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Nanosciences largely rely on plasmons which are quasiparticles constituted by collective oscilla-
tions of quantum electron gas composed of conduction band electrons that occupy discrete quantum
states. Our work has introduced non-perturbative plasmons with oscillation amplitudes that ap-
proach the extreme limit set by breakdown in characteristic coherence. In contrast, conventional
plasmons are small-amplitude oscillations. Controlled excitation of extreme plasmons modeled in
our work unleashes unprecedented Petavolts per meter fields. In this work, an analytical model of
this new class of plasmons is developed based on quantum kinetic framework. A controllable extreme
plasmon, the surface “crunch-in” plasmon, is modeled here using a modified independent electron
approximation which takes into account the quantum oscillation frequency. Key characteristics of
such realizable extreme plasmons that unlock unparalleled possibilities, are obtained.

I. INTRODUCTION

Plasmons [1–3] underpin nanosciences [4] by making
possible nanometric energy confinement. Nanometric
size of these quasiparticles constituted by collective os-
cillations of delocalized, conduction band electron gas is
realizable only due to the innately quantum nature of
the gas which allows ultra-high densities, n0 ≃ 1024cm−3

that enforce a characteristic wavelength:

λQ ≲
30√

n0(1024cm−3)
nm. (1)

The very existence of the quantum electron gas (densities
unattainable for a classical gas) and thereby nanoscale
plasmons is dependent on quantum effects. These non-
classical properties are essential for collisionless dynamics
of conduction electrons, as determined by Bloch’s theo-
rem [5] (electron-lattice interactions) and Pauli’s exclu-
sion principle [6] (electron-electron).

The conduction electron gas maintains its quantum
character with electron states valid only at discrete en-
ergies, Ek and wavevectors, kℓ (unlike a classical gas)
as long as the ionic lattice exists. These discrete states
are occupied in accordance with Fermi-Dirac statistics
which makes the quantum electron gas free of collisions
with an ideal, stationary lattice. The nonclassical distri-
bution along with nearly non-interacting fermions gives
rise to a Fermi electron gas, a quantum entity which is a
prerequisite for plasmons.

Our work has uncovered a new class of plasmons in
the large-amplitude limit [7–14]. Large-amplitude, non-
perturbative plasmons have a trajectory amplitude (δ)
of collective oscillations that approaches the wavelength,
δ ≃ λQ. The extreme limit of oscillation amplitude is set
by breakdown in mutual phase coherence (onset of colli-
sions) which is critical for the quintessential “collective”
nature of plasmons. In contrast, conventional plasmons
are sustained by oscillations of small amplitude, δ ≪ λQ.

∗ corresponding author: aakash.sahai@ucdenver.edu

FIG. 1. Extreme plasmon excited in a conductive tube by an
electron bunch (green envelope) launched inside it, illustrated
in 3D using particle-tracking simulation. The conduction elec-
trons in a tube with core radius: rt = 100nm, wall thickness:
∆w = 250nm and electron density: n0 = 2×1022cm−3 are rel-
ativistically excited. The red (denser) and gray surfaces show
electron density variations. Electron trajectories approach
λQ ≃ 200nm and tunnel across the tube surface to “crunch-
in”. The bunch that has here propagated about 20µm inside
the tube is initially Gaussian with: σz = 400nm, σr = 250nm
and density, nb0 = 5× 1021cm−3.

Furthermore, while conventional plasmons are made up
of excited states with electron velocities relatively close to
the Fermi velocity, vF ; excited quantum states underly-
ing large-amplitude plasmons correspond with relativistic
electron momenta, p ≃ mec ≫ pF .

Extreme plasmons introduced by our work gain promi-
nence as they open unprecedented PetaVolts per meter
(PV/m) electromagnetic fields [7, 8, 13] (sec. II E). As
this unique quantum technology brings about a PV/m
extreme field frontier, it promises unparalleled possibili-
ties. A few of which include nano-wiggler based gamma-
ray lasers [7, 9, 15] and opening the vacuum (field-driven
vacuum polarization) [14, 16].

Our efforts [17–19] are aimed at controlled excitation of
extreme plasmons. Controlled nanometric confinement of
electromagnetic energy is only possible by preserving the
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ingrained quantum nature critical to sustain collisionless
oscillations. This quantum nature vital for plasmons is
maintained by the ionic lattice which is preserved in our
model by exciting plasmons using high-density charged
particle beams [7, 9]. Due to bunching characteristics,
particle accelerators intrinsically rid the beams of any sig-
nificant pre-pulses capable of disrupting the lattice (con-
trary to high-intensity lasers).

