees satisfying Assumption 3 are
in-between: they are unbiased and have low variance.

Figure 2 shows the corresponding biases, variances, and mean-squared errors. The mean
squared error at x0 = 0.5 converges to zero for the consistently grown tree while it does not
converge to zero for the small and large trees. In the case of the small tree, the bias does
not vanish. For the large tree, the variance does not vanish.

12

When does Subagging Work?

500 1000 1500 2000

0
.0

0
0

0
.0

1
0

0
.0

2
0 Small Tree

Consistent Tree
Large Tree

Dataset Size

S
q

u
a

re
d

 B
ia

s
 a

t
x

0
=

0
.5

500 1000 1500 2000

0
.0

0
0

0
.0

1
0

0
.0

2
0

Dataset Size

V
a

ri
a

n
c
e

 a
t
x

0
=

0
.5

500 1000 1500 2000

0
.0

0
0

0
.0

1
0

0
.0

2
0

Dataset Size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

a
t

x
0

=
0

.5

Figure 2: Bias-variance trade-off associated with tree size.

4 Subagging Consistent Trees

We show via simulation that subagging consistent - and hence stable - trees does not affect
the bias while it can improve the variance. We saw in Theorem 1 that a tree grown on the
full sample is consistent when the minimum cell size hn grows appropriately with n, i.e.,
is of the form nα for some α > 1

2 . To guarantee consistency of each subtree, we similarly
choose hk of the form kα, again for some α > 1

2 . Then the subagged estimator, which is an
average of such subtrees, will also be consistent.

Keeping the same α for the tree and the subagged estimator implies that cells will be of
similar diameter for both estimators and hence, based on (12), we expect the two estimators
to have similar bias. Each subtree will have cells of fewer observations than the original
tree and therefore, based on (13), each subtree is expected to have a larger variance than
the original tree. However the subagged estimator is an average of subtrees, which means
that ultimately the average is taken over more observations compared to the original tree,
and hence we expect a reduction in variance. The effect on variance is further examined in
Section 5.

Figure 3 shows the effect of subagging on consistent trees in the same simulation as in
Figure 1 (bottom plot) for scenario b), i.e., hn = n0.65. Here the subagged estimator is
defined as the average of B = 50 trees31, each of which is grown on a subsample of size
k = 0.5n and with a minimum cell size of hk = k0.65. We observe indeed that, in terms of
bias, the two estimators behave similarly, while subagging reduces variance.

5 Subagging Small Trees

In this section we look at stumps, i.e., single-split trees, as proxy for small trees, because
this allows us to explain the effect of subagging on weights. To do so, we start with an
analysis conditionally on Dn. We show that conditionally on Dn, subagging increases the
number of distinct observations used to estimate f(x0) compared to a single tree, and these
observations cover a wider part of the feature space. Additionally, the closer x0 is to the split

31. Extensive empirical evidence exists in the literature that the number of trees need not be large in general.
In our simulations, increasing B to 100 or 150 did not bring any change to the results.

13

Revelas, Boldea and Werker

0 500 1000 1500 2000

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

Tree
Subagging

Dataset Size

S
q

u
a

re
d

 B
ia

s
 a

t
x

0
=

0
.5 Tree

Subagging

0 500 1000 1500 2000

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

Dataset Size

V
a

ri
a

n
c
e

 a
t
x

0
=

0
.5

0 500 1000 1500 2000

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

Dataset Size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

a
t

x
0

=
0

.5

Figure 3: Subagging consistent trees: on the x-axis is n; the solid (respectively dashed) line
represents the squared bias (left plot), variance (middle) and mean squared error (right) of
the tree (respectively subagged tree) estimates for f(x0) when consistently grown (α = 0.65).

point, the more subagging adds weight to observations that had zero weight in the single tree.
Then we look at the tree and subagged estimates conditionally on X. We support existing
knowledge, e.g., Bühlmann and Yu, 2002, that aggregating improves upon single trees by
reducing the variance around the split point, region in which a stump has high variance.

5.1 Analysis Conditionally on Dn

Fix Dn and x0 and take p = 1. Given Dn, the first split of a decision tree is fixed and
partitions [0, 1] in two regions, one of which contains x0. Let s ∈ [0, 1] be the split point
and assume, without loss of generality, that x0 < s. Then the tree estimate for f(x0), noted
Tn(x0), is the average of all observations in Dn such that Xi ≤ s. Now let D∗

n(b) be a
subsample of Dn and let s∗ be the first split point of a tree grown on D∗

n(b). There are
three possible scenarios:

A) x0 < s∗ < s,

B) x0 < s < s∗,

C) s∗ < x0 < s.

