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Abstract: The study of entanglement in gauge theories is expected to provide insights into
many fundamental phenomena, including confinement. However, calculations of quantities
related to entanglement in gauge theories are limited by ambiguities that stem from the
non-factorizability of the Hilbert space. In this work we study lattice gauge theories that
admit a dual description in terms of spin models, for which the replica trick and Rényi
entropies are well defined. In the first part of this work, we explicitly perform the duality
transformation in a replica geometry, deriving the structure of a replica space for a gauge
theory. Then, in the second part, we calculate, by means of Monte Carlo simulations, the
entropic c-function of the Z2 gauge theory in three spacetime dimension, exploiting its dual
description in terms of the three-dimensional Ising model.
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1 Introduction

Entanglement is a key feature of quantum systems [1–4] and has a very broad range of
implications, ranging from those in condensed-matter physics [5–7] to those relevant for
high-energy theory, black-hole physics, and holography [8–26]. Finally, entanglement is
also an important quantum resource in quantum information theory [27, 28]: for example,
entanglement distillation can be used in quantum error-correction [29, 30].

In general, defining entanglement measures for multipartite and mixed states involves
some difficulties [31], but in the case of bipartite entanglement for pure states there exist
well established measures, among which the entanglement entropy is one of the most stud-
ied. Entanglement entropy can be thought of as the amount of entropy associated with
the degrees of freedom in a spatial region A of a quantum system, and is usually defined
in terms of the von Neumann entropy S = − Tr(ρA ln ρA) of the reduced density matrix
ρA, obtained by tracing the density matrix ρ of the system over the degrees of freedom of
the complement of A (that we denote as B): ρA = TrB ρ. It should be noted that this
definition involves non-trivial subtleties [32]: in particular, it relies on the hypothesis that
the Hilbert space of the theory factorizes into a direct product of the Hilbert spaces defined
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for the subsystem A and for its complement, H = HA ⊗HB, which, strictly speaking, is not
satisfied for a quantum field theory in continuum, nor for gauge theories—not even when
they are regularized on a lattice. When the factorization of the Hilbert space holds, the
entanglement entropy can be expressed as the n → 1 limit of the Rényi entropy of order n

associated to the subsystem A:

Sn = 1
1 − n

ln Tr ρn
A. (1.1)

In quantum field theories the entanglement entropy is affected by ultraviolet divergences:
for highly excited states the divergence is proportional to the spatial volume of the sys-
tem, whereas ground states exhibit the so-called “area law” [33], namely the ultraviolet
divergence is proportional to the area of the entangling surface ∂A separating A and B.
Therefore, a proper regularization is required, in order to identify the subleading contribu-
tions, which encode important physical information about the “resolution scale” at which
the degrees of freedom of the system are probed [18, 19, 34–38], the geometry of the sys-
tem [39–43] and the nature of the state itself [44]. For a system defined in D = d + 1
spacetime dimensions, it is then convenient to consider a geometry in which the entangling
surface does not depend on the size of the subsystem A; a common choice is the slab ge-
ometry, in which A is maximally extended in all space-like directions except for the one
separating A and B, where it has a finite size l. One can then define the ultraviolet-finite
entropic (Rényi) c-function as [45–47]

Cn(l) = lD−1

|∂A|
∂Sn

∂l
, (1.2)

where |∂A| denotes the area of the entangling surface. It has been proven in a large number
of cases that the entropic c-function is monotonically decreasing along the renormalization
group flow [35, 47–49], providing a measure of the effective number of degrees of freedom
of a theory [50].

Calculations of such highly non-local quantities are typically challenging, both analyt-
ically and numerically. A tool which is commonly used is the replica trick [2, 51], which
allows to express the trace of a power of the reduced density matrix appearing in eq. (1.1)
in terms of ratios of partition functions,

Tr ρn
A = Zn

Zn
, (1.3)

where Zn denotes the product of the partition functions of n independent copies of the
system, while Zn is the partition function of the theory defined on a Riemann surface,
obtained connecting different replicas together through a cut corresponding to the subsys-
tem A at fixed time. The manifold thus defined has a conical singularity corresponding
to the entangling surface ∂A. This method, originally designed for analytical calculations,
has also been implemented in lattice simulations [52–75]. On a Euclidean lattice, the
replica geometry is directly implemented by means of different boundary conditions along
the Euclidean-time direction for the subsystem A and for its complement B, namely the
period of A is n times the period of B.
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Another approach that is widely used in literature to study the entanglement entropy
of theories that admit a holographic dual [76–78] is to use the Ryu–Takayanagi formula [12–
15, 45], which relates the entanglement entropy of a theory defined on the boundary to
minimal-area surfaces extending in the bulk. This approach led to important predictions
for the behavior of entanglement in strongly coupled gauge theories. In particular, in
ref. [79] it was conjectured that entanglement can be a probe to study the phenomenon of
confinement (see also refs. [80–83]); this possibility has been investigated numerically, by
means of Monte Carlo lattice simulations, in SU(N) gauge theories [52–54, 58, 59, 66, 68].

A non-trivial aspect in the study of entanglement entropy in gauge theories, however,
is the ambiguity of the definition itself in the presence of a local symmetry. Gausß’s law and
consequently the non-local constraint defining physical states makes the physical Hilbert
space of a gauge theory non-factorizable. This problem has been extensively discussed in the
literature, and different definitions of entanglement entropy have been proposed [53, 84–
99], among which two approaches are most commonly used: one can either extend the
Hilbert space of states, including gauge non-invariant ones to ensure factorizability; or
work at the level of the algebra of observables defined over a specific region, specifying
which generators have to be included in region A and which ones in its complement. It
turns out that for some choices of the algebras the two approaches are equivalent [94], and
lead to the following general result: the trace which defines the entanglement entropy splits
into the sum of different contributions, labeled by the eigenvalues of the operators at the
boundary between the system A and its complement, which in general belong to the center
of the algebra of observables of A. As a result, in Abelian gauge theories defined on the
lattice the entanglement entropy admits the following decomposition

S = −
∑

k

p(k) ln p(k) −
∑

k

p(k)S(ρ(k)
A ), (1.4)

where k labels different sectors, determined by the eigenvalues of the boundary operators,
p(k) denotes the probability for the sector k, while S(ρ(k)

A ) is the Shannon entropy of the
reduced density matrix restricted to the sector k. For theories based on a non-Abelian
gauge group, eq. (1.4) includes a further term, which is related to the dimension of the
representation of the electric flux at the boundary.

From eq. (1.4) one might worry that the entropy thus defined is not really quantifying
the entanglement between two subsystems, since only the second term is distillable, while
the first one is related to the classical probability distribution of the eigenvalues of the
boundary operators, which depends on the specific (and somehow arbitrary) choice of
operators that are included in A. While this ambiguity is indeed present on the lattice, in
refs. [86, 100, 101] it was shown that, in the continuum limit, suitably regularized quantities,
such as the mutual information or relative entropies, as well as the universal information
encoded in the entanglement entropy, do not get contributions from the classical part of
eq. (1.4) (which depends on high-momentum modes localized close to the boundary), and,
therefore, are independent from the choice of boundary operators.

These subtleties in the definition of the entanglement entropy imply that the replica
trick itself presents some ambiguities for gauge theories; in particular, working with the
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lattice regularization in the Feynman path-integral approach, the problem translates in
how to treat the entangling surface where different replicas are joined together.

In this work we address one facet of this problem, focusing on the construction of
a replica space for gauge theories through a duality transformation. For gauge theories
defined in three spacetime dimensions, the latter can be carried out through a Kramers–
Wannier transform [102, 103], which maps the gauge theory to a spin system. It is well
known that such dualization is not straightforward when the gauge theory is defined on a
space with a boundary and there exist operators (including, in particular, those defining
Gausß’s law) defined on the boundary. However, it was shown in different works [96, 99–101]
that, even though the entanglement entropy is not preserved by the duality transformation,
its universal part, encoded in the entropic c-function, is exactly mapped in the continuum
limit.

In the first part of this work, we explicitly perform the duality transformation starting
from a spin model defined on a lattice in three spacetime dimensions with an arbitrary
positive integer number of replicas, to derive the corresponding geometry for the dual gauge
theory. As we discuss in what follows, the physical results we obtain from our construction
are purely geometric, namely they do not depend on the degrees of freedom of the theory
(nor on the details of how they are assigned to A or B); rather, the duality transformation
gives us a well-defined prescription on how to implement a conical singularity on the lattice.
The logical scheme of how the direct and the dual formulation of a theory are connected
with each other, in the Hamiltonian and in the Lagrangian formalisms, is summarized in
fig. 1 (which also includes the references to previous literature, in which the various aspects
discussed herein were studied).

Then, in the second part of this work, we make use of the Kramers–Wannier duality
in a complementary way: by means of Monte Carlo simulations, we calculate the entropic
c-function of the second Rényi entropy of the three-dimensional Ising model, which is dual
to the Z2 gauge theory. This allows one to study the entanglement content of the ground
state of a strongly coupled gauge theory and to test the predictions that were derived from
the gauge/gravity correspondence in ref. [79] in a particularly simple (albeit non-trivial)
system. The results we obtain are consistent with such predictions and with similar recent
studies in low-dimensional gauge theories [104].

