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Abstract

Using a deterministic framework allows us to estimate a function with the pur-
pose of interpolating data in spatial statistics. Radial basis functions are commonly
used for scattered data interpolation in a d-dimensional space, however, interpola-
tion problems have to deal with dense matrices. For the case of smoothing thin
plate splines, we propose an efficient way to address this problem by compressing the
dense matrix by an hierarchical matrix (H-matrix) and using the conjugate gradient
method to solve the linear system of equations. A simulation study was conducted
to assess the effectiveness of the spatial interpolation method. The results indicated
that employing an H-matrix along with the conjugate gradient method allows for ef-
ficient computations while maintaining a minimal error. We also provide a sensitivity
analysis that covers a range of smoothing and compression parameter values, along
with a Monte Carlo simulation aimed at quantifying uncertainty in the approximated
function. Lastly, we present a comparative study between the proposed approach
and thin plate regression using the “mgcv” package of the statistical software R. The
comparison results demonstrate similar interpolation performance between the two
methods.

Keywords: Smoothing thin plate spline, H-matrix, spatial statistics, adaptive cross approx-
imation.
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1 Introduction

In the last years, the increased availability of data from sensors, satellites, or monitoring

stations sparked special interest in scattered data interpolation methods (Xu et al. (2011)).

In this context, the main objective is to approximate a function f : Rd → R , given a set

of sampled values f(x1), ...., f(xn) at a set of spatial sites X = {x1, ....,xn} ⊂ Rd.

A commonly employed category of interpolants to approximate f are radial basis func-

tions (RBFs, Scheuerer et al. (2013)). This technique was initially applied in the 1980s to

problems in machine learning, and has since been used in different contexts such as partial

differential equations, computer graphics, learning theory, medical imaging, environmental

variables, cartography, and surface reconstruction, among others (Wendland 2004; Chiles

and Delfiner 2009). RBFs are a powerful tool for problems of multivariate data interpola-

tion in arbitrary dimensions, such as required in spatial statistics (Wahba 1990; Lin and

Chen 2004).

From a statistical perspective, several authors have introduced distinct methodologies

involving RBFs. These encompass approaches like thin plate splines (TPS) and smoothing

thin plate splines (STPS), also used for spatial interpolation. Among these authors, Wahba

(1990), Green and Silverman (1993) and Wang (2011) offer an extensive read into smooth-

ing splines. For example, Wahba (1975) shows how to choose the smoothing parameter

for a periodic spline, Hutchinson and de Hoog (1985) presents a procedure to calculate

the trace of the influence matrix for a polynomial smoothing spline of degree 2m-1, and

Craven and Wahba (1978) estimated the correct degree of smoothing using the Generalized

Cross-Validation (GCV) method. An extension to the Bayesian context can be found in

Wahba (1983) and Nychka (1988), who proposed an estimation of confident intervals for

smoothing splines. Specifically, from the spatial interpolations applications, Wahba et al.

(1995) proposed an ANOVA analysis for an epidemiological study, Trossman et al. (2011)

applied a TPS for comparative purposes in an oceanographic study and Early and Sykulski

(2020) interpolated noisy GPS data using smoothing splines. Another important contribu-

tion was made by Wood (2003), wherein the author introduced an approximation of the

splines matrix through truncated spectral decomposition. This allows us to get an efficient
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computation even when dealing with a large number of spatial observations (Wood (2017)).

On the other hand, the Kriging method (Matheron (1963)), is mostly used for statistical

interpolation in dimension d = 2. Both approximation methods, RBFs and Kriging, are

similar and various authors have studied their connections (Scheuerer et al. 2013). The

computational cost for both methods is cubic in the number of spatial observations, which

is prohibitively high. To deal with this problem different authors have proposed alter-

natives (Lindgren et al. (2011); Bevilacqua and Morales-Onate (2018); Litvinenko et al.

(2019), and Hristopulos et al. (2021)).