First, assume that x0 < s∗. Then the subtree estimate for f(x0) based on D∗
n(b), noted

T ∗
n,b(x0), is the average of all observations in Dn such that Xi ≤ s∗ and Xi ∈ D∗

n(b). In case
x0 < s∗ < s, then T ∗

n,b(x0) is also an average of observations that are in Tn(x0) but fewer
of them. When x0 < s < s∗, then T ∗

n,b(x0) is an average of observations that are in Tn(x0)
and some observations that are not in Tn(x0) since they are such that s < Xi. The same
holds for the case where s∗ < x0 < s. The subagged estimator being an average of several
subtrees, if we take enough subsamples, T̄ ∗

n(x0) will be an average of observations such that
Xi < s and observations such that Xi > s. In other words, conditionally on Dn, subagging
increases the number of distinct observations used to estimate f(x0) compared to a single
tree, and these observations cover a wider part of [0, 1]. In order to illustrate the effect of
subagging on weights, we consider the following simulation with n fixed.

14

When does Subagging Work?

Simulation II. We use our second implementation as described in Section 2.2. We
generate one realization of n = 100 observations from the same DGP (1) as in Simulation
I, i.e., with f(x) = x2, Xi i.i.d. U [0, 1] and εi i.i.d. N (0, 0.22). The first (left) plot in Figure
4 shows the estimate obtained from a stump (in blue) and a subagged stump (in red). We
use subsamples of size k = 0.5n and average over B = 50 randomized trees to get the
subagged estimates. The optimal CART split32 is at s = 0.63.33 Given Dn and x0, the tree
weights {Wn,i(x0)}i=1,...,n are deterministic. They are constant and equal to 1∑n

j=1 1(Xj<s)

for all Yi such that Xi < s and equal to zero elsewhere. For a subsample b, the weights
{W ∗

n,i,b(x0)}i=1,...,n are random conditionally on Dn. They are constant for some (because
of subsampling) Yi’s such that Xi < s∗, and zero elsewhere. The average over subsamples,
i.e. the weights W ∗

n,i(x0), are also random conditionally on Dn, and are as follows.
The case where x0 is far from s. The second plot in Figure 4 shows the weights

associated with x0 = 0.1, which is represented by the first (from left to right) perpendicular
line in the first plot.

(i) For some subsamples, we will have s∗ < s (scenario A) and hence W ∗
n,i,b(x0) will be

zero for those observations that satisfy s∗ < Xi < s, while for those same observations,
Wn,i(x0) > 0. Thus, we expect W ∗

n,i(x0) to be smaller than Wn,i(x0) close to and to
the left of s. We indeed observe this in the second plot for observations in the region
[0.5, s].

(ii) For other subsamples, we will have s < s∗ (scenario B) and hence W ∗
n,i,b(x0) will be

non-zero for those observations that satisfy s < Xi < s∗ and Xi ∈ D∗
n(b), while for

those same observations, Wn,i(x0) = 0. Thus, we expect W ∗
n,i(x0) to be larger than

Wn,i(x0) (and in particular non-zero) close to and to the right of s. This is observed
in the second plot in the region [s, 0.6].

(iii) s∗ will, in general, for subsamples of enough observations, not fall very far from s.
Thus observations for which Xi far to the left of s, will also satisfy Xi < s∗, and hence
W ∗

n,i(x0) will be close to Wn,i(x0) (close and not exact, because of subsampling). This
is observed in the second plot in the region [0, 0.5].

(iv) For the same reason, observations for which Xi is far to the right of s, will also satisfy
s∗ < Xi and hence will have zero weight in the subagged estimate (W ∗

n,i(x0) = 0).
This is observed in the second plot in the region [0.6, 1].

The case where x0 gets closer to s. The closer x0 is to s, the more likely it is
that for some subsamples, we will have s∗ < x0. For such subsamples, every observation
to the left of s∗ will be excluded from the estimate (therefore, zero weight). Consequently,
W ∗

ni(x0) will tend to be smaller than Wni(x0). At the same time, observations to the right
of s∗ will be included, which gives the non-zero weights W ∗

ni(x0) for all observations to
the right of s. This is shown in the third and fourth plots of Figure 4 for x0 = 0.5 and
x0 = 0.6, corresponding to the second and third respectively perpendicular lines in the first
plot. In other words, the closer x0 is to the split point, the more subagging adds weight

32. I.e., obtained by maximization of the empirical analogue of (3), or equivalently, of (7).
33. Note the small difference between 0.63, which is obtained based on the data, and the value of 0.64

previously obtained in Section 2.1 based on (7).

15

Revelas, Boldea and Werker

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

Estimates

x0

sample
f(x0)
tree
subagg

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
2

0
.0

4

Weights at x0 = 0.1

Tree
Subagg

Xi

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
2

0
.0

4

Weights at x0 = 0.5

Xi

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
2

0
.0

4

Weights at x0 = 0.6

Xi

Figure 4: First plot (left): stump (blue) and subagged stump (red) estimates as a function
of x0 for one realization of Dn (gray points). In black is the true regression function
f(x0). Second plot : weights Wn,i(x0) (stump, blue) and W ∗

n,i(x0) (subagged stump, red)
for x0 = 0.1. Third plot: weights for x0 = 0.5. Fourth plot: weights for x0 = 0.6.

to observations that had zero weight in the single tree. To our knowledge, we are the first
to make this observation. This also helps understand the variance reduction of subagging
observed around the split points, illustrated next in Section 5.2, as estimates obtained from
subagging are based on more distinct observations than in a single tree.