The structure of the article is the following. In section 2 we review the generalities
about the duality transformation, and discuss its formulation in the presence of replicas;
we mostly focus on the case of the Ising model, considering both the case of two and three
spacetime dimensions, but we also discuss the extension of our results to other gauge the-
ories, including U(1) and ZN gauge theories (and briefly comment on the generalization to
higher dimensions and to non-Abelian gauge theories). Section 3 illustrates the connection
between the Hamiltonian and the Lagrangian formulations in the presence of replicas, with
a detailed discussion of the (1+1)-dimensional Ising model case study, while section 4 is de-
voted to a Monte Carlo study of the entropic c-function of the three-dimensional Z2 gauge
theory. Finally, in section 5 we discuss our findings and comment on its possible generaliza-
tions. The appendix contains a discussion of the rôle of boundary conditions in the duality
transformation (section A), a study of the dual replica space for other two-dimensional spin
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Hamiltonian

Lagrangian

Spin model
(e.g., D = 3 Ising model)

Dual model
(e.g., D = 3 Z2 gauge theory)

Cn

with HA ⊗ HB

Zn

replica trick
+

discretization

this work
Z⋆

n

C⋆
n

superselection
sectors

Casini and Huerta [100];
Radičević [96];

Moitra, Soni, and Trivedi [101]

Lin and Radičević [99];
this work

Figure 1: Starting from a spin model in the Hamiltonian formalism, one can derive
the replica geometry of the dual theory following two different paths, which yield equivalent
physical results. One consists in discretizing the replica space first, and then performing the
duality transformation in the Lagrangian formulation: this is worked out in this article in
section 2. Alternatively, one can transform the spin system at the Hamiltonian level (effects
of the duality transformation on universal information encoded in the entanglement entropy
were discussed in refs. [96, 100, 101]), introduce the replicas as described in ref. [99] and
discretize the resulting system. This approach is discussed in this work in section 3.

models (section B), a derivation of the spin theory dual to the three-dimensional U(1) gauge
theory (section C), and some technical details about our numerical simulations (section D).

2 Duality transformation

In this section we discuss the duality transformation for a Euclidean lattice including
replicas, with a specific focus on the Ising model in two and in three dimensions. We
first review the generalities about the Kramers–Wannier duality in subsection 2.1, then in
subsection 2.2 we present the detailed derivation of the duality transformation for a replica
geometry, also commenting on the physical and unphysical contributions to the Rényi
entropies defined in the direct and in the dual formulation. Finally, we briefly discuss the
generalization to other Abelian models in subsection 2.3 and the case of higher dimensions
and non-Abelian theories in subsection 2.4.

2.1 Review of the duality transformation

Let us first review the Kramers–Wannier duality transformation, following ref. [105]; for
simplicity, we discuss the case of the Ising model defined on an isotropic square (in D = 2
dimensions) or cubic (for D = 3) lattice with |Λ| sites. In what follows, we consider a lattice
of arbitrarily large extent in all directions, so that the choice of boundary conditions is
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immaterial; the case of a finite-extent lattice, with either periodic or antiperiodic boundary
conditions in each of the main directions, will be discussed in the appendix A.

Starting from the partition function of the Ising model

Z(β) =
∑
{σ}

exp
(

β
∑

i

∑
µ

σiσi+µ̂

)
, (2.1)

where the variables σi ∈ {1, −1} are defined on the sites of the lattice, and µ ranges over
the main directions of the lattice, by defining the function

Ck(β) = cosh(β) · {1 + k[tanh(β) − 1)]} for k ∈ {0, 1} (2.2)

(which equals cosh β for k = 0, and sinh β for k = 1), and introducing integer-valued
variables ki,µ, associated with the oriented bonds between nearest-neighbor sites on the
lattice, eq. (2.1) can be recast in the form

Z(β) =
∑
{σ}

∏
i,µ

∑
ki,µ=0,1

Cki,µ
(β)(σiσi+µ̂)ki,µ . (2.3)

By rearranging the product of σi terms to isolate each of them, one obtains

Z(β) =
∑
{k}

∏
i,µ

Cki,µ
(β)

∑
σi

σ

∑
i

ki,µ

i =
∑
{k}

∏
i,µ

Cki,µ
(β)2δ2

(∑
i

ki,µ

)
, (2.4)

where
∑

i ki,µ denotes the sum over the ki,µ on all links touching site i, and δ2 is the
Kronecker delta modulo 2.

The constraint expressed by the latter can be enforced by means of a (discretized)
Bianchi identity, by introducing a dual lattice, whose sites are displaced by half a lattice
spacing in each direction with respect to the sites of the original lattice. To this purpose,
let us first define

β⋆ = −1
2 ln tanh β. (2.5)

In D = 2, assigning si ∈ {1, −1} variables to the sites of the dual lattice, the constraint
in eq. (2.4) is then satisfied by setting

ki,µ = 1 − sisi+ν̂

2 , with ν ̸= µ. (2.6)

Note, however, that the mapping between configurations of the s variables and configu-
rations of the k variables is surjective, but not injective: configurations of the s variables
that differ by an overall sign flip correspond to the same configuration of the k variables.
Taking into account this overcounting by a factor 2, and using eq. (2.6) in eq. (2.2), the
partition function takes the form

Z(β) = 1
2[sinh(2β⋆)]−|Λ|∑

{s}

∏
i,µ

exp(β⋆sisi+µ̂) = 1
2[sinh(2β⋆)]−|Λ|Z(β⋆). (2.7)
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0̂

1̂

AB B AB B

Figure 2: Two-dimensional replica space. The vertical direction is the Euclidean-time
direction, while the horizontal one is the spatial one. The red wavy line represents the cut;
green links connect spins in different replicas, therefore the periodicity of the lattice in the
subsystem A is n times the periodicity in subsystem B.

Equation (2.7) shows that in two dimensions the partition function of the Ising spin model,
evaluated at coupling β, coincides (up to a trivial normalization factor) with the partition
function of the same model, evaluated at the dual coupling β⋆.

For the D = 3 Ising model, instead, eq. (2.4) can be rewritten by defining a set of
variables Ui,µ ∈ {1, −1} on the links of the dual lattice, and setting

ki,µ =
1 − Ui,νUi+ν̂,λUi+λ̂,−νUi,−λ

2 , with µ, ν and λ all different. (2.8)

With manipulations analogous to those for the D = 2 case, and denoting the product of
four Ui,µ variables around a plaquette as U□, one obtains

Z(β) =
∑

{U}
∏

□ exp(β⋆U□)

2− |Λ|
2 −Ng [sinh(2β⋆)]−

3|Λ|
2

= Zgauge(β⋆)

2
|Λ|
2 +Ng [sinh(2β⋆)]

3|Λ|
2

. (2.9)

As in D = 2, the mapping between configurations of the U variables and configurations of
the k variables is not a bijective one. In this case, each configuration of the k’s corresponds
to 2Ng configurations of the U ’s, that differ from each other only by gauge transformations
(i.e., by flips of the signs of the U ’s on all of the links touching a site): here Ng denotes
the number of different U variables that can be set to a chosen value (say, 1) purely by
gauge transformations, i.e., the number of links in a maximal tree on the lattice; note that
Ng is strictly smaller than |Λ|. Equation (2.9) shows that, up to an overall normalization
factor, the partition function of the D = 3 Ising model evaluated at coupling β equals the
partition function of the three-dimensional Z2 gauge theory, evaluated at coupling β⋆.

2.2 Duality in the presence of replicas

Let us now discuss the generalization of the duality in the presence of a set of replicas.
Note that our presentation in this subsection is strictly a geometric one, while section 3
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contains a more detailed discussion about how a more algebraic approach can be mapped
to the construction that we present here, and how the various degrees of freedom of the
theory are encoded in this setup.

The geometry we are interested in is the one of n replicas connected through a cut, and
let us first consider the two-dimensional case, as sketched in fig. 2. In a replica geometry,
the expression (2.4) still holds, since its derivation is only based on the nearest-neighbor
nature of the interaction and is independent from the geometry of the lattice. The difference
in the duality transformation is in the representation of the ki,µ variables that satisfy the
constraint; clearly, the introduction of a cut does not affect the duality transformation
for links not crossed by the cut, since the transformation only involves nearest-neighbors
spins in the dual lattice and the links in the direct lattice separating them. Moreover, the
duality transformation remains unchanged also for links crossed by the cut that are far
from the cut boundary.1 The only difference arises at the edges of the cut; in particular,
in two dimensions the dual lattice has sites exactly at (the lattice analogue of) the branch
points of the replica space. Consider, for example, the cartoon in fig. 3, where two of the
n replicas are depicted: the equation expressing the constraint associated with the site i

of the direct lattice, in the replica labeled 1, is

k
(1)
i,0 + k

(1)
i,1 + k

(1)
i−0̂,0 + k

(1)
i−1̂,1 = 0. (2.10)

Proceeding as in subsection 2.1, and denoting the site of the dual lattice in the lower left
corner of the plaquette surrounding i as j, one gets

k
(1)
i,0 =

1 − s
(2)
j+0̂s

(2)
j+0̂+1̂

2 , k
(1)
i,1 =

1 − s
(2)
j+0̂+1̂s

(1)
j+1̂

2 ,

k
(1)
i−0̂,0 =

1 − s
(1)
j s

(1)
j+1̂

2 , k
(1)
i−1̂,1 =

1 − s
(1)
j s

(1)
j+0̂

2 ,

and similar relations on the other replicas. Clearly, the constraint is satisfied if and only if
the spins defined on the branch-point sites of all replicas coincide: s

(1)
j+0̂ = s

(2)
j+0̂ = · · · = s

(n)
j+0̂,

meaning that the sites lying on (the lattice counterpart of) the conical singularity of the
replica manifold belong to all replicas, hence on a square lattice they have 4n nearest
neighbors. Thus, the partition function of the system with n replicas can be written as

Zn(β) = 2n|Λ|−1∑
{s}

n∑
r=0

∏
i,µ

C
1−s

(r)
i

s
(r)
i+µ̂

2

(β) = Z⋆
n(β⋆)

2[sinh(2β⋆)]n|Λ| , (2.11)

where Z⋆
n(β⋆) denotes the partition function of a system in which the spins defined on the

branch points have 4n nearest neighbors. In fact, the enlarged number of nearest neighbors
close to a branch point has been pointed out before [106]. Note that for a finite lattice
with specific boundary conditions eq. (2.11) is expected to get contributions from different
topological sectors, as discussed in detail in section A of the appendix.