From a deterministic perspective, the theory of Reproducing Kernel Hilbert Space (RKHS)

to interpolate spatial data (Wahba (1990)) is equivalent to the stochastic process assumed

as random structure in the space (Berlinet and Thomas-Agnan 2011). Here, we consider

the approximation of f by a function g : Rd → R of the form

g(x) =
n∑

i=1

ciΦ(xi,x) +

q∑
ℓ=1

dℓpℓ(x), (1)

where Φ(x,y) = ϕ(||x − y||2) with ϕ : [0,∞) → R radially symmetric and || · ||2 the

Euclidean norm in Rd. Common choices of ϕ include conditionally semidefinite functions

(Wendland 2004, Chapter 8), i.e., functions generating a definite interpolation problem

on the linear subspace given by
∑n

i=1 cip(xi) = 0 for all polynomials p ∈ Pd
m of degree

less or equal to a certain number m (depending on ϕ) in dimension d. Hence, the func-

tions {p1, ...., pq} in Equation (1) are chosen to form a basis of Pd
m. In other words, the

interpolation problem

n∑
i=1

ciΦ(xi,xj) +

q∑
ℓ=1

dℓpℓ(xj) = f(xj), j = 1, ...., n

n∑
i=1

cipk(xi) = 0, k = 1, ...., q

(2)

has a unique solution c = (c1, ...., cn)
T ∈ Rn and d = (d1, ...., dq)

T ∈ Rq. Equations (2) can
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be written as linear system

 E P

P⊤ 0


c

d

 =

f

0

 , where Ej,i = Φ(xi,xj) and Pj,i = pi(xj). (3)

If Φ has local support, then the matrix E is sparsely populated and system (3) can be

solved in linear complexity (Wendland 2006). Hence, there is no need for matrix compres-

sion techniques. If Φ has non-local support then the matrix E is fully populated, and this

entails a high computational cost O(n3) for the solution of system (3). As the rise of new

technologies enables us to gather vast amounts of data, we need to address this high cost to

make computations viable (Iske et al. 2017). Compression of densely populated matrices

by certain data-sparse formats is a necessity for computations in various other areas, for

example for the numerical solution of integral equations or, more recently, fractional par-

tial differential equations. In this context, different methods such as multipole expansions,

panel clustering, wavelet compression, mosaic-skeleton methods, adaptive cross approxi-

mation, and hybrid cross-approximation have been presented (Lyche (2020), Bini et al.

(2019)). In particular, hierarchical matrices (H-matrices) are a convenient and general

algebraic format for data-sparse compression, and in a nutshell they may be summarized

as blockwise low-rank matrices (Hackbusch 2015; Bebendorf 2008). Although initially de-

veloped for application to integral equations, an H-matrix can be used in a much wider

context as long as the function generating the entries of the dense matrix (Φ in our case)

is asymptotically smooth (Iske et al. (2017)). Hence, matrices in RBF interpolation and

related problems can be approximated well by an H-matrix, allowing for a matrix-vector

multiplication of complexity O(n log(n)) and efficient iterative solution techniques, as wit-

nessed in Iske et al. (2017) and Löhndorf and Melenk (2017).

In this work, we consider the special case of smoothing thin plate spline (STPS) inter-

polation, including a regularization term measuring the smoothness of the fitted curve. We

can rewrite this problem in terms of a simple linear system of equations, where the dense

splines matrix is compressed by an H-matrix. To solve the linear system , we show how to

rewrite it as a positive definite and symmetric problem, and present numerical experiments
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using the Conjugate Gradient method.

The paper is structured as follows: In Section 2, we define the a thin plate spline (TPS)

and a STPS. This section also describe general concepts related to theH-matrix. In Section

3, we present the results of a simulated study focuses on solving a linear equation system

using three different methods: a direct solver, the Conjugate Gradient method, and, lastly,

the Conjugate Gradient method combined with the H-matrix. In addition, we assessed the

quality of the approximated function, computed the estimation time, conducted sensitivity

analyses for the penalty parameter and the parameters to build the H-matrix, performed

Monte Carlo simulations, and compared our approach with the thin plate spline regression

(TPSR) proposed by Wood (2003), also considering the associated uncertainty. In Section

4, we conclude by discussing the results and the potential incorporation of hierarchical

matrices into the R software.

2 Methods

2.1 Thin plate spline

A thin plate spline (TPS) is defined in terms of a conditionally semidefinite RBF (Wendland

(2004)) given by:

Φ(x) = ∥x∥2 log ∥x∥, x ∈ Rd (4)

where ∥ · ∥ is the Euclidean distance and the basis {p1, p2, p3} of

P2
1 = {p : R2 → R | ∃a, b, c ∈ R : p(x) = ax1 + bx2 + c}.