5.2 Statistical Bias and Variance

In Section 5.1 we looked at a single realization of Dn. Here we are interested in the effect of
subagging on the statistical bias and variance of stumps, hence we look at several realizations
ofDn, keeping theXi’s fixed. Even though theXi’s are fixed, different realizations of the Yi’s
will perturb the split point. We show that subagging has a smoothing effect which reduces
the bias compared to a stump but this effect disappears when the number of splits increases.
Additionally, subagging has a stabilizing effect which reduces the variance compared to a
tree and this effect persists when the number of splits increases.

Figure 5 shows the squared bias and variance conditionally on X of a stump versus
a subagged stump obtained over 200 replicates of Dn generated from Simulation II, as in
Figure 4. Figure 6 shows trees with N = 3 splits. As a reference, the first two theoretically

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
4

0
.0

8
0

.1
2

Squared Bias

x0

Stump
Subagg

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
4

0
.0

8
0

.1
2

Variance

x0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
4

0
.0

8
0

.1
2

Mean Squared Error

x0

Figure 5: Squared bias, variance and mean squared error of a stump (blue) and subagged
stump (red) as a function of x0. The vertical line shows the theoretical split (x = 0.64).

16

When does Subagging Work?

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
1

0
.0

2
0

.0
3

Squared Bias

x0

Tree
Subagg

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
1

0
.0

2
0

.0
3

Variance

x0

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
0

.0
1

0
.0

2
0

.0
3

Mean Squared Error

x0

Figure 6: Three-split tree (blue) versus subagging of three-split trees (red).

optimal CART splits, i.e., maximizing (3), are at x = 0.64 and x = 0.83 respectively. The
smoothing effect is visible around x = 0.64 for a single stump but no longer in the case
N = 3. The variance reduction is visible in both the stump and in the case N = 3. In
particular, Bühlmann and Yu, 2002’s “instability region” is well illustrated: they argued
that this region is a n− 1

3 -neighborhood of the best split. Here n = 100, i.e., n− 1
3 ≈ 0.22.

While it is easy to see that subagging improves upon a tree in terms of global mean-squared
error in both the case of a stump and the case N = 3, it is less clear in which case (between
N = 1 and N = 3) subagging improves, overall in x0, the most. This is further discussed in
Section 6.

6 Subagging Large Trees

Now we show that subagging large trees is not always a good idea. As seen in Section 5.2,
for stumps, subagging has a small effect on bias around the split point and such effect
disappears with a few more splits: we expect that subagging brings no improvement on
bias when the number of splits increases further, and in particular if it is large. Moreover,
subagging reduces the variance around the split points, and this effect persists when trees
are grown deeper: the more we split, the more instability we create, and hence the larger
the region over which subagging helps by reducing the variance34. Figure 7 shows the global
performance, i.e., on average over x0, of trees versus subagging as a function of the number
of splits in the same simulation framework as in Figures 5 and 6.

Large trees become very unstable, and even though subagging significantly reduces the
variance of such trees, subagging performs worse than a single tree appropriately grown. In
Figure 7, obtained again from Simulation II, the optimal (in terms of mean-squared error)
number of splits for a single tree is N = 4, while for subagging it is N = 3. These are
represented by the two dotted vertical lines in the right plot of Figure 7. The corresponding
mean-squared errors are 0.87% (horizontal grey line) and 0.44% respectively, meaning an
improvement of factor 2. In comparison, the mean-squared error of a tree with N = 49
splits is 3.74% and for its subagged analogue 1.48%, i.e., almost twice the mean-squared
error of a single tree optimally grown.

34. This is in line with Bühlmann and Yu, 2002.

17

Revelas, Boldea and Werker

0 10 20 30 40 50

0
.0

0
0

.0
1

0
.0

2
0

.0
3

Global Squared Bias

Number of Splits

Tree
Subagg

0 10 20 30 40 50

0
.0

0
0

.0
1

0
.0

2
0

.0
3

Global Variance

Number of Splits
0 10 20 30 40 50

0
.0

0
0

.0
1

0
.0

2
0

.0
3

Global MSE

Number of Splits

Figure 7: Global performance of trees (blue) and subagged trees (red) as a function of the
number of splits.