1This is related to the fact that the exact location of the cut is irrelevant.
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s
(1)
j+0̂ s

(1)
j+1̂+0̂

s
(1)
j+1̂s

(1)
j

k
(1)
i,1

k
(1)
i−0̂,0

k
(1)
i−1̂,1

k
(n)
i,0

i

k
(1)
i,0

s
(2)
j+0̂ s

(2)
j+0̂+1̂

s
(2)
j+1̂s

(2)
j

k
(2)
i,1

k
(2)
i−0̂,0

k
(2)
i−1̂,1

k
(1)
i,0

i

k
(2)
i,0

Figure 3: Structure of the dual lattice close to a branch point (red dot).

Using eq. (2.7) and eq. (2.11), one can derive an explicit relation between the Rényi
entropies in the direct and in the dual formulation of the model:

Zn(β)
Zn(β) = 2n−1 Z⋆

n(β⋆)
(Z⋆(β⋆))n

, (2.12)

which leads to

S⋆
n(β⋆) = ln 2 + Sn(β), (2.13)

therefore the Rényi entropies evaluated in the direct and in the dual formulation are not
equal: note, however, that their difference can be traced back to the factor 1

2 arising from
the change of variables from k to s and therefore it is related to the lattice degrees of freedom
we are using to describe the model, which is clearly an unphysical piece of information.
By contrast, the entropic c-function, which is a quantity encoding physical information, is
unaffected by the additive constant ln 2 and we get

C⋆
n(l, β⋆) = Cn(l, β), (2.14)

where l denotes the length of the cut.
It is straightforward to carry out the dualization in the presence of replicas for the

three-dimensional Ising model, too. In this case (see the sketch in fig. 4) the “cut” is
actually a surface, and the conical singularity is a line where the cut ends. As for the
two-dimensional model, the way the duality maps degrees of freedom in the direct and in
the dual formulation is not affected by the presence of conical singularities, for spins far
enough from them. Consider, for example, the site i in the direct lattice shown in fig. 4;
in the first replica, the Kronecker delta constraint is of the form

k
(1)
i,0 + k

(1)
i−0̂,0 + k

(1)
i,1 + k

(1)
i−1̂,1 + k

(1)
i,2 + k

(1)
i−2̂,2 = 0. (2.15)
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σ
(1)
i

j
k

(1)
i−2̂,2

k
(1)
i,2

k
(1)
i,1k

(1)
i−1̂,1

k
(1)
i−0̂,0

k
(1)
i,0

k
(n)
i,0

0̂ 2̂
1̂

σ
(2)
i

j
k

(2)
i−2̂,2

k
(2)
i,2

k
(2)
i,1k

(2)
i−1̂,1

k
(2)
i−0̂,0

k
(2)
i,0

k
(1)
i,0

Figure 4: Duality transformation in a replica space. The solid line is the entangling surface
along the links of the dual lattice, the red region is the cut, the red dot the intersection
between the link between the sites i and i + 0̂ and the cut.

Repeating the construction carried out in subsection 2.1, one obtains

k
(1)
i,0 =

1 − U
(2)
j+0̂,1U

(2)
j+0̂+1̂,2U

(2)
j+0̂+2̂,1U

(2)
j+0̂,2

2 , k
(1)
i−0̂,0 =

1 − U
(1)
j,1 U

(1)
j+1̂,2U

(1)
j+2̂,1U

(1)
j,2

2 ,

k
(1)
i,1 =

1 − U
(1)
j+1̂,2U

(1)
j+1̂+2̂,0U

(2)
j+1̂+0̂,2U

(1)
j+1̂,0

2 , k
(1)
i−1̂,1 =

1 − U
(1)
j,0 U

(1)
j+0̂,2U

(1)
j+2̂,0U

(1)
j,2

2 ,

k
(1)
i,2 =

1 − U
(1)
j+2̂,1U

(1)
j+2̂+1̂,0U

(2)
j+2̂+0̂,1U

(1)
j+2̂,0

2 , k
(1)
i−2̂,2 =

1 − U
(1)
j,1 U

(1)
j+1̂,0U

(2)
j+0̂,1U

(1)
j,0

2 .

Inspecting the previous equations we can notice that gauge fields U
(1)
j+0̂,2 and U

(2)
j+0̂,2, the ones

lying on the conical singularity, appear only once in eq. (2.15). Therefore the constraint
is satisfied if U

(1)
j+0̂,2 = U

(2)
j+0̂,2. This is true for all gauge fields on the entangling surface.

Therefore in the dual replica space the gauge fields lying on the conical singularity are
common to all replicas and they appear in the action in 4n different plaquette terms, 4 for
each replica. Note that this construction can be performed independently for each link of
the entangling surface, and is independent from the shape of the latter.

The presence of gauge fields shared among different replicas has some constraints on
the gauge transformations that leave the physical properties of the system invariant. In
particular, there exist plaquette terms that can be schematically written as UedgeU

(r)
staple,

where Uedge is the gauge field on the conical singularity and U
(r)
staple is a staple in replica r

forming a plaquette together with Uedge. The presence of such terms requires that gauge
transformations performed on the sites along the entangling surface have to act on all
replicas. More precisely, a gauge transform on a site on the entangling surface acts upon
(4n + 2) gauge fields: the 4n links orthogonal to the conical singularity attached to that
point, and the two links along the entangling surface shared by all replicas. This restriction
on the possible gauge transformations in a replica space was also noted in the context of
SU(N) gauge theories [97, 107].
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An interesting implication of the geometry of the entangling surface is that it is possible
to define Wilson loops belonging to different replicas, passing through sites on the conical
singularity. These loops are closed in the full replica space, but looking at the single replica
they appear to be open, with both endpoints on the entangling surface.

We can now write down the expression of the duality transformation in replica space:
for a connected entangling surface made of |∂A| lattice sites, we have

Zn(β) = 2(n−1)(|∂A|−1)2− |Λ|n
2 −Ngn(sinh 2β⋆)− 3|Λ|n

2 ZZ2
n (β⋆), (2.16)

where ZZ2
n is the partition function of the gauge model in the geometry that we discussed.

Note that the factor 2(n−1)(|∂A|−1) is a correction related to the number of gauge transforms
which can be performed in this geometry. As for the two-dimensional case, also here for a
sufficiently large system one can neglect the rôle of boundary conditions and the non-trivial
topological implications they entail.

Combining eq. (2.9) with eq. (2.16), one can derive the expression for the Rényi entropy
of the dual gauge theory

SZ2
n (β⋆) = (|∂A| − 1) ln 2 + Sn(β). (2.17)

The difference between the Rényi entropies in the gauge and in the spin theories is the
presence of a ultraviolet-divergent term proportional to the length of the entangling sur-
face, therefore contributing to the area law. This term makes the Rényi entropy of the
gauge theory larger than the one of the Ising model, as was already pointed out in the
literature [108]. The origin of this difference stems from the constraint on the number of
possible gauge transforms that can be defined in a system with replicas, and results into
a multiplicative constant affecting the partition function for the dual gauge theory, which
obviously does not carry any physical information. Indeed, one can also note that the term
|∂A| − 1 depends on the gauge choice at the entangling surface, as was also discussed in
refs. [86, 91, 98]. Like in the D = 2 case, physical information can be obtained from a
suitably defined entropic c-function, in which the area law term cancels out; in D = 3 if
the length of the entangling surface does not depend on the size of the region A, as in the
slab geometry, the entropic c-function can be simply defined according to eq. (1.2), and
one gets

CZ2
n (l, β⋆) = Cn(l, β). (2.18)

Even though the first term appearing in eq. (2.17) is unphysical, it is worth inspecting
it further. In particular, in the high-temperature limit of the spin model, β → 0 (which
corresponds to the weak-coupling limit β⋆ → ∞ of the gauge theory), the Rényi entropy
reads

Sn(β = 0) = 0, SZ2
n (β⋆ → ∞) = (|∂A| − 1) ln 2, (2.19)

which is the result obtained with different definitions of entanglement entropy in Hamilto-
nian lattice gauge theories [53, 84, 86, 87, 91, 93, 94, 96, 99]; in particular the − ln 2 term
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appearing on the right-hand side of eq. (2.19) corresponds to the topological entanglement
entropy [3, 109].

It is also worth noting that, in the opposite limit (β → ∞, or β⋆ → 0) the result one
would naïvely obtain is not the same as the Hamiltonian formalism:

Sn(β → ∞) = ln 2, SZ2
n (β⋆ = 0) = |∂A| ln 2 (2.20)

(which is different from the expected value SZ2
n (β⋆ = 0) = 0): this mismatch is simply due

to the fact that in the ordered, low-temperature phase of the Ising model it is no longer
justified to assume that the topologically inequivalent sectors induced by the different
possible boundary conditions can be neglected in the duality transformation. We present
a more detailed discussion about this point in section A of the appendix.

Before concluding this subsection, we would like to point out a possible generalization
of the duality transformation for the three-dimensional Ising model in the presence of
replicas.