A function g is called a TPS on a set {x1, . . . ,xn} ⊂ R2 if it has the form

g(x) =
n∑

i=1

ciϕ(||x− xj||) +
3∑

ℓ=1

dℓpℓ(x), (5)

with coefficients c1, . . . , cn, d1, d2, d3 (Green and Silverman 1993; Cavieres et al. 2022).

If the vector of coefficients c = (c1, . . . , cn)
⊤ satisfies

∑n
i=1 cip(xi) = 0 for all p ∈ P2

1 , then

g is called a natural TPS. Clearly, it is sufficient to impose the last identity only on a basis

5



of P2
1 , which leads to P⊤c = 0 for the matrix P ∈ Rn×3 given by Pi,j = pj(xi). While

we stick to the case d = 2 in order to simplify presentation and emphasize applications to

spatial statistics, we stress that TPS and the corresponding compression by hierarchical

matrices are not restricted to this case.

2.2 Smoothing thin plate spline (STPS)

A TPS provides an alternative option for scattered data approximation in the spatial

domain, which does not consider a covariance function associated with spatial observations.

In statistical modeling, considering the presence of inherent measurement uncertainty or

“noise” in collected data, we choose to approximate the function using a smoothing thin

plate spline (STPS) (Wahba 1990).

Let g be an approximating function for n observations yi at sites xi. We can propose

the following statistical model

yi = g(xi) + ϵi, i = 1, . . . , n, (6)

where ϵi is a random error assumed as N (0, 1). We can define the residual sum of penalized

least squares terms by

S(g) =
n∑

i=1

|yi − g(xi)|2 + λJ(g). (7)

The component J(g) is a penalty function that measures the smoothness of g, and λ is

a penalty parameter that controls the balance between the data fit and smoothness. For a

TPS in R2, the penalty function has the form

J(g) =

∫
R2

(
∂2g

∂x2
1

)2

(x) + 2

(
∂2g

∂x1∂x2

)2

(x) +

(
∂2g

∂x2
2

)2

(x) dx (8)

We aim to minimize S(g) over the set of natural TPS, and according to (Green and

Silverman 1993, Thm. 7.1), the analytical solution of Equation (8) is

J(g) = c⊤Ec,
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with E from Equation (3). Hence, the minimization of S(g) over all natural TPS can

be stated as

min
c∈Rn,d∈R3

P⊤c=0

||y −Ec− Pd||22 + λcTEc, (9)

It can be shown that if the sites {x1, . . . ,xn} are not collinear, then Equation (9) has

a unique solution given by the linear system

E + λI P

P⊤ 0


c

d

 =

y

0

 , (10)

where I ∈ Rn×n is the identity matrix (Green and Silverman 1993, Sec. 7.1).

2.3 Hierarchical matrices (H-matrix)

For a set of sites {x1, . . . ,xn} ⊂ Rd we denote by I = {1, . . . , n} the index set. A subset

τ ⊂ I of indices is called a cluster. For the above we can define the diameter of a cluster

τ as

diam(τ) = max
j,i∈τ

∥xj − xi∥2,

and the distance of two clusters τ, σ as

dist(τ, σ) = min
j∈τ,i∈σ

∥xj − xi∥2.

The quadratic cost in the number of indices of calculating diameter and distance can

be avoided, e.g., by modified definitions of diameter and distance (Rjasanow and Steinbach

2007), or the use of so-called bounding boxes (Hackbusch 2015). For a parameter η > 0 we

introduce a so-called admissibility condition
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adm :

2I × 2I → {true, false}

(τ, σ) 7→ min(diam(τ), diam(σ)) < η dist(τ, σ).

A partition P of I× I so that all elements p ∈ P are of the form p = τ ×σ with clusters

τ, σ ⊂ I is called block partition and a p of the above form is called block cluster. For a

constant σsmall > 0, a block partition is called σsmall−admissible, if it can be split into two

parts P = Pnear ∪ Pfar with adm(τ, σ) = true for all τ × σ ∈ Pfar (the far field) and either

|τ | ≤ σsmall or |σ| ≤ σsmall for τ × σ ∈ Pnear (the near field).