6.1 Optimal Number of Splits as a Function of the Dataset Size

We showed that for n = 100 observations, the optimal number of splits in terms of mean-
squared error is much lower than the maximum possible, both for trees and subagging
(N = 4 and N = 3 respectively). This seems to still hold for larger dataset sizes. Figure
8 shows the optimal number of splits and corresponding global mean-squared error for
trees and subagging as a function of n. We observe a roughly linear relation. This is of
practical importance, as when the sample size is large, subagging trees of different sizes can
become computationally costly. Instead, we can grow a single tree at different sizes, find
the optimal number of splits with e.g. cross-validation, then use subagging with that same
size for prediction, or, alternatively, perform cross-validation to choose the best number of
splits around N = 3, e.g., to choose between 2,3 or 4 splits. Moreover, if interpretability of
the model at hand is important, and if the difference in performance between a tree at its
best and subagging at its best is not very large, then the single tree could be preferred.

200 400 600 800 1000

0
1

2
3

4
5

6
7

Optimal Number of Splits

Dataset Size

Tree
Subagg

200 400 600 800 1000

0
.0

0
0

0
.0

0
4

0
.0

0
8

Corresponding Global MSE

Dataset Size

Figure 8: Optimal number of splits (left) as a function of n and corresponding global mean-
squared error (right) for trees (blue) versus subagging (red).

18

When does Subagging Work?

7 Robustness

Here we test the robustness of our results and implementations.

7.1 Subsample Size and Replacement

So far we have considered subagging instead of bagging, and fixed subsample size to k =
0.5n. In Figure 9, we show that our main empirical finding, namely that of Figure 7, still
holds for different subsample sizes k as well as if we do bagging instead of subagging. In all
cases, the conclusion is the same: the optimal number of splits is around 3. A decrease in
k shows a decrease in variance but a bias is introduced, and vice-versa; increasing k brings
the subagged estimator closer to the tree35. Moreover, bagging indeed behaves similarly to
subagging with k = 0.5n36.

5 10 15

0
.0

0
0

0
.0

1
0

0
.0

2
0

Global Squared Bias

Number of Splits

Tree
Subagg 50%
Subagg 20%
Subagg 95%
Bagging

5 10 15

0
.0

0
0

0
.0

1
0

0
.0

2
0

Global Variance

Number of Splits
5 10 15

0
.0

0
0

0
.0

1
0

0
.0

2
0

Global MSE

Number of Splits

Figure 9: Global performance of trees (blue), subagged trees with k = 50%n (red), k =
20%n (dashed), k = 95%n (dotted), and bagging (solid black).

7.2 Readily Available Implementations

So far we have used our own implementations of recursive partitioning. Here we show that
our main empirical finding, namely that of Figure 7, still holds if, instead of using our
second implementation, we use the readily-available package randomForest37, which
incorporates both trees and subagging as special cases. We set the number of trees equal to
1 (ntree = 1) and sample without replacement n = 100 observations (replace = FALSE
and sampsize = 100) in order to obtain a tree. Then we set the number of trees to B = 50
(ntree = 50) and the subsample size to k = 0.5n (sampsize = 50) to obtain subagging.
We can control the maximum number of splits by controlling the maximum number of nodes
allowed, implemented with the option maxnodes: setting e.g. maxnodes = 5 guarantees
that we will grow trees with a maximum of 4 splits. We also set the minimum number
of observations allowed in a terminal cell to one (nodesize = 1) and kept the default
choices for all other options. Figure 10 shows the performance of a tree versus subagging

35. These observations were already made by Bühlmann and Yu, 2002, who pointed out that the subsample
size can also be interpreted as a “smoothing” parameter - see their Section 3.2.

36. Also in line with previous literature, e.g., Bühlmann and Yu, 2002; Buja and Stuetzle, 2006.
37. Liaw and Wiener, 2002, version 4.7-1.1.

19

Revelas, Boldea and Werker

as a function of the maximum number of splits allowed. We obtain best performance at a
maximum of 3 splits for both methods (vertical dotted line in the right plot), resulting in
mean-squared errors of 0.87% (horizontal grey line) for the tree and 0.41% for subagging,
in line with our results: subagging large trees performs worse than a single tree at optimal
size.

0 10 20 30 40 50

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

Global Squared Bias

max. Number of Splits

Tree
Subagg

0 10 20 30 40 50

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

Global Variance

max. Number of Splits
0 10 20 30 40 50

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

Global MSE

max. Number of Splits

Figure 10: Performance of trees versus subagging using the randomForest package.

Finally, in Figure 11 we show that the results of Figure 1 based on our first implemen-
tation can also be obtained using the randomForest package. Again, we set the number
of trees equal to 1 (ntree = 1) and sample without replacement n = 2000 observations
(replace = FALSE and sampsize = 2000) in order to obtain a single tree. Then, we used
maxnodes = n

hn
as a proxy to control for the number of observations in cells in scenario

b) (so maxnodes = n
n0.65); for small trees, we set maxnodes = 2; for large trees, we set

maxnodes = n
5 . In all cases we kept the minimum nodesize = 1 and we used the default

values for all other parameters. The bias-variance trade-off is again illustrated.