So far, we assumed the entangling surface to lie on the lattice dual to the Ising model,
that is, to be placed along the links of the dual gauge theory. However, it is also interesting
to analyze a geometry in which the entangling surface lies on the links of the spin model; in
this case there are spin degrees of freedom on the conical singularity. From the discussion
of the D = 2 case, we know that such degrees of freedom are shared among all replicas,
and have a larger number of nearest neighbors, which here is (4n + 2), of which 4n in the
directions orthogonal to the entangling surface and 2 along the conical singularity.

As before, let us focus on the duality transformation close to the entangling surface.
Consider a link in the direct lattice connecting two spins on the conical singularity, which
is shared by all replicas: the dual plaquette orthogonal to that link has an edge, oriented in
the Euclidean-time direction, that crosses the cut, therefore the plaquette, before closing
on itself, has to loop around the conical singularity n times. The link variable in the direct
lattice is therefore represented as

kedge = 1 − U□×n

2 , (2.21)

where U□×n denotes the closed loop of length 4n that winds around the conical singu-
larity. Note that the presence of two such loops of length 4n is necessary to satisfy the
Kronecker-delta constraint around a point of the direct lattice with an enhanced number
of nearest neighbors: for the 4n links touching a site on the conical singularity one can
make the usual duality transformation according to eq. (2.8), but then there are only two
link variables to be adjusted, such that in the sum

∑
i ki,µ all gauge variables appear twice.

As a consequence, the two k variables along the conical singularity must be built from
a larger number of gauge variables. Note that this geometry was already discussed in
ref. [92], whose authors carried out a strong-coupling calculation of the Rényi entropy in
this “central-plaquette” geometry, where the central plaquettes are the ones encircling the
conical singularity.

In this case, the relation between the spin and the gauge partition functions reads

Zn(β) = 2
1
2 (n−1)|∂A|− 1

2 |Λ|n−Ngn(sinh 2β⋆)− 3
2 |Λ|n+ n−1

2 |∂A|ZZ2
n (β⋆), (2.22)
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Replica 1 Replica 2

Figure 5: Central-plaquette geometry. The blue loop crosses the cut (red surface) and
therefore has length 4n, where n is the number of replicas.

where Zn and ZZ2
n are the partition functions for the spin system and for the gauge model

with the geometries discussed in the present section, that are different from the ones ap-
pearing in eq. (2.16). In this central-plaquette geometry, the relation between the Rényi
entropies associated with the spin model and with the gauge theory reads

SZ2
n (β⋆) = −1

2 |∂A| ln sinh(2β)
2 + Sn(β), (2.23)

which is different with respect to eq. (2.17), but, again, the difference consists of unphysical
terms and eq. (2.18) still holds.

2.3 U(1) and ZN models

The construction described above can be readily generalized to other Abelian gauge theories
defined in three spacetime dimensions. In particular, here we will discuss the case of the
U(1) gauge theory (and briefly comment on the generalization to ZN gauge theories, too).

The U(1) gauge theory is defined by the action

ZU(1) =
∫

DU exp
(

β
∑
□

Re U□

)
, (2.24)

where U□ ≡ Ui,µUi+µ̂,νU †
i+ν̂,µU †

i,ν , and each link variable Ui,µ is an element of the U(1)
group. We can equivalently write Ui,µ = exp(iθi,µ) and directly work with the algebra-
valued variables θi,µ,

ZU(1) =
∫

Dθ exp
(

β
∑
□

cos θ□

)
, (2.25)

having defined the discretized exterior derivative of the θ variables as θ□ ≡ θi,µ + θi+µ̂,ν −
θi+ν̂,µ − θi,ν . The theory admits a dual description in terms of a non-compact, integer-
valued spin model, with degrees of freedom {ϕ}; an explicit derivation of the duality is
reported in section C of the appendix. The partition function of the spin model reads

Z =
∑
{ϕ}

∏
i,µ

I∆µϕi
(β), (2.26)
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where Iν(β) is a modified Bessel function of the first kind. Our purpose is to use the duality
transformation to derive the (geometric) structure of the replica space of a gauge theory,
starting from a spin system. It is therefore useful to reverse the derivation presented in
section C of the appendix to obtain the U(1) model as the theory dual to the spin system
with the partition function in eq. (2.26), before extending it to a replica geometry.

Using a well-known property of modified Bessel functions of the first kind

In(β) = 1
π

∫ π

0
dxeβ cos x cos(nx) = 1

2π

∫ π

−π
dxeβ cos x+inx, (2.27)

the partition function in eq. (2.26) can be rewritten as

Z ∝
∑
{ϕ}

∏
i,µ

∫
Dki,µ exp(β cos ki,µ + i∆µϕiki,µ) (2.28)

=
∫

Dk
∏
i,µ

exp(β cos ki,µ)
∑
ϕi

exp
(

−iϕi

∑
i

∆µki,µ

)
∝ (2.29)

∝
∫

Dk
∏
i,µ

exp(β cos ki,µ)δ
(∑

i

∆µki,µ

)
. (2.30)

Now ki,µ is a continuous and periodic link variable and the argument of the Kronecker
delta involves the sum over the six links touching site i. The constraint is satisfied if one
takes

ki,µ = θ□, (2.31)

where □ is the orthogonal plaquette in the dual lattice.
In the presence of replicas, the duality transformation can be generalized along the

lines that we discussed for the three-dimensional Ising model; the geometry we consider
is the same as in fig. 4, but with ϕ variables instead of σ ones. The constraint associated
to the site i of the left replica is again expressed by eq. (2.15). Note that, with the cut
placed as in fig. 4, all links along the 0 direction (both in the direct and in the dual lattice)
intersect the cut, and therefore are shared between different replicas. As a consequence, a
plaquette in the dual lattice that lies along the 0 direction has some links in replica 1 and
some in replica 2. Imposing eq. (2.31) as a solution of the constraint in this geometry, we
obtain the following equations

k
(1)
i,0 = θ

(2)
j+0̂,1 + θ

(2)
j+0̂+1̂,2 − θ

(2)
j+0̂+2̂,1 − θ

(2)
j+0̂,2, k

(1)
i−0̂,0 = θ

(1)
j,2 + θ

(1)
j+2̂,1 − θ

(1)
j+1̂,2 − θ

(1)
j,1 ,

k
(1)
i,1 = θ

(1)
j+1̂,2 + θ

(1)
j+1̂+2̂,0 − θ

(2)
j+1̂+0̂,2 − θ

(1)
j+1̂,0, k

(1)
i−1̂,1 = θ

(1)
j,0 + θ

(1)
j+0̂,2 − θ

(1)
j+2̂,0 − θ

(1)
j,2 ,

k
(1)
i,2 = −θ

(1)
j+2̂,1 − θ

(1)
j+2̂+1̂,0 + θ

(2)
j+2̂+0̂,1 + θ

(1)
j+2̂,0, k

(1)
i−2̂,2 = θ

(1)
j,1 + θ

(1)
j+1̂,0 − θ

(2)
j+0̂,1 − θ

(1)
j,0 .

Using these equations, the constraint is identically satisfied if and only if

θ
(1)
j+0̂,2 = θ

(2)
j+0̂,2 (2.32)

(and similar relations for other replicas), i.e., if the gauge variables lying on the entangling
surface are the same in the different replicas. Also in this case we obtain the same picture
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as the Z2 gauge theory: gauge fields on the conical singularity belongs to all replicas, and
they belong to 4n different plaquettes.

The construction is the same for the case of ZN gauge theories, too. Also, it is easy
to see that, one can also recover the central-plaquette geometry for ZN and U(1) gauge
theories starting from a spin model in which some spins lie on the conical singularity.

We conclude that, in all of the Abelian gauge theories we analyzed, the geometry of
the replica lattice is the same, regardless of the details about the degrees of freedom. In
particular, it is found that gauge fields on the entangling surface belong to a larger number
of plaquettes.

2.4 Higher dimensions and non-Abelian theories

We conclude this section with some comments on generalizations of the previous analysis
to other theories.

The generalization to higher dimensions is straightforward. In spacetime dimension D

the entangling surface is a codimension-2 manifold. Any s-simplex lying on the entangling
surface has a larger coordination number, i.e., a larger number of (s+1)-simplices touching
it. For example, a site on the conical singularity is connected to (4n+2D−4) sites: 2(D−2)
on the entangling surface and 4n in the two transverse directions. A link on the entangling
surface belongs to (4n + 2D − 6) different plaquettes, and so on.

The central-plaquette geometry can be generalized to higher dimensions, too. Consider
a s-simplex with at its boundaries a set of (s − 1)-simplices, with s > 1. If the simplex
encloses the conical singularity, the size of its boundary is enlarged, since it has to wind
around the singularity n times before closing on itself.

An important and less simple question is, whether it is possible to extend this construc-
tion to non-Abelian gauge theories. Duality transformations for non-Abelian gauge theories
are known, but they are considerably more involved [110–117], and it is not straightforward
how to apply them to derive a geometric construction for the dual replica space.

Note however that, from a purely geometric point of view, the key features that
we discussed in this section for the construction of the dual replica space (namely, the
enlarged number of nearest neighbors and the central-plaquette setup) can be directly
implemented—and, in fact, have been implemented [92]—to study Rényi entropies in ar-
bitrary gauge theories. Our analysis shows that, at least for Abelian gauge theories, such
geometries are justified by the duality construction. While we have not proven that these
geometries are the correct ones also for non-Abelian theories, the observation that the ge-
ometry of the replica space appears not to be dependent on the gauge group suggests that
this may be the case.