Definition 1 Let P be an admissible block partition of I × I. We define the space of

H-matrices of rank r ∈ N as

H(P , r) := {B ∈ Rn×n | ∀τ × σ ∈ Pfar ∃X ∈ R|τ |×r, Y ∈ R|σ|×r so that B|τ×σ = XY ⊤}

For uniformly distributed sites {x1, . . . ,xn} ⊂ Rd, σsmall-admissible block partitions can

be created in complexity O(n log(n)), for example by geometry-based construction using

hierarchical partitions of index set I, so-called cluster trees (Hackbusch 2015). Far-field

blocks are admissible and big, while near-field blocks are small. It can be shown that in

this case, the storage requirement of a matrix in AH ∈ H(P , r) is O(rn log(n)), while

matrix-vector operations x 7→ AHx can also be carried out in complexity O(rn log(n)).

Matrices X, Y associated to far-field blocks in Pfar can be calculated by interpolation of

the kernel function, which needs to be known explicitly (Iske et al. 2017). This approach

can be shown to approximate a given matrix Aj,i = Φ(sj, si) via a hierarchical matrix AH

exponentially in the rank r, if the kernel function Φ is asymptotically smooth (Hackbusch

2015),

|∂α
x ∂

β
yΦ(x,y)| ≤ C(α+ β)!|α+ β|γ|α+β||x− y|−|α|−|β|−s,

for some independent constant C > 0, where α,β ∈ Nd
0 are multi-indices and |α| =

α1 + α2, α! = α1α2 for α = (α1, α2). In particular, the TPS kernel Φ is asymptotically

smooth (Iske et al. 2017; Löhndorf and Melenk 2017), and hence the matrix E (or parts
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of it) in the system (10) can be approximated exponentially in the rank r by an H-matrix.

Black-box methods which do not require the explicit knowledge of Φ also exist, the most

obvious one being the Singular Value Decomposition (SVD). However, the SVD is not apt

for large-scale computations due to its cubic complexity. We employed the computationally

more convenient Adaptive Cross Approximation method (ACA, Bebendorf (2008)). Instead

of a prescribed rank r, the ACA algorithm employs a prescribed error tolerance ε > 0 for

the approximation of the far-field blocks, which are then approximated by different ranks.

Definition 1 easily extends to this case.

2.4 Implementation

Hierarchical matrices are still not implemented in the statistical software R. As a remedy, we

link the C++ library Htool (Marchand 2020) to R via Rcpp (Eddelbuettel and François 2011)

and RcppArmadillo (Eddelbuettel and Sanderson 2014). With these latter two libraries

we conducted all of the numerical experiments presented in Section (3) directly in R. To

solve the linear system we use the Conjugate Gradient method (Hestenes and Stiefel 1952)

along with Schur complement (Zhang 2006) (Appendix A).

3 Results

3.1 Matrix compression via an H-matrix

First, we consider a grid of size 802, λ = 1, ε = 0.0001, η = 2 as parameters for the

H−matrix compression. In Figure (1), we present the grid and the corresponding com-

pressed H-matrix indicating the local rank on admissible blocks as determined by the ACA

algorithm according to the given tolerance ε. Here the number of points in the grid were

chosen to have a better visualization of the H-matrix and how the block matrices are

distributed on it. Besides, this number of points will allow us to determine if, while the

number of observations increases, then the computational cost has a linear growth for M3.

We studied the quality of the approximation (Subsection 3.2), the computational cost

for three different approaches (Subsection 3.3), and the performance of the method under
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(a) Unstructured points of size 802 (b) H-matrix approximation of the dense matrix E

Figure 1: Unstructured points of size 802 (left side) and its respective H-matrix (right side).

varying parameter settings (Subsection 3.4) considering the following:

M1 : solving (10) with a direct solver provided by the solver() function in R,

M2 : writing (10) equivalently as symmetric positive system (14) and using the Conjugate

Gradient method,

M3 : writing (10) equivalently as symmetric positive system (14) and using the Conjugate

Gradient method, approximating the dense matrix E11 from (14) by an H-matrix,

given the tolerance ε for ACA and the admissibility coefficient η as compression

parameters.