0 500 1000 1500 2000

0
.0

5
0

.1
5

0
.2

5
0

.3
5

maxnode = 2

Dataset Size

E
s
ti
m

a
te

s
 a

t
 x

0
=

0
.5

0 500 1000 1500 2000

0
.0

5
0

.1
5

0
.2

5
0

.3
5

maxnode =

n

n0.65

Dataset Size

E
s
ti
m

a
te

s
 a

t
 x

0
=

0
.5

0 500 1000 1500 2000

0
.0

5
0

.1
5

0
.2

5
0

.3
5

maxnode =

n

5

Dataset Size

E
s
ti
m

a
te

s
 a

t
 x

0
=

0
.5

Figure 11: (In)consistency of trees using the randomForest package.

20

When does Subagging Work?

8 Conclusion

We studied CART and subagging in the context of regression estimation and have shown
that tree size plays an important role in the performance of these methods. We established
sufficient conditions for point-wise consistency of trees and provided an algorithm that
satisfies them. Based on this, we formalized and illustrated the bias-variance trade-off
associated with tree size. Then, we studied the effect of subagging on trees of varying sizes.
We have illustrated the effect on weights and showed in simulations how subagging performs,
compared to a single tree, when the number of splits is increased, both for the single tree
and the trees constituting the subagged estimator. We found that a single tree optimally
grown can outperform subagging if its subtrees are large. For practical applications, our
findings suggest that large trees should not be the default choice in ensemble methods, and
computational time can be saved upon by first finding the optimal size for a single tree in
the problem at hand before building the ensemble.

Appendix A. Proofs

A.1 Proof of Proposition 1

Consider

C = V[Y |X ∈ C]− P(X ∈ CL)

P(X ∈ C)
V[Y |X ∈ CL]−

P(X ∈ CR)

P(X ∈ R)
V[Y |X ∈ CR] (15)

as in (3). We have V(Y |X ∈ C) = E[Y 2|X ∈ C] − E[Y |X ∈ C]2 and similarly for CL and
CR. Using that 1(X ∈ C) = 1(X ∈ CL) + 1(X ∈ CR) and the linearity of the expectation
we get

P(X ∈ C)V(Y |X ∈ C) = E[Y 2
1(X ∈ CL)] + E[Y 2

1(X ∈ CR)]

− 1

P(X ∈ C)

{
E[Y 1(X ∈ CL)] + E[Y 1(X ∈ CR)]

}2
.

(16)

We also have

P(X ∈ CL)V(Y |X ∈ CL) = E[Y 2
1(X ∈ CL)]−

E[Y 1(X ∈ CL)]
2

P(X ∈ CL)
(17)

and similarly for CR. Plugging everything into (15), the terms containing Y 2 cancel out
and we are left with

C = E[Y 1(X ∈ CL)]
2

(
1

P(X ∈ CL)
− 1

P(X ∈ C)

)
− 2E[Y 1(X ∈ CL)]E[Y 1(X ∈ CR)]

1

P(X ∈ C)

+ E[Y 1(X ∈ CR)]
2

(
1

P(X ∈ CR)
− 1

P(X ∈ C)

)

=
P(X ∈ CL)P(X ∈ CR)

P(X ∈ C)

{
E[Y |X ∈ CL]− E[Y |X ∈ CR]

}2

(18)

which concludes the proof of Proposition 1.

21

Revelas, Boldea and Werker

A.2 Proof of Proposition 2

Let (Xι1 , Yι1), . . . , (Xιν , Yιν) be ν ≥ 3 re-ordered observations constituting a cell C. Suppose
that the criterion is constant for any split in C. Using Proposition 1, this means that there
exists a constant K0 ≥ 0 such that for all κ ∈ {1, . . . , ν − 1}, we have

κ(ν − κ)

ν

(
1

κ

κ∑
λ=1

Yιλ − 1

ν − κ

ν∑
λ=κ+1

Yιλ

)2

= nK0. (19)

In particular (19) is true for κ = 1 and κ = ν − 1, which, combined, give

(ν − 1)Yι1 −
ν∑

λ=2

Yιλ = ±

(
ν−1∑
λ=1

Yιλ − (ν − 1)Yν

)
. (20)

Suppose that in (20) the “+” holds. This is equivalent (recall ν ≥ 3) to

Yι1 + Yιν
2

=
1

ν − 2

ν−1∑
λ=2

Yιλ . (21)

Plug this into (19) with κ = 1. After simplifying, we obtain

Yι1 = Yιν ± 2

√
ν − 1

ν
nK0 (22)

which is almost surely impossible. Next suppose that in (20) the “-” holds. This is equivalent
to Yι1 = Yιν which is also almost surely impossible as long as Y is a continuous random
variable. Therefore, by contradiction, almost surely the criterion is not constant in any cell
containing at least three observations. This concludes the proof of Proposition 2.