3 Connection with the Hamiltonian formalism

In section 2 we applied the duality transformation to derive the geometry of the replica
space for Abelian gauge theories, working in the Lagrangian formalism. Our derivation
followed the path depicted in fig. 1, from the lower left corner to the upper right corner,
passing through the upper left corner: one starts from a quantum lattice model in the
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Hamiltonian formalism, where there exists a well-defined notion of Hilbert space, and
chooses a factorization H = HA ⊗ HB. For the spin models considered here, such as the
Ising model, the factorization can be performed without ambiguities. At this stage one can
discretize the path integral that appears in the replica trick, namely

Tr ρn
A = 1

Zn

n∏
r=1

∑
{σA

r σB
r }

〈
σA

r σB
r

∣∣∣exp
(

−Hr

T

)∣∣∣σA
r+1σB

r

〉
, (3.1)

where r labels the different replicas and
{∣∣∣σA

r σB
r

〉}
denotes a complete set of states (where

we made the bipartition of the system explicit). In the simple case of the (1+1)-dimensional
Ising model, the Hamiltonian in each replica can be written as the sum of three terms, HA,
HB, and h: the first two respectively describe the interactions between degrees of freedom
inside A only and in B only, while h represents the interactions between the degrees of
freedom in A and those in B:

H = HA + HB + h =
∑

⟨i,j⟩∈A

σz
i σz

j + g
∑
i∈A

σx
i +

∑
⟨i,j⟩∈B

σz
i σz

j + g
∑
i∈B

σx
i +

∑
⟨a,b⟩,

a∈A, b∈B

σz
aσz

b .

(3.2)

σz and σx are Pauli matrices and, in the boundary term σz
aσz

b , a and b are nearest neighbors.
From eq. (3.1) one can obtain the partition function of a statistical-mechanical system by
dividing the (compact) time direction in Nτ intervals of length aτ = 1/(TNτ ), Trotterizing
the exponential and inserting a resolution of the identity at each discrete time step. If we
take, for definiteness, the

∣∣∣σA
r σB

r

〉
to be eigenstates of σz, the hopping term σz

i σz
j leads

to a nearest-neighbor interaction in the spatial direction, while the σx operators generate
interactions in the temporal direction. The replica structure shown in fig. 2 emerges from
terms such as 〈

σA
r σB

r ; τ = 1/T
∣∣∣exp(gσx)

∣∣∣σA
r+1σB

r ; τ = 0
〉

, (3.3)

where
∣∣∣σA

r σB
r ; τ

〉
is a state inserted at Euclidean time τ . The previous term leads to an

interaction in the time direction between two spins in the same replica, if they belong to
B, and between two different replicas, if they belong to A. From the discrete replica space
one can then obtain the dual geometry as described in section 2.

In this section we discuss how one can derive the same geometric picture by reversing
the order of the steps, i.e., by first performing the duality transformation in the Hamiltonian
description, and then discretizing the resulting path integral. For simplicity from now on
we will discuss the case of the (1 + 1)-dimensional Ising model, but the discussion is easily
generalizable to other spin models and higher dimensions.

For this purpose, instead of working with states in a Hilbert space, it is more convenient
to work with algebras acting on that Hilbert space [86]. Given a Hilbert space H and
an algebra of observables A, a bipartition of the system is now defined by identifying a
subalgebra AA of operators acting on the subsystem A. The reduced density matrix is
then defined as the unique operator ρA ∈ AA satisfying

Tr(ρAO) = ⟨O⟩ , (3.4)
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for all O ∈ AA. In general ρA can be written as a linear combination of the generators of
the algebra. For the (1 + 1)-dimensional Ising model on a chain of N sites, the maximal
algebra one can define is generated by the two Pauli operators σx and σz on each site

A = {σx
1 , . . . , σx

N , σz
1 , . . . , σz

N }. (3.5)

The choice of a subalgebra which leads to eq. (3.1) is the following: let A be the set of sites
with 1 ≤ i ≤ M < N , then

AA = {σx
1 , . . . , σx

M , σz
1 , . . . , σz

M }, (3.6)

which is the maximal subalgebra we can define on the subchain from site 1 to site M . One
can then act on the subalgebra defined in eq. (3.6) with the Kramers–Wannier duality [96]:
the subchain of M sites maps to a subchain of (M+1) sites whose edges lie on the entangling
surface, and the algebra AA maps to the non-maximal algebra (in this section we label dual
sites with half-integers)

A⋆
A = {σx

3/2, . . . , σx
M−1/2, σz

1/2, . . . , σz
M+1/2}, (3.7)

where the σx generators at the edges are removed. As a consequence, this algebra has now
a center, i.e., a set of generators commuting with all the other generators of the algebra.
Any operator belonging to an algebra with a center must be block-diagonal in a basis
that diagonalizes the center, therefore the Hilbert space splits into superselection sectors,
labeled by the eigenvalues of the generators belonging to the center. Therefore, states with
reduced density matrices in this algebra must be eigenstates of the generators of the center,
in this case σz

1/2 and σz
M+1/2.

The path-integral representation of Tr ρn
A in the presence of superselection sectors was

analyzed in ref. [99]. The key difference with respect to eq. (3.1) is that one has to keep
different superselection sectors separated in Tr ρn

A. One can first compute the path integral
in a fixed sector, then sum the result over different sectors. Importantly, the sector is the
same for all replicas. For the algebra defined in eq. (3.7), this leads to

Tr ρn
A = 1

Zn

∑
s,s′

n∏
r=1

∑
σA

r σB
r

〈
σA

r σB
r

∣∣∣exp
(

−Hr

T

)∣∣∣σA
r+1σB

r

〉(s,s′)
. (3.8)

In this expression the eigenvalues of σz
1/2 and σz

M+1/2 in the summand are fixed to be s

and s′ respectively, and they are the same for all replicas. The h term in the Hamiltonian,
describing interactions between pairs of degrees of freedom of which one is in A, the other
in B, can be written as

h = g(σx
1/2 + σx

M+1/2). (3.9)

The difference with respect to the previous case is in the presence of terms such as〈
σA

r σB
r ; τ = 0

∣∣∣exp
(
gσx

1/2

)∣∣∣σA
r σB

r ; τ = aτ

〉(s,s′)
= exp

(
σ

(r)
τ=0σ(r)

τ=aτ

)
δ

s,σ
(r)
τ=0

, (3.10)
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that is, for all replicas spins at sites i = 1
2 and i = M + 1

2 for τ = 0 have the same value in
all configurations that contribute to the partition function. Note that this happens only
for τ = 0, since at all other times resolutions of the identity have been inserted, leading to
independent sums over all eigenvalues of σz on each site.

Given that the spins on the entangling surface have the same value in all configurations,
they are effectively the same spin: this is how a geometry including two spins with an
enlarged number of nearest neighbors emerges directly in the Hamiltonian formalism.

The derivation of the replica space in the presence of superselection sectors discussed
in this section is completely general, and can be applied to other spin systems, as well as to
higher-dimensional theories. In higher dimensions the explicit derivation of the discretized
path integral starting from the Hamiltonian of the theory is less straightforward, and we do
not address the calculation here. However, it would be interesting to study how different
choices of algebras for gauge theories map to different replica spaces. In particular, the
main choices one can make are two: the electric-center algebra and the magnetic center
algebra [86]; it seems natural to expect that these two choices correspond to the two
different geometries we found in section 2, namely the central-plaquette geometry and the
one with the enlarged number of nearest neighbors, while combinations of the two choices
of the center might map into combinations of the previous two geometries.

As a final comment, we stress that an algebraic choice in the Hamiltonian formalism
is mapped to a purely geometric one in the Lagrangian formalism. In particular, different
choices of the algebra AA correspond to different geometries of the entangling surface. In
both pictures, the differences between the various choices seem to be related to the ultravi-
olet physics of the model, and this is consistent with the expectation that in the continuum
limit the universal part of the entanglement entropy, as well as properly regularized phys-
ical quantities such as the mutual information, are independent from the choice of the
algebra.

4 Monte Carlo results for the Z2 gauge theory in three dimensions

In this section we present the results of a Monte Carlo study of the entropic c-function
of the ground state of the three-dimensional Z2 gauge theory. An early study of the
entanglement entropy in this model by means of Monte Carlo simulations was reported in
ref. [53], while more recently this problem has been addressed in various studies based on
tensor networks [118–120] and exact diagonalization [121].

As discussed in refs. [2, 51], the replica trick allows one to express Rényi entropies in
terms of ratios of partition functions, which are quantities that today can be computed to
high precision by means of Monte Carlo simulations on the lattice. This is true also for
the associated entropic c-functions, which can be written as

Cn(l) = lD−1

|∂A|
1

n − 1 lim
ϵ→0

1
ϵ

ln Zn(l)
Zn(l + ϵ) . (4.1)

In this work we make use of a highly efficient algorithm, based on Jarzynski’s theorem [122,
123], that we introduced in ref. [74], generalizing previous work done in ref. [67]. Jarzynski’s
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theorem is an exact equality between ratios of partition functions defined by equilibrium
Boltzmann distributions and averages over non-equilibrium processes. Specifically, consider
two probability distributions p0 = exp(−S0)/Z0 and p1 = exp(−S1)/Z1 which can be
continuously connected by tuning a parameter λ, such that S(λ = 0) = S0 and S(λ = 1) =
S1; Jarzynski’s theorem then states that

Z1
Z0

=
〈
e−W0→1

〉
(4.2)

where W0→1 is the (generalized, dimensionless) work performed to drive a system, initially
at equilibrium, from λ = 0 to λ = 1, and the average is performed over an ensemble
of different trajectories that the system follows in its out-of-equilibrium evolution. It is
important to stress that the equality holds regardless the specific details of how the system
is driven off equilibrium: the equality holds irrespectively of the way in which λ is varied, as
long as this evolution is the same for all trajectories, and that the system is genuinely out
of equilibrium for every λ > 0. In recent years, this theorem has been harnessed in high-
precision lattice simulations, to study a variety of different quantities [124–129], including in
computations of Rényi entropies through quantum Monte Carlo simulations [69, 130–136].