Further control over the interaction is enabled by a spe-
cific type of extreme plasmon, which based upon the key
requirements described in sec.III has been identified and
introduced in our work as the surface crunch-in plasmon.
However, unlike perturbative surface plasmons [3], plas-
mons in the large-amplitude limit have highly localized,
small spatial scale collective electron accumulation (large
collective wavevector, k ≃ 2πλ−1

Q ) excited by relativistic

momenta (p). These characteristics invalidate customary
fluid model based on initialized constitutive parameters
and necessitate kinetic modeling supported by particle-
tracking simulations (in Fig.1). In Fig.1, where λQ is
around 200 nm; conduction electrons are collectively dis-
placed by δ ≃ 100nm and accumulate over a few tens of
nm, at the maxima of their trajectories.

In this work, extreme plasmons are analytically mod-
eled from the first principles. These principles and the
framework they shape are laid out in sec.II. In particular,
our quantum kinetic model is based on the Wigner quan-
tum phase-space formalism. Using this formalism under
a modified independent electron approximation which ac-
counts for the quantum oscillation frequency, ωQ (see
sec.IID), we model a surface “crunch-in” plasmon col-
lisionlessly excited on the inner surface of conductive
tubes, as depicted in Fig.1. The kinetic model developed
in sec.IV is used to estimate the fields in sec.V.

The extreme plasmon model, particularly the surface
crunch-in plasmon forms the basis of our ongoing exper-
imental effort [17–19] (initially using tunable, semicon-
ductor plasmons [10]).

II. QUANTUM FRAMEWORK

Quantum systems, here the conduction electron gas,
are made up of entities that occupy discrete states. These
discrete levels are modified in an excited state such as a
plasmon. As extreme plasmons are sustained by strong
excitation of quantum electron gas, the statistical distri-
bution of electron states significantly diverges from the
initial Fermi-Dirac statistics, making linear theory inap-
plicable. A quantum kinetic framework is, thus, put forth
here to account for this.

It is well known that Boltzmann (or Vlasov) equation
based classical kinetic models applied to quantum sys-
tems with discrete energy states predict unphysical ef-
fects conflicting with experimental observations.

A. Quantum system: Degeneracy and Correlation

The quantum state of a system is defined by its char-
acteristics at equilibrium. Quantum degeneracy (param-
eter, χ) and quantum correlation (parameter, Γ) are two
such key characteristics.
Quantum degeneracy parameter: χ =

8
3
√
π

(
EF

kBT

)3/2

quantifies Fermi energy, EF =

ℏ2

2me
(3π2n0)

2/3 relative to thermal energy, kBT

(Maxwellian distribution). The conduction electron
gas with densities 1018−24cm−3 (doped semiconductors
to metals) is degenerate, χ ≳ 1 at T = 300K.

Quantum correlation parameter: Γ = 821/3

3π2 d0a
−1
0 ,

which compares the inter-particle spacing, d0 =

(4π3)1/3
(
3π2n0

)−1/3
against Bohr radius, a0 (or the de-

Broglie wavelength); characterizes the conduction elec-
tron gas (after establishing degeneracy) as being strongly
correlated with Γ ≳ 1.
The energy arising from correlation further differenti-

ates the quantum state from a classical one. Correlation
energy is defined as the difference in energy of a many-
body electron state such as the conduction electron gas
relative to its single-electron approximation.
While a quantum (degenerate and correlated) system

becomes more strongly correlated with increase in den-
sity, n0, a classical one contrarily departs from its ideal
behavior. This is a uniquely quantum characteristic
where the kinetic energy increases with density.

B. Wigner quantum phase-space

The dynamics of any many-body quantum system with
N quantum entities such as the quantum electron gas in
this work, is fully describable by suitably transforming
(Wigner-Weyl) the quantum variables representing the
ensemble over the real-space R3N . Instead of exact de-
termination of many-body wavefunction, the density ma-
trix, ρ(r, r′, t) which allows determination of the statis-
tical distribution of states, is used to obtain the Wigner
function, fW (in Complex space, C):

fW (r,p, t) =

∫
R3N→C

d3s e−isp
ℏ ρ

(
r+

s

2
, r− s

2
, t
)
.

ρ =

∫
C→R3N

∫
a,b

fW (r,p)

(2πℏ)3N
(
ei[a(Q−r)+b(P−p)]

)
dx dp da db.