A.3 Proof of Theorem 1

We start by re-formulating the honesty assumption. We assume given two datasets:

1. Dn = {(X1, Y1), . . . , (Xn, Yn)}, a dataset used to partition [0, 1]p, and

2. D′
n = {(X ′

1, Y
′
1), . . . , (X

′
n, Y

′
n)}, a dataset used for estimation, independent of Dn, of

same size as Dn.

Fix x0 ∈ [0, 1]p. We note Cn = Cn(x0;Dn) the terminal cell containing x0 in the partition
obtained using the first dataset. Throughout the proof, we also get rid of the dependence
of weights on x0. The tree estimator is noted

Tn(x0) =
n∑

i=1

Wn,iY
′
i with Wn,i =

1X′
i∈Cn∑n

j=1 1X′
j∈Cn

(23)

which can be re-written as

Tn(x0) =

n∑
i=1

Wn,if(X
′
i) +

n∑
i=1

Wn,iε
′
i. (24)

We treat the two terms separately.

22

When does Subagging Work?

A.3.1 Bias of the error term

Lemma 1 For all n,

E

[
n∑

i=1

Wn,iε
′
i

∣∣∣1(X ′
1 ∈ Cn), . . . ,1(X

′
n ∈ Cn)

]
= 0. (25)

Proof From Assumptions 1 and 2,

∀i, E[ε′i|1(X ′
1 ∈ Cn), . . . ,1(X

′
n ∈ Cn)] = E[ε′i] = 0.

A.3.2 Variance of the error term

Lemma 2 For all n,

V

[
n∑

i=1

Wn,iε
′
i

∣∣∣1(X ′
1 ∈ Cn), . . . ,1(X

′
n ∈ Cn)

]
=

σ2∑n
i=1 1(X

′
i ∈ Cn)

. (26)

Proof

V

[
n∑

i=1

Wn,iε
′
i

∣∣∣1(X ′
1 ∈ Cn), . . . ,1(X

′
n ∈ Cn)

]

= E

[(n∑
i=1

Wn,iε
′
i

)2∣∣∣1(X ′
1 ∈ Cn), . . . ,1(X

′
n ∈ Cn)

]
− 02 from (25)

=
n∑

i=1

W 2
n,iE[ε′2i |1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn)]

+ 2
∑
j ̸=i

Wn,iWn,jE[ε′iε′j |1(X ′
1 ∈ Cn), . . . ,1(X

′
n ∈ Cn)]

= σ2
n∑

i=1

W 2
n,i + 0

=
σ2∑n

i=1 1(X
′
i ∈ Cn)

.

Lemma 3
1∑n

i=1 1(X
′
i ∈ Cn)

P−−−→
n→∞

0. (27)

23

Revelas, Boldea and Werker

Proof Conditionally on Cn,
∑n

i=1 1(X
′
i ∈ Cn) follows a Binomial distribution of parameters

(n, λ(Cn)). Therefore it is sufficient to show

n λ(Cn)
P−−−→

n→∞
∞. (28)

We know from Assumption 3

n λn(Cn) ≥ hn −−−→
n→∞

∞ (29)

where

λn(Cn) :=
1

n

n∑
i=1

1(Xi ∈ Cn). (30)

From empirical process theory, the set of hyper-rectangles is a Glivenko-Cantelli class (of
VC dimension 2p < ∞), note it R, and we have

√
n sup

C∈R
|λ(C)− λn(C)| = OP(1) (31)

and for any realization of Cn,

√
n|λ(Cn)− λn(Cn)| ≤

√
n sup

C∈R
|λ(C)− λn(C)| (32)

therefore, using the decomposition

√
nλ(Cn) =

√
nλn(Cn) +

√
n(λ(Cn)− λn(Cn)) (33)

we get that if
√
nλn(Cn) tends to infinity, then so does

√
nλ(Cn) for any realization of Cn.

By Assumption 3,

nλn(Cn) ≥ hn = nα (34)

therefore √
nλn(Cn) ≥ nα+ 1

2
−1 (35)

with α+ 1
2−1 > 0 because α > 1

2 . Therefore
√
nλn(Cn)

P−−−→
n→∞

∞, hence
√
nλ(Cn) −−−→

n→∞
∞

and hence also nλ(Cn) −−−→
n→∞

∞ for any realization of Cn.

A.3.3 Bias of the regression term

Lemma 4 For all n,

E

[
n∑

i=1

Wn,if(X
′
i)|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn), Cn

]
= E[f(X)|X ∈ Cn]. (36)

24

When does Subagging Work?

Proof Conditionally on {1(X ′
i ∈ Cn), Cn}, f(X ′

i) is independent of 1(X ′
j ∈ Cn) for all

j ̸= i, i.e.,

E[f(X ′
i)|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn), Cn] = E[f(X ′

i)|1(X ′
i ∈ Cn), Cn]. (37)

Moreover

E[f(X ′
i)|1(X ′

i ∈ Cn), Cn]

= 1(X ′
i ∈ Cn)E[f(X)|X ∈ Cn] + 1(X ′

i /∈ Cn)E[f(X)|X /∈ Cn].