To obtain high-precision results for the Z2 gauge theory we exploit its duality to the
three-dimensional Ising model—using, in particular, the fact that the entropic c-function
computed in the two theories is the same, as shown by eq. (2.18). The geometry we
simulated is a slab geometry, with the entangling surface lying along the links of the dual
lattice.

A major advantage of directly simulating the Ising model is the possibility to use cluster
algorithms, which essentially allow one to perform simulations arbitrarily close to critical
points, without suffering from critical-slowing-down problems. In our simulations we used
the Swendsen–Wang cluster algorithm [137] in a parallelized version [138–140] adapted for
GPU-accelerated supercomputers.

The non-equilibrium protocol we used to calculate the entropic c-function is the same
as the one we introduced in ref. [74]. First, note that the ratio of partition functions
appearing in eq. (4.1) can be approximated on the lattice in terms of Zn(l)/Zn(l + a),
with a denoting the lattice spacing (i.e., the shortest length that can be resolved on the
lattice). We can then design a non-equilibrium evolution connecting the two probability
distributions by varying the couplings at the edge of the entangling surface: starting from
a slab of length l + a, we reduce the couplings of spins in replica r near the entangling
surface with spins in replica r + 1 and, at the same time, we increase the coupling between
spins in the same replica, decreasing the length of the slab by one lattice spacing.

We performed simulations in a geometry of two replicas to compute the entropic c-
function associated to the second Rényi entropy. Simulating different values of β and
for various values of the lattice volume allowed us to perform both thermodynamic and
continuum extrapolations. To the best of our knowledge, this is the first study in which such
extrapolations are performed for a (2 + 1)-dimensional gauge theory. For the scale setting
we followed ref. [141], where the dependence of the critical value of the Ising coupling βc on
the lattice size in the Euclidean-time direction in units of the lattice spacing, denoted as
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Nτ , was determined with high precision for a wide range of values. The critical deconfining
temperature of the dual gauge theory can then be obtained as aTc = 1/Nτ,c, so that one
can then express all of the other dimensionful quantities in the appropriate units of Tc. To
make sure that the system is not affected by undesired finite-temperature corrections, we
performed our simulations on lattices whose extent in the Euclidean-time direction is at
least ten times larger than the critical one. Further details on the scale setting and on the
different extrapolations can be found in section D of the appendix.

Figure 6 shows a summary of our final results. The plotted data correspond to the
function

C̄2(x) ≡ C2(x)
CCFT

2
, CCFT

2 = C2(0), (4.3)

where CCFT
2 was estimated in ref. [142]. The length of the cut is measured in units of two

different mass scales, namely, the critical temperature Tc and the mass mg of the lightest
glueball-like state in the theory, taken from ref. [143].

The behavior of the entropic c-function of the ground state is known only for few
strongly interacting theories. Some predictions for gauge theories can be derived from the
holographic correspondence, using the Ryu–Takayanagi formula [12, 13] to compute the
entanglement entropy in terms of the area of minimal surfaces. The authors of ref. [79] cal-
culated the entanglement entropy for confining backgrounds in non-Abelian gauge theories
similar to quantum chromodynamics (QCD), and in a slab geometry at different length
scales, finding the following picture: at small length scales (where, due to asymptotic free-
dom, the theory is invariant under conformal symmetry), the entropic c-function is constant
and proportional to the number of degrees of freedom—which, for SU(N) gauge theories in
the large-N limit, scales like the square of the number of color charges N . As the length of
the slab is increased, the theory eventually hadronizes, and, since the number of hadronic
degrees of freedom is independent from N , the entropic c-function is then expected to ex-
hibit a sharp transition, from a regime in which its parametric dependence on N is O

(
N2)

to one in which it scales as O
(
N0). The length scale at which this transition occurs is

controlled by a mass scale associated to the boundary theory. For the QCD-like theories
considered in ref. [79], all of the typical energy scales are parametrically equivalent, and so
is the scale associated to the transition of the entanglement entropy.

In order to gain insight on the behavior of the entropic c-function in different regimes,
we fitted it with different models. At large length scales, the theory can be modeled in terms
of a gas of non-interacting glueballs [144, 145]. On the other hand, for (1 + 1)-dimensional
free scalar and Dirac fields of mass m it was found that, for n > 1 and lm ≫ 1/(n − 1),
the entropic c-function admits the expansion [146, 147]

C(1+1)
n (lm) = exp(−2ml)

(
1 + O

( 1
ml

))
. (4.4)

In particular, for n = 2 the expansion is exact at leading order. Following ref. [79], one can
think of a free scalar field in 2 + 1 dimensions as a collection of infinite two-dimensional
scalar fields with transverse momentum k and mass m(k) =

√
m2 + k2. Summing over the

– 20 –



Figure 6: Monte Carlo results for the entropic c-function of the second Rényi entropy.
Inset: entropic c-function at small values of lmg. Blue symbols denote the results extrap-
olated to the thermodynamic and continuum limits, while the other symbols correspond to
results obtained from finite lattices.

entropic c-functions of each mode leads to

C(2+1)
n (lm) ∼ l

∫
dk exp

(
−2
√

m2 + k2l
)
. (4.5)

Therefore we fitted our data with the Ansatz

f(x; A, α) = Ax

∫
dt exp

(
−2
√

1 + t2αx
)
. (4.6)

The function fits the data well from large values of lmg down to lmg ≃ 0.84. The results of
the fit are A = 0.33(3), α = 0.360(19), with χ2

red = 0.82 (where χ2
red denotes the χ2 divided

by the number of degrees of freedom of the fit). Note that the parameter α appearing in
eq. (4.6) controls the exponential decay of the entropic c-function at large distances, and
it reduces to 1 for a free scalar field. For the Z2 gauge theory we obtain a value of α which
is smaller than the free-field case, albeit roughly of the same order. A discrepancy with
respect to the free case is expected, since the system we are considering is interacting.

Consider now the opposite regime (small lmg); the recent ref. [104] reported a study
of the two-mode logarithmic negativity in the Schwinger model, which was studied as a
measure of entanglement at different length scales. It was found that, at distances shorter
than the inverse of the mass of the lightest state in the continuum, the decay of the two-
mode negativity is polynomial. Motivated by this observation, we fitted our data for small
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lmg with a polynomial function

f(x; B, c) = B

xc
. (4.7)

The function fits well our results from small values of lmg up to lmg ≃ 1.26. The results
of the fit are B = 0.360(9), c = 0.48(2), with χ2

red = 1.02.
Note that a deviation from the polynomial decay is expected at sufficiently short length

scales, since C2(0) is finite. At very short distances, however, the simulations become
more expensive in terms of computing resources, since one should get very close to the
critical point of the theory and very large lattices are necessary to extrapolate to infinite
volume. Despite these difficulties, looking at the data we obtained from finite lattices and
for different values of the lattice spacing, as shown in fig. 6, one observes clear convergence
towards a finite value for lmg → 0, even though some data sets appear to tend to a value
slightly different from 1. This is likely a systematic uncertainty due to the finiteness of the
lattice spacing and/or of the length of the slab, which become particularly relevant effects
in the lmg → 0 limit.

5 Conclusions

In this work we discussed the replica space and Rényi entropies of Abelian gauge theories; in
particular, we exploited duality transformations relating them to spin models, and discussed
the geometric features of this mapping. The advantages of this approach are twofold: on
the one hand, the duality transformation can be explicitly performed in a replica space,
leading to a derivation of the replica geometry which is valid for different gauge theories.
On the other hand, the duality mapping allows one to compute entanglement measures
for strongly interacting gauge theories by simulating spin models, which can be efficiently
studied with Monte Carlo methods.

In the first part of this work we analytically performed the duality transformation for
two- and three-dimensional spin systems with Abelian global symmetry group. The picture
emerging from our study is a purely geometric one, in the sense that it does not depend on
the specific degrees of freedom of the theory one is considering. Fields lying on the conical
singularity belong to all replicas and the local action gets contributions from interactions
with fields in all replicas; in a spin model, this translates into an enlarged number of nearest
neighbors for the spins on the conical singularity, whereas in a gauge theory the gauge field
therein contributes to a larger number of plaquettes. Note that this geometry realizes
in a natural way a number of features of the replica space of a gauge theory that have
already been discussed in past works, such as the fact that gauge transformations on the
entangling surface must be the same on all replicas [97, 107] or the presence of Wilson loops
that appear to be open, if one looks at a single replica, but close in a different one [53].
The existence of a larger number of neighbors in the dual formulation of the theory has
also been discussed recently in refs. [148, 149].

If the conical singularity is placed in the dual lattice, plaquettes encircling the entan-
gling surface have to loop around it n times before closing onto themselves. This is the
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central-plaquette geometry discussed in ref. [92]. In the present work we focused mostly
on the first geometry, since the Ising model we simulated is dual to a gauge theory with
gauge fields on the conical singularity, without central plaquettes. It would be interesting
to investigate how the results change if one uses a different geometry, and to test whether
the same continuum limit is recovered.

In order to make contact with Hamiltonian formalism, in section 3 we derived the
replica geometry for the (1 + 1)-dimensional Ising model in presence of superselection
sectors, finding the same geometry of section 2, with spins on the entangling surface having
an enlarged number of nearest neighbors. The derivation is completely general and in
principle it might be extended to gauge theories with magnetic- and electric-center algebra.