Experiments were done for a sequence of random grids generated by a two-dimensional

uniform distribution on the square (0, 1)× (0, 1). The data yi = f(xi), were generated by

the Franke’s function;
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f(x, y) =
3

4
e(−

1
4
(9x−2)2+(9y−2)2) +

3

4
e(−

1
49

(9x+1)2−( 1
10

)(9y+1)2)+

1

2
e(−

1
4
(9x−7)2+(9y−3)2)−1

2
e(−

1
5
(9x−4)2+(9y−7)2),

which is a standard test function for two-dimensional spatial data fitting (Fasshauer

2007), and the spatial statistical model can be represented as

yi = f(xi) + εi, for i = 1, . . . , n, and εi ∼ N(0, σ2I) (11)

Naturally, we expect the computational time of the method M1 to scale cubically in

the number of sites. For method M2 we expect mn2, m being the number of iterations of

the conjugate gradient algorithm. However, the computational time of the method M3 is

expected to scale like mrn log(n).

3.2 Quality of the approximation

We assume that method M1 is computationally exact, as it is carried out using a direct

solver without matrix compression. Let fj, j = 1, 2, 3 denote the solutions of the three

different methods, and f , respectively fj, be the vector given by the evaluations of f ,

respectively fj, on a grid of size 802. In Table 1, we compare the computational error of

the three different methods by,

comp-errj = ∥f1 − fj∥2,

and obtain the expected result that comp-err3 ist slightly bigger due to compression.

Table 1: Computational error of the methods M2 and M3 compared with M1 for a grid of size
802.

Error j=2 j=3

comp-errj 2.6e-06 0.19

We also considered a sequence of grids with size ranging from 202 to 802, generated by a
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uniform distribution on the square (0, 1)× (0, 1) to compare the comp-errj, on logarithmic

scales (Figure 2).

−12

−8

−4

6 7 8
log(number of sites)

lo
g(

E
rr

or
 v

al
ue

)

comp−error2 comp−error3

Figure 2: comp-error of estimation of the coefficients by the M1, M2 and M3 method for
different sizes of the grid in logarithmic scale

Although the comp-err3 increases as the number of sites is increasing as well, the scale

of the error remains small.

To assess the interpolation performance of the three methods, we estimated the func-

tions using M1, M2, and M3 on a grid of size 802. Subsequently, we interpolated these

functions onto a new grid of size 402. For comparison purposes, we also applied the Franke’s

function to the spatial coordinates to obtain the “real” values (freal), and then compare the

interpolated function with those values using the Root Mean Square Error (RMSE) criterion,

rmsej =

√√√√ 1

n

n∑
i=1

(freal − fj)2

to measure the deviation of the STPS.

The three methods have similar structures, indicating that though the H-matrix does

not have the complete data, it gives us a good approximation of the interpolated function

(Figure 3). Additionally, the rmse value is the same for all three methods (Table 2).
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Table 2: rmse computed for M1, M2, and M3. The “real” values were obtained by applying the
Franke’s function to a grid of size 402.

M1 M2 M3

rmsej 0.01 0.01 0.01

xy

V
alues

M1

0.0

0.2

0.4

0.6

0.8

(a)

xy
V

alues

M2

0.0

0.2

0.4

0.6

0.8

(b)
xy

V
alues

M3

0.0

0.2

0.4

0.6

0.8

(c)

Figure 3: Spatial interpolation in a grid of 402 based on the functions calculated from the grid
of size 802 by M1 (a), M2 (b) and M3 (c) respectively.

3.3 Computational efficiency

We plot the computational time for solving the linear system using the three methods

mentioned before (also in logarithmic scales) for a sequence of grids with size ranging from

202 to 802 as well. As expected, the computational time of the method M1 scales cubically

in the number of sites. We use a fixed tolerance for the conjugate gradient algorithm, and

hence, as expected, the method M2 scales quadratically in the number of sites, while for
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method M3 we observe practically a linear growth (Figure 4).

●
●

●

●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

−6

−4

−2

0

2

4

6 7 8
log(number of sites)

lo
g(

tim
e)

●●● M1 M2 M3 Cubic Lineal

Figure 4: Time of estimation of the coefficients by the M1, M2 and M3 method for different
sizes of the grid in logarithmic scale.