A.3.4 Variance of the regression term

Lemma 5 For all n,

V

[
n∑

i=1

Wn,if(X
′
i)|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn), Cn

]
= V[f(X)|X ∈ Cn]. (38)

Proof From Lemma 4, we have

V

[
n∑

i=1

Wn,if(Xi)|1(X1 ∈ Cn), . . . ,1(Xn ∈ Cn), Cn

]

= E

[(n∑
i=1

Wn,if(X
′
i)
)2

|1(X ′
1 ∈ Cn), . . . ,1(X

′
n ∈ Cn), Cn

]
− E[f(X)|X ∈ Cn]

2

(39)

where

E

[(n∑
i=1

Wn,if(X
′
i)
)2

|1(X ′
1 ∈ Cn), . . . ,1(X

′
n ∈ Cn), Cn

]

=
n∑

i=1

W 2
n,iE[f(X ′

i)
2|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn), Cn]

+ 2
∑
i ̸=j

Wn,iWn,jE[f(X ′
i)f(X

′
j)|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn), Cn].

(40)

For all i, we have

E[f(X ′
i)
2|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn), Cn] = E[f(X ′

i)
2|1(X ′

i ∈ Cn), Cn] (41)

and for all i ̸= j, we have

E[f(X ′
i)f(X

′
j)|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn), Cn] =

E[f(X ′
i)f(X

′
j)|1(X ′

i ∈ Cn),1(X
′
j ∈ Cn), Cn].

(42)

25

Revelas, Boldea and Werker

Moreover,

E[f(X ′
i)
2|1(X ′

i ∈ Cn)] = 1(X ′
i ∈ Cn)E[f(X)2|X ∈ Cn)]

+ 1(X ′
i /∈ Cn)E[f(X)2|X /∈ Cn)]

(43)

and

E[f(X ′
i)f(X

′
j)|1(X ′

i ∈ Cn),1(X
′
j ∈ Cn)] =

1(X ′
i ∈ Cn)1(X

′
j ∈ Cn)(E[f(X)|X ∈ Cn)])

2

+1(X ′
i ∈ Cn)1(X

′
j /∈ Cn)E[f(X)|X ∈ Cn)]E[f(X)|X /∈ Cn)]

+1(X ′
i /∈ Cn)1(X

′
j ∈ Cn)E[f(X)|X /∈ Cn)]E[f(X)|X ∈ Cn)]

+1(X ′
i /∈ Cn)1(X

′
j /∈ Cn)(E[f(X)|X /∈ Cn)])

2.

(44)

Note that

• Wn,i1(X
′
i ∈ Cn) = 1 for all i,

• Wn,i1(X
′
j ∈ Cn) = 0 whenever i ̸= j,

•
∑n

i=1W
2
n,i =

1∑n
i=1 1(X

′
i∈Cn)

, and

• 2
∑

i ̸=j Wn,iWn,j =
(∑n

i=1Wn,i

)2
−
∑n

i=1W
2
n,i = 1− 1∑n

i=1 1(X
′
i∈Cn)

.

Therefore
n∑

i=1

W 2
n,iE[f(X ′

i)
2|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn), Cn]

= E[f(X)2|X ∈ Cn]
1∑n

i=1 1(X
′
i ∈ Cn)

(45)

and

2
∑
i ̸=j

Wn,iWn,jE[f(X ′
i)f(X

′
j)|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn), Cn]

= E[f(X)2|X ∈ Cn]

(
1− 1∑n

i=1 1(X
′
i ∈ Cn)

)
.

(46)

Putting everything together gives

V

[
n∑

i=1

Wn,if(X
′
i)|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn), Cn

]

= E[f(X)2|X ∈ Cn]

(
1∑n

i=1 1(X
′
i ∈ Cn)

+ 1− 1∑n
i=1 1(X

′
i ∈ Cn)

)
− E[f(X)|X ∈ Cn]

2

= V[f(X)|X ∈ Cn].

(47)

26

When does Subagging Work?

A.3.5 Putting everything together

From Lemmas 2 and 3 we get

V

[
n∑

i=1

Wn,iε
′
i|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn)

]
P−−−→

n→∞
0 (48)

and with Lemma 1 we obtain
n∑

i=1

Wn,iε
′
i

P−−−→
n→∞

0. (49)

From Lemma 5 and Assumption 4 we get

V

[
n∑

i=1

Wn,if(X
′
i)|1(X ′

1 ∈ Cn), . . . ,1(X
′
n ∈ Cn), Cn

]
P−−−→

n→∞
0 (50)

and with Lemma 4 we obtain

n∑
i=1

Wn,if(X
′
i)

P−−−→
n→∞

f(x0). (51)

Therefore using Slutsky’s theorem

T̂n(x0)
P−−−→

n→∞
f(x0) (52)

which concludes the proof of Theorem 1.