In the second part of our work, we numerically exploited the duality transformation,
simulating the three-dimensional Ising model to compute the entropic c-function associated
with the second Rényi entropy of the Z2 gauge theory. Despite its simplicity, this theory
displays many phenomena that also characterize SU(N) gauge theories, such as a mass-gap
and confinement. Combining the efficient algorithm [74] based on Jarzynski’s theorem [122,
123] and GPU parallelization, we were able to extrapolate our results to the infinite-volume
and continuum limits, and to compare our final results with predictions based on the
holographic correspondence [79].

As expected by semi-empirical arguments, the entropic c-function decays exponentially
for large lengths of the slabs. At large length scales, the ground state of the gauge theory
can be described as a gas of weakly interacting bosons, and indeed the exponential decay
seems to be parametrically controlled by the mass of the lightest glueball, up to order-one
numerical factors.

At short length scales, the entropic c-function scales polynomially with the length of
the slab. The exponent of the polynomial decay we obtained fitting our data is compatible
with 1

2 and it might be related to the scaling dimension of some operator in the conformal
field theory describing the three-dimensional Ising model at criticality. Note, however that
such exponent is likely to be connected in a non-trivial way to the scaling dimension of
the twist fields [2, 150]. The transition from polynomial to exponential scaling is observed
to occur around a length scale controlled by the mass of the lightest glueball, that is the
mass gap of the theory. This behavior resembles the transition that was found in many
holographic models dual to a confining background [13, 79, 82] and also in Monte Carlo
studies of SU(N) gauge theories [52–54, 66, 68]. Moreover, we note that similar results were
recently obtained from a study of the two-mode entanglement negativity in the Schwinger
model [104].

In this work we studied the simplest, non-trivial gauge theory which admits a dual spin
description. A natural generalization is to study the entropic c-function of other Abelian
gauge theories by exploiting the duality transformation. In this respect, a particularly
interesting theory is the U(1) gauge theory in (2+1) dimensions. Moreover, as we previously
stated, the same geometries we derived for Abelian theories can in principle be used to
study Rényi entropies in non-Abelian gauge theories. We leave these direction of research
for future work.
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A Duality transformation and boundary conditions

Ising model in two dimensions

In order to discuss how different boundary conditions on a finite lattice affect the duality
transformation, we first slightly generalize the D = 2 Ising model, allowing for the presence
of a set of antiferromagnetic couplings; this can be done by introducing a background Z2
gauge field associated to the links of the lattice

Z(β; {τ}) =
∑
{σ}

exp

β
∑
i,µ

σiτi,µσi+µ̂

 , (A.1)

which reduces to the partition function of the Ising model when τi,µ = 1 for all i and for
all µ. In addition to the global Z2 symmetry, the model defined by eq. (A.1) has a local Z2
symmetry: changing the sign of the gauge fields defined on all links touching an arbitrary
site, the partition function of the model is left invariant. For future convenience, note
that a generic set of frustrations that is gauge-equivalent to a configuration without any
frustrations at all is dual to a set of closed loops in the dual lattice, where the loops are
made of links piercing the frustrated links in the direct lattice (see fig. 7).

The duality transformation can then be performed in the same way as in section 2,
absorbing the gauge field, which is non-dynamical, in the definition of Ck(βτ). In this way
the (local) dual coupling depends on the gauge field as

(βτ)⋆ = −1
2 ln tanh(βτ) = β⋆ − iπ

2
τ − 1

2 = β⋆ − iπ

2 τ⋆, with τ⋆ ∈ {0, 1}. (A.2)

Consider now a lattice with periodic boundary conditions in all directions. Using the fact
that

exp
(

− iπ

2 sisi+µ̂

)
= −isisi+µ̂, (A.3)

the partition function can be written in terms of the dual variables as

Z(β; {τ}) = 1
2(sinh 2β⋆)−|Λ|∑

{s}

∏
i,µ

(sisi+µ̂)τ⋆
i,µ exp(β⋆sisi+µ̂). (A.4)
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Figure 7: Frustrations in the direct lattice (wavy links) and the corresponding closed paths
in the dual lattice (dashed lines).

Note that for τ⋆ = 0 one recovers eq. (2.7). Let us now inspect the term (sisi,µ)τ⋆
i,µ : if

the direct link is frustrated, the dual variables orthogonal to that link appear in the dual
partition function as operator insertions. Consider a model with a set of frustrations that
is gauge-equivalent to a configuration with no frustrations at all; as previously noted, such
sets are dual to closed paths, therefore all operator insertions appear twice in eq. (A.4) and
one obtains again eq. (2.7).

It is now clear that a set of frustrations that is inequivalent to Z(β) is dual to a set of
open paths in the dual lattice. This leads to the well-known result

Z(β; {τ})
Z(β) =

〈∏
i,µ

(sisi+µ̂)τ⋆
i,µ

〉
, (A.5)

namely a generic spin-correlator in the D = 2 Ising model can be expressed in terms of
the ratio of the partition function with frustrations piercing paths that connect the various
insertions, over the partition function without frustrations.

From the invariance of the partition function under insertion of a closed loop of frus-
trations which is contractible to a point, it follows that the constraint appearing in eq. (2.4)
admits additional solutions, beside the one discussed in section 2, if the topology of the
system is such that there exist non-contractible closed loops. In the latter case, the con-
straint will have different solutions, related to the inequivalent partition functions with the
insertions of topological lines of frustrations along non-contractible paths. In general, if we
start from the Ising model without frustrations, the general duality transformation reads

Z(β) = 1
2[sinh(2β⋆)]|Λ| Z

⋆(β⋆). (A.6)

For example, in the geometry of a torus

Z⋆(β⋆) ∝ Zpp(β⋆) + Zap(β⋆) + Zpa(β⋆) + Zaa(β⋆), (A.7)
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where Zij(β) is the partition function with periodic (p) or antiperiodic (a) boundary condi-
tions in directions i and j; antiperiodic boundary conditions are equivalent to the insertion
of frustrations along a non-contractible path.2

Note that topology affects the calculation of Rényi entropies, because the contributions
from the partition functions with the different types of boundary conditions have to be
taken into account. However, in some regions of the parameters space the contribution
from antiperiodic boundary conditions is suppressed. In particular, antiperiodic boundary
conditions generate phase boundaries, which are exponentially suppressed in the ordered
phase. Therefore, up to numerical constants

Z(β < βc) ≃ Z⋆
pp(β⋆ > β⋆

c ). (A.8)

This fact can be seen also at the level of the Rényi entropies. Consider eq. (2.13): in the
limit β → 0 it gives the expected result:

Sn(β = 0) = 0, S⋆
n(β⋆ → ∞) = ln 2, (A.9)

indeed at β = 0 the ground state of the Ising model is in a product state, while for β⋆ → ∞
the entropy takes a contribution from the two degenerate vacua. However, in the opposite
limit, we do not recover the same result, rather:

Sn(β → ∞) = ln 2, S⋆
n(β⋆ = 0) = ln 4. (A.10)

The ln 4 term can be related to the existence of the four different topological sectors
appearing in eq. (A.7).

Ising model in three dimensions

The previous discussion can be easily generalized to three dimensions by looking for other
solutions of the Kronecker-delta constraint in the case of the Z2 gauge theory. With the
same logic as before, consider the following gauge transformation of the Z2 gauge theory:
given any link of the lattice, we frustrate all four plaquettes sharing that link; it is easy to
see that such transformation is a symmetry of the partition function. Moreover, the set of
frustrated plaquettes is pierced by a closed path in the dual lattice.

New solutions to the constraint imposed by the Kronecker delta appearing in eq. (2.4)
can be obtained by choosing any set of closed paths in the lattice dual to the Z2 gauge theory
and introducing antiferromagnetic couplings for all plaquettes pierced by those paths.

If the paths are all contractible, then the resulting partition function is equivalent to
the partition function of the Z2 gauge theory, therefore in a lattice with trivial topology
there are no further solutions. If the topology is non-trivial, on the other hand, the general
solution of the Kronecker-delta constraint corresponds to the sum of partition functions

2More generally, antiperiodic boundary conditions are equivalent to the insertion of frustrations along
any odd number of non-contractible paths that can be deformed into each other, since the effects of the
frustrations on pairs of paths that can be deformed into each other cancel. Similarly, periodic boundary
conditions correspond to the insertion of frustrations along any even number of non-contractible paths that
can be deformed into each other.
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with insertions of frustrations along all of the possible types of non-contractible paths. For
example, in the geometry of a three-dimensional torus, the partition function dual to the
Ising model reads

ZZ2(β⋆) ∝ ZZ2
+++(β⋆) + ZZ2

++−(β⋆) + · · · + ZZ2
+−−(β⋆) + ZZ2

−−−(β⋆), (A.11)

where ZZ2
ijk is the partition function of the gauge theory with (−) or without (+) the

insertion of a topological line of frustrations along a non-contractible path in each of the
three directions.