We also show a comparison in computational time and the comp-error for a small

sequence of grids from 202 to 402. This analysis considered the base case with ε = 0.0001

and η = 2. After increasing the number of observations, here also the H-matrix (M3)

allows us a fast computation compared with other methods (Figure 5), and the error in the

last grid (40 × 40) remains relatively minimal in contrast to M1 (Table 3).

Table 3: Computational error of the methods M2 and M3 compared with M1 for a grid of 40 ×
40.

Error j=2 j=3

comp-errj 1.55e-06 0.05
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Figure 5: Time of estimation (left) and comp-error (right) for M1, M2 and M3 computed in
a small sequences of grids, both are represented on logarithmic scales.

3.4 Sensitivity analysis

Various scenarios were assessed to determine the effects of different compression parameters

in method M3 for spatial interpolation. The procedure outlined in subsection 3.2 was

employed for these evaluations.

We prescribed different values of the compression parameters ε and η and calculated

rmse (Table 4). We note that rmsej is almost constant if there is no compression present

regarding the base case. However, the deviation grows with lower degree of compression,

i.e., higher tolerance ε and/or admissibility parameter η. We also evaluated the computa-

tional performance (Figure 6) and errors comp-errorj (Figure 7) for all four cases given in

Table 4.
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Table 4: rmse for different compression parameters ε and η for interpolation purposes.

Cases parameters H-matrix rmse

Case 1 ε = 0.01, η = 5 0.01

Case 2 ε = 0.01, η = 10 0.01

Case 3 ε = 0.1, η = 5 822

Case 4 ε = 0.1, η = 10 7526
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Figure 6: Times of estimation for M1, M2 and M3 using different parametrizations of the H-
matrix
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Figure 7: comp-error for M2 and M3 compared with M1 using different parametrizations to
obtain the H-matrix

For cases 1 and 2, when the value of ε is close to the value of case base (ε = 0.0001), the

(rmse) is nearly the same. However, when this value is relaxed to expedite computation

(cases 3 and 4), the rmse increases significantly, regardless of the value of η.

Since the smoothing parameter λ controls the smoothness of the estimated function,

various scenarios for different values of this parameter are presented for method M3 evalu-

ating its influence in the interpolation. To this end, we employ rmse as evaluation metric.

As parameter ε controls the accuracy of the compressed matrix, we changed only the λ and

η values (Table 5).
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Table 5: rmse for different values of λ and η in M3

Smoothing parameter ε η rmse

λ = 1

0.0001 2

0.01

λ = 5 0.04

λ = 10 0.05

λ = 100 0.10

λ = 1

0.0001 5

0.01

λ = 5 0.04

λ = 10 0.05

λ = 100 0.10

λ = 1

0.0001 10

0.01

λ = 5 0.04

λ = 10 0.05

λ = 100 0.10

3.5 Monte Carlo simulation

To evaluate the uncertainty in the approximation of the function S(g), we perform a Monte

Carlo simulation for spatial locations in a square grid of 20 × 20 distributed uniformly.

Hence, the dense matrix is built in every iteration, and the Frank’s function was perturbed

adding an additional noise (ε ∼ N(0, 1)) in every iteration as well. The grid size was

selected to ascertain whether a limited number of spatial locations have implications in the

estimated function of M3.

The Figure 8 shows the distribution of 1000 iterations using the Monte Carlo method

for the sample median and sample interquartile range (IQR) for the function S(g) from M1

and M3, along with their means (solid lines) and standard deviations (dashed lines).
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Figure 8: Median (top) and IQR (bottom) distribution from the Monte Carlo simulations for
M1 and M3 respectively. The solid lines represents the mean of the distribution and the dashed
lines represents the standard deviations.

The distribution of the summary statistics (median and IQR) are similar between M1

and M3, this implies that M3 effectively approximates the function S(g) when contrasted

with M1 (exact method). Both M1 and M3 exhibit the same mean and standard deviation

values for their respective distributions of the median, namely -0.001 and 0.036. The

corresponding confidence interval is [-0.0038, 0.00072], lower and upper respectively.

Finally, as these statistics (median and IQR) have a probability distribution, we measure

their spreads by its variances (Table 6),

Table 6: Variances estimated for M1 and M3 from the samples of the Monte Carlo simulations.