References

Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal effects.
Proceedings of the National Academy of Sciences, 113(27):7353–7360, 2016.

Leo Breiman. Bagging predictors. Machine Learning, 24:123–140, 1996.

Leo Breiman. Random forests. Machine Learning, 45:5–32, 2001.

Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Classification and
regression trees. CRC Press, 1984.

Peter Bühlmann and Bin Yu. Analyzing bagging. Annals of Statistics, 30(4):927–961, 2002.

Andreas Buja and Werner Stuetzle. Observations on bagging. Statistica Sinica, 16(2):
323–351, 2006.

Alicia Curth, Alan Jeffares, and Mihaela van der Schaar. Why do random
forests work? understanding tree ensembles as self-regularizing adaptive smoothers.
doi:10.48550/arXiv.2402.01502, 2024.

Thomas G Dietterich and Eun Bae Kong. Machine learning bias, statistical bias, and
statistical variance of decision tree algorithms. Working Paper, 1995.

27

https://arxiv.org/abs/2402.01502
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=893b204890394d1bf4f3332b4b902bfdb30a9a13

Revelas, Boldea and Werker

Roxane Duroux and Erwan Scornet. Impact of subsampling and tree depth on random
forests. ESAIM: Probability and Statistics, 22:96–128, 2018.

Jerome H Friedman and Peter Hall. On bagging and nonlinear estimation. Journal of
statistical planning and inference, 137(3):669–683, 2007.

Yves Grandvalet. Bagging equalizes influence. Machine Learning, 55:251–270, 2004.

Yves Grandvalet. Stability of bagged decision trees. In Proceedings of the XLIII Scientific
Meeting of the Italian Statistical Society, pages 221–230. CLEUP, 2006.

László Györfi, Michael Kohler, Adam Krzyzak, Harro Walk, et al. A distribution-free theory
of nonparametric regression, volume 1. Springer, 2002.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The ele-
ments of statistical learning: data mining, inference, and prediction, volume 2. Springer,
2009.

Wassily Hoeffding. A class of statistics with asymptotically normal distribution. Break-
throughs in Statistics: Foundations and Basic Theory, pages 308–334, 1992.

Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, et al. An introduction to
statistical learning, volume 112. Springer, 2013.

Jason M Klusowski and Peter M Tian. Large scale prediction with decision trees. Journal
of the American Statistical Association, 119(545):1–27, 2023.

Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R News,
2(3):18–22, 2002.

Yi Lin and Yongho Jeon. Random forests and adaptive nearest neighbors. Journal of the
American Statistical Association, 101(474):578–590, 2006.

Lucas Mentch and Giles Hooker. Quantifying uncertainty in random forests via confidence
intervals and hypothesis tests. Journal of Machine Learning Research, 17(26):1–41, 2016.

Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its Applications, 9
(1):141–142, 1964.

Erwan Scornet, Gérard Biau, and Jean-Philippe Vert. Consistency of random forests. Annals
of Statistics, 43(4):1716 – 1741, 2015.

Mark R Segal. Machine learning benchmarks and random forest regression. Working Paper,
2004.

Jake A Soloff, Rina Foygel Barber, and Rebecca Willett. Bagging provides assumption-free
stability. doi:10.48550/arXiv.2301.12600, 2023.

Charles J Stone. Consistent nonparametric regression. Annals of Statistics, 5(4):595–620,
1977.

28

https://escholarship.org/content/qt35x3v9t4/qt35x3v9t4_noSplash_3bc7fbb8348b76e0ad2a408fe58dfd94.pdf
https://doi.org/10.48550/arXiv.2301.12600

When does Subagging Work?

Aad W Van der Vaart. Asymptotic statistics, volume 3. Cambridge University Press, 2000.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects
using random forests. Journal of the American Statistical Association, 113(523):1228–
1242, 2018.

Geoffrey S Watson. Smooth regression analysis. Sankhyā: Indian Journal of Statistics,
Series A, 26(4):359–372, 1964.

Siyu Zhou and Lucas Mentch. Trees, forests, chickens, and eggs: when and why to prune
trees in a random forest. Statistical Analysis and Data Mining: The ASA Data Science
Journal, 16(1):45–64, 2023.

29

	Introduction
	Decision-Tree Methods for Regression
	CART Criterion and the Location of Splits
	Stopping Rules and Tree Size
	Bias and Variance of Subagging

	Pointwise Consistency of Trees and the Bias-Variance Trade-Off Associated with Tree Size
	Subagging Consistent Trees
	Subagging Small Trees
	Analysis Conditionally on Dn
	Statistical Bias and Variance

	Subagging Large Trees
	Optimal Number of Splits as a Function of the Dataset Size

	Robustness
	Subsample Size and Replacement
	Readily Available Implementations

	Conclusion
	Proofs
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1
	Bias of the error term
	Variance of the error term
	Bias of the regression term
	Variance of the regression term
	Putting everything together