The same derivation can be carried out if one starts from the Z2 gauge theory to derive
the Ising model as the dual theory. Like in the two-dimensional case, the three-dimensional
Ising model is invariant if one frustrates all links touching one site. The difference from the
two-dimensional case is that in three dimensions the set of frustrations is dual to a closed
surface. Different solutions to the Kronecker-delta constraint are therefore associated with
the partition functions of systems with frustrations that are dual to a set of closed surfaces.
As a consequence, for a lattice with non-trivial topology one has to sum over all possible
partition functions with insertions of non-contractible surfaces. In the geometry of a three-
dimensional torus, one then recovers the well-known result

Z(β) ∝ Zppp(β) + Zppa(β) + · · · + Zpaa(β) + Zaaa(β). (A.12)

As in the two-dimensional case, partition functions with antiperiodic boundary conditions
are suppressed in the confining phase of the gauge theory (β⋆ < β⋆

c ), which corresponds to
the ordered phase of the spin model (β > βc). Therefore

ZZ2(β⋆ < β⋆
c ) ≃ Zppp(β > βc). (A.13)

This is the reason why, in our Monte Carlo study of the entropic c-function of the Z2 gauge
theory, we neglected contributions from topologically non-trivial sectors. In addition, this
reasoning explains why in section 2 we found that the strong-coupling result expressed
by eq. (2.19) is consistent with the prediction that can be derived in the Hamiltonian
formalism, while the weak-coupling one is not. In the weak-coupling regime, the result is
spoiled by the effects of non-trivial topology, which are no longer suppressed.

B Duality in two-dimensional ZN and U(1) models

In this section we discuss the duality transformation in systems with ZN and U(1) symmetry
in a replica space, as a natural generalization of our analysis for the Ising model. A relevant
question we want to address here is whether the duality on a replica manifold is affected by
the nature of the degrees of freedom of the theory, or just depends on geometric aspects,
namely the presence of branch point singularities. Therefore, for these models we will not
keep track of the numerical prefactors in the partition function and we will just focus on
the geometry of the dual lattice.
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We focus on a specific class of models, the so-called clock models, defined by the
partition function

Z =
∑
{q}

exp

β
∑
i,µ

cos
(2π

N
∆µqi

) , (B.1)

where q ∈ {0, 1, . . . , N − 1} and ∆µqi ≡ qi − qi+µ̂. The Boltzmann factor can be Fourier-
transformed as

exp
[
β cos

(2π

N
∆µqi

)]
=

N∑
k=0

Ck(β) exp
(

i
2π

N
k∆µqi

)
, (B.2)

where Ck(β) are the coefficients of the expansion. The partition function then becomes

Z =
∑
{q}

∏
i,µ

∑
ki,µ

Cki,µ
(β) exp

(
i
2π

N
ki,µ∆µqi

)
(B.3)

=
∑
{q}

∑
{k}

∏
i,µ

Cki,µ
(β) exp

(
−i

2π

N
qi

∑
µ

∆µki,µ

)
(B.4)

=
∑
{k}

∏
i,µ

Cki,µ
(β)NδN

(∑
µ

∆µki,µ

)
. (B.5)

In the second line we used the discretized version of integration by parts, while in the
last expression we used the Fourier decomposition of the Kronecker delta enforcing the
constraint ∆µki,µ = 0 mod N . Let us start by considering the simplest case of an infinite
lattice without any replica structure.

It is easier to solve the constraint in terms of an other set of variables k̄, which are
equal to k mod N and satisfy ∆µk̄i,µ = 0 directly. Since there is a unique change of variable
from k to k̄ (up to a ZN transformation), the representation is the same in terms of k̄.
Using the k̄ variables, the constraint can be solved by introducing a set of integer-valued
spins ϕ on the sites of the dual lattice and imposing

k̄i,µ = ϵµν∆νϕ. (B.6)

From eq. (B.6) one then obtains

Z ∝
∑
{ϕ}

∏
i,µ

exp
{

ln Cϵµν∆νϕ(β)
}

. (B.7)

This expression can be manipulated further; for N = 2, 3, or 4, the model is self-dual.
Consider now a system of n replicas. It is clear that also in this case the duality is only

affected by the presence of branch points, therefore we focus our attention on the spins
close to one edge of the cut. The geometry is the same as in fig. 3, but with the variables
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s replaced by ϕ. We can solve the constraint at site i imposing eq. (B.6),

k̄
(1)
i,0 = ϕ

(2)
j+0̂ − ϕ

(2)
j+0̂+1̂,

k̄
(1)
i,1 = ϕ

(2)
j+0̂+1̂ − ϕ

(1)
j+1̂,

k̄
(1)
i−0̂,0 = ϕ

(1)
j+1̂ − ϕ

(1)
j ,

k̄
(1)
i−1̂,1 = ϕ

(1)
j − ϕ

(1)
j+0̂,

which satisfy ∆µk̄i(1),µ = 0 only if ϕ
(1)
j+0̂ = ϕ

(2)
j+0̂. We see again that the dual spin defined

on the branch point is shared by all replicas and has a larger number of nearest neighbors.
Note that this geometric picture does not depend on the specific choice of the symmetry
group.

The case of a model with U(1) symmetry is straightforward, since the partition function
is equivalent to eq. (B.1) with continuous variables, and the duality transformation is
performed following the same steps, leading again to a geometry where the spin on the
branch point singularity has a larger number of nearest neighbors.

C Derivation of the model dual to U(1) gauge theory

In this section we derive the expression of the partition function of the spin theory dual to
the U(1) gauge theory in three dimensions, eq. (2.26). Starting from the partition function

ZU(1) =
∫

Dθ exp
(

β
∑
□

cos θ□

)
(C.1)

and using the expansion of the Boltzmann factor in Fourier modes:

exp(β cos x) =
∞∑

n=−∞
In(β) exp(inx), (C.2)

eq. (C.1) can be rewritten as

ZU(1) =
∫

Dθ
∏
□

∑
k□

Ik□
(β)eik□θ□ =

∑
{k}

∏
□

Ik□
(β)

∫
dθi,µeiθi,µ

∑
k□ ∝ (C.3)

∝
∑
{k}

∏
□

Ik□
(β)δ

(∑
k□
)

. (C.4)

In this expression, the k□ variables are associated to the plaquettes, and the sum
∑

k□ is
over the four plaquettes sharing one link. The constraint has therefore the same structure
of the constraint in eq. (B.5), and thus admits the same solution. By introducing integer-
valued spins ϕ on the sites of the dual lattice, one can write

k□ ≡ kµν = ϵµνλ∆λϕ, (C.5)

that is, a plaquette variable k is dual to a difference of spins defined on the ends of the
dual link orthogonal to the plaquette. Therefore the partition function can be written as

ZU(1) ∝
∑
{ϕ}

∏
µνi

Iϵµνλ∆λϕi
(β). (C.6)
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Figure 8: Thermodynamic limit for different values of the lattice spacing and length of
the slab.

D Details of the simulations

In order to convert our results from lattice units to physical units, we set the scale using
the study of the Ising model in three dimensions reported in ref. [141], where the values of
β at which the deconfinement transition occurs were computed numerically, for a range of
temporal extents up to Nτ = 16. To perform simulations even closer to the critical point
and access finer lattices, we extrapolated the results of ref. [141], using eq. (22) in the same
paper, to larger Nτ values. Note that here and in the following we are implicitly trading
the a → 0 limit for the equivalent Nτ → ∞ limit.

At fixed values of the lattice spacing and for fixed length of the slab we performed
an infinite-spatial-volume extrapolation, keeping Nτ fixed to at least 10Nτ,c and Nτ larger
than the spatial extent (in units of the lattice spacing) Ns. For values of β close to the
critical point, finite-volume effects are non-negligible, and an extrapolation is necessary,
whereas for larger values of (β − βc) we were able to simulate physical volumes that are
compatible with the infinite-volume limit within their uncertainties. This allowed us to
bypass the need of extrapolation to the thermodynamic limit for simulations of large slabs,
where the signal is poor and large statistics is required.

The fitting function we used for the infinite-volume extrapolation is

f(L; c, A, M) = c + A exp(−ML), (D.1)
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Figure 9: Different continuum limits.

where L = aNs. The fit parameter c is the infinite-volume result, while M is a mass
parameter which we imposed to be the same for all the extrapolations, by performing a
global fit. The value we obtained is M/Tc = 1.31(2) with a global χ2

red = 1.87. The fit
function in eq. (D.1) is empirical, since no study on the scaling of the entropic c-function
at finite volumes exists in literature. A better understanding of the scaling properties of
such non-local quantities would be important, to have better control on the extrapolations
from results at smaller volumes.

The continuum extrapolation was performed in two different ways. The first one
consists in approximating the derivative with the backward difference,

1
a

ln Z2(l)
Z2(l + a) ≃ ∂S2

∂l

∣∣∣∣
l
. (D.2)

This approximation leads to discretization errors that are linear in the lattice spacing. The
second method is to use the mid-point approximation,

1
a

ln Z2(l)
Z2(l + a) ≃ ∂S2

∂l

∣∣∣∣
l+a/2

, (D.3)

which, in principle, has O
(
a2) discretization errors. However, with this approach the

different points we use for the continuum extrapolations are evaluated at (l + a/2)mg,
which tends to lmg as a goes to zero but introducing further discretization errors which
are linear in a. We took the absolute difference between the continuum extrapolations
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Nτ,c β

6 0.228818(4)
8 0.226102(5)
10 0.224743(5)
12 0.223951(3)
14 0.223442(4)
16 0.223101(2)
18 0.2228492(15)

Nτ,c β

20 0.2226632(13)
24 0.2224077(9)
25 0.2223601(8)
28 0.2222431(7)
30 0.2221817(7)
36 0.2220486(5)
40 0.2219876(4)

Nτ,c β

45 0.2219306(3)
48 0.2219037(3)
50 0.2218880(3)
60 0.2218292(2)
72 0.22178524(16)
75 0.22177703(15)
90 0.22174622(12)

Table 1: Values of β associated to each Nτ,c.

carried out with these two methods as an estimate of (a source of) the systematic error on
our results. The final result reported is the value of the mid-point approximation with an
uncertainty obtained by summing in quadrature the statistical and the systematic error.
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