Var(median) Var(IQR)

M1 0.001 0.01

M3 0.001 0.01

showing that the variances in the distributions of the median and IQR remain consistent

between M1 and M3.
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3.6 Additional comparisons

We also compare M3 with a thin plate spline regression (TPSR), which is available in the

R package “mgcv” (Wood (2011)). The methodology of TPSR is detailed in Wood (2003)

and Wood (2017). For the TPSR, the knots were chosen considering the grid itself. That

is, we use 20 knots for the grid of dimension 20× 20 and so on to consider 80 knots in the

grid of 80× 80.

The first comparison involves assessing the computational time required for the TPSR

and M3 (Figure 9).
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Figure 9: Time of estimation for the TPRS and M3 computed in a sequences of grids from 202

to 802, represented on logarithmic scales.

For this particular case, the plot show us that M3 outperforms TPSR in terms of

computational time for the selected grids. Finally, we interpolate a function on a new grid

with dimensions 402 using method M3 and TPSR (Figure 10).

20



xy

Values

TPSR

0.0

0.2

0.4

0.6

0.8

1.0

xy

Values

M3

0.0

0.2

0.4

0.6

0.8

1.0

Figure 10: Spatial interpolation in a grid of size 402 from the TPSR and M3 respectively.

The function interpolated by TPSR and M3 are quite similar, with the only distinction

being that in the former, values tend to be higher based on the structure of the function

on the new grid. Figure 11 shows the interpolation for both methods, alongside their cor-

responding confidence intervals. We can see that TPSR interpolation displays heightened

uncertainty towards the limits of the new grid, as it attempts to interpolate values right

up to its spatial domain boundaries. Conversely, M3 demonstrates a smoother behavior,

refraining from interpolating values at the extreme ends of the spatial domain.
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Figure 11: Spatial interpolation in a grid of size 402 from the TPSR and M3 respectively. In
both cases, the dotted lines represents the lower confidence interval and the upper confidence
interval.
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For the above, and considering the rmse, M3 demonstrates a similar statistical perfor-

mance than TPSR (Table 7).

Table 7: rmse for the interpolation of the TPSR and M3 in a grid of size 402.

TPSR M3

rmse 0.004 0.010

4 Discussion

We presented a fast method for computing a STPS for spatial data, based on an H-matrix.

Different simulations on distinct grid sizes, comparing the computational cost (in time) and

the error of estimation for three different methods were presented. In this comparative,

our proposal (M3) was most efficient in computational time and with an acceptable error

compared with the exact method (M1). Additional scenarios with a small number of

observations were considered for M3, and in all of them the approximations were similar to

the results obtained initially, that is, a fast computation and a small error. Furthermore,

Monte Carlo simulations were conducted to assess the uncertainty of the approximated

function when facing perturbations in the response variable and spatial locations. Finally,

a comparison between M3 and the TPSR revealed that, in the specific case of simulation,

data interpolation using M3 exhibits nearly equivalent statistical performance to TPSR.

While recent experiments have explored similar approaches (Litvinenko et al. (2019);

Chen and Stein (2021)), it’s important to note that these studies have primarily been con-

ducted under the assumption of an underlying spatial stochastic process, which is itself

determined by specific parameters defining its correlation structure. Furthermore, the es-

timation process was carried out utilizing the maximum likelihood method. Radial basis

functions are not commonly employed directly in spatial or spatiotemporal modeling; how-

ever, they have been utilized to approximate covariance matrices within the probabilistic

approach (Lindgren et al. (2011); Porcu et al. (2013); Nychka et al. (2015)).

One disadvantage of using SPTS for spatial interpolation is that it does not explicitly

assume a spatial correlation between the sites (locations), in contrast to Kriging, which

22



utilizes variogram to describe the degree of spatial dependence of a spatial random field

(Cressie (1989), Oliver et al. (2015)). For the above, it becomes challenging to ascertain

the distance at which the decay of spatial correlation initiates. However, it’s worth not-

ing that this aspect could also be considered a disadvantage for Kriging. This is because

the effectiveness of spatial interpolation using Kriging relies on an underlying model (var-

iogram) which, in turn, must be fitted using different correlation functions. On the other

hand, STPS exhibit flexibility in accommodating spatial locations without necessitating

the stringent assumption of stationarity, as the Kriging assumes (O’connell and Wolfinger

(1997)). Furthermore, the inclusion of a “smooth” component in its structure enables us

to assume the absence of singularities among the data points. This is a similar assump-

tion made in Kriging by introducing the nugget effect (Hutchinson and Gessler (1994)).

Regarding uncertainty in interpolation, Kriging provides a direct estimation of uncertainty

through the variance, a quantity that STPS does not calculate. The variance in 11 can

be estimated subsequent to fitting the spline model through Generalized Cross Validation

(GCV) method. In contrast, when applying Kriging, this variance is estimated prior to the

computation of the surface (Hutchinson and Gessler (1994)). Nevertheless, it is possible

to derive this uncertainty using Monte Carlo simulations, as demonstrated in the study as

well. In general, which method is more “appropriate” depends on the application and the

objectives of the analysis (Handcock et al. (1994), Ren-ping et al. (2016)).

The current work also allows us to research in other mathematical methodologies to

compress dense matrices, for example, using domain decomposition methods for scattered

data interpolation (Le Borne and Wende (2019)) or using a preconditioner to solve an

augmented linear system but viewed from a probabilistic perspective (Hennig et al. (2015);

Oates and Sullivan (2019); Cockayne et al. (2019)). Also we think that this is the first

step to use an H-matrix in the R software since it is also available in Matlab (Ho (2020)),

Python (Mikhalev and Oseledets (2016)) or Julia (Geoga et al. (2020)) as well. Today

to use an R code with an H-matrix is tricky, but all the machinery could be converted in

a package and be available for the users in the future, since R is an essential software for

statistical analysis.
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A Appendix A

We aim to solve the augmented linear system expressed in Equation (10). The matrix

on the left-hand side of this system is not positive definite, and neither is the sub-matrix

E + λI. However, E + λI is positive definite in the subspace {c ∈ Rn | P⊤c = 0}, since

in this case

cT (E + λI)c = cTEc+ λ||c||22 = J(g) + λ||c||2 ≥ λ||c||2. (12)

We separate the set of sites S = {x1, . . . ,xn} into two sets S1 = {xi, i = 1, ..., n − 3}

and S2 = {xn−2,xn−1,xn}. Without loss of generality, we can assume that the points in S2

are not collinear. We write accordingly c = (c1, c2) and y = (y1,y2) and the linear system

in Equation (10) becomes


E11 + λI E12 P1

E21 E22 + λI P2

P⊤
1 P⊤

2 0




c1

c2

d

 =


y1

y2

0

 , (13)

where E11+λI ∈ R(n−3)×(n−3) and E22+λI ∈ R3×3. Note that P2 is invertible because

the points in S2 are not collinear, and so

E22 + λI P2

P⊤
2 0


is invertible. Given the above, we can use the Schur complement to write
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(E11 + λI)c1 −
(
E12 P1

)E22 + λI P2

P⊤
2 0


−1E21

P⊤
1

 c1

= y1 −
(
E12 P1

)E22 + λI P2

P⊤
2 0


−1y2

0


(14)

The matrix of this linear system

M = E11 + λI −
(
E12 P1

)E22 + λI P2

P⊤
2 0


−1E21

P⊤
1


is obviously symmetric. Furthermore, it is positive definite, since for 0 ̸= c1 ∈ Rn−3 we

have

Mc1 = (E11 + λI)c1 +

(
E12 P1

)E22 + λI P2

P⊤
2 0


−1−E21c1

−P⊤
1 c1


= (E11 + λI)c1 +

(
E12 P1

) −P−⊤
2 P⊤

1 c1

−P−1
2 E21c1 − P−1

2 (E22 + λI)(−P−⊤
2 P⊤

1 )c1


= (E11 + λI)c1 +E12(−P−⊤

2 P⊤
1 )c1 + (−P1P

−1
2 )E21c1 + (−P1P

−1
2 )(E22 + λI)P−⊤

2 P⊤
1 c1

We conclude that

c⊤1 Mc1 =

 c1

−P−⊤
2 P⊤

1 c1


⊤

(E + λI)

 c1

−P−⊤
2 P⊤

1 c1

 ,

and hence M is positive definite since Equation (12),
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P⊤

 c1

−P−⊤
2 P⊤

1 c1

 = 0.
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