(2)

This representation overcomes the limitations imposed
by Heisenberg’s uncertainty principle. It allows treat-
ment of quantum mechanics in phase-space by simultane-
ous representation of the distribution of non-commuting
variables, here instantaneous position (Q̂) and momen-

tum (P̂ ). Although, fW is a quasi probability distribu-
tion function, it allows modeling the evolution of a quan-
tum system using phase-space formalism. Density, n(r, t)
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and momentum, n(p, t) distributions are obtained from
the Wigner function, as follows:∫

d3p fW (r,p, t) = n(r, t).∫
d3r fW (r,p, t) = n(p, t).

(3)

The evolution of Wigner distribution function is de-
scribed by the Wigner equation [20].

∂fW
∂t

+
ℏkℓ

2m∗
∂fW
∂r

=

∫
dk′

ℓ ϕW (r,k′
ℓ − kℓ, t)fW (r,k′

ℓ, t)

(4)

The Wigner transport equation, Eq.4 describes ballistic
carrier transport. Further correction terms are needed to
account for collisional dynamics. Here, kℓ (p̂ = −iℏ∇)
is the wavevector which determines the lattice or crystal
momentum of individual electrons with effective mass,
m∗

e. Naturally, when conduction electrons that sustain
the extreme plasmon individually attain large kℓ the col-
lective wavevector, k also becomes large.
The electromagnetic force due to long-range Coulomb

interaction (due to non-equilibrium distribution in space)
in the Wigner equation is accounted for by an electro-
static potential, ϕW (using mean-field approximation)
which is determined by Poisson equation:

∇2ϕW (r, t) = 4πe(n(r, t)− n0). (5)

For the quantum electron gas, the Wigner-Poisson sys-
tem provides a framework similar to the Vlasov-Poisson
system for classical gasses.

In our work, the quantum electron gas on a surface is
strongly excited such that the displacement amplitude of
constituent conduction electrons approaches the wave-
length, in Eq.1. The resulting large-amplitude trajec-
tories cannot be perturbatively treated and linearized.
Such trajectories underlying extreme plasmons are dis-
cernible from Fig.2 which shows the planar cross-section
of electron density (of the 3D simulation in Fig.1).

FIG. 2. Cross-section of the surface crunch-in plasmon in a
conductive tube from 3D particle-tracking simulation same as
in Fig.1 using [31, 32].

Consequently, large-amplitude quantum gas oscilla-
tions cannot be modeled using fluid theory (tracking

macroscopic quantities such as moments of phase-space)
which uses macroscopic material properties and classi-
cal hydrodynamic model [21]. Similarly, small-amplitude
quantum mechanical framework [1] based upon pertur-
bative expansion around smallness of α (see sec.IID), is
not applicable to extreme plasmons.
Our analytical model below, therefore, uses quantum

kinetic theory to model large-amplitude plasmons. Par-
ticularly, we build upon the small-amplitude plasmon
model [1] that matches experimental observations.

C. Modified independent electron approximation

In kinetic modeling of quantum systems, under cer-
tain conditions it is sufficient to calculate the trajec-
tory of a single electron. When the energy of electron-
electron interaction (already minimized by Pauli’s exclu-
sion principle) becomes small relative to kinetic energy
and electron-lattice potential terms, particularly, in the
large-amplitude limit, the many-body electron model can
be decomposed into individual electron dynamics with
corrections for correlations.
The independent electron approximation allows for

the large-amplitude surface crunch-in plasmon model
based upon evolution of Wigner distribution function,
fW (r,p, t) in Eq.4 to be fully accounted for by the dy-
namics of individual electrons. As this approximation is
applicable over collisionless timescale, our model is appli-
cable to the dynamics before collisions begin to dominate.
Accordingly, the quantum kinetic model especially at

the extreme limits is here approximated by a modified
single-particle kinetic equation utilizing the quantum fac-
tor, FQ(k,p) introduced in sec.IID.
Formal evaluation of the efficacy of assumptions by

comparing experiments against treatment using quantum
kinetic model and a modified single-particle approach
adopted here, is part of our future work.

D. Small-amplitude plasmons: Quantum model

Quantum mechanical framework of small-amplitude
plasmons was developed by Pines et. al. [1, 2] to ex-
plain experimental observations. As the electronic states
whether in the ground (equilibrium) or the excited (plas-
mon) state of conduction electrons, are valid only at dis-
crete wavevectors, such a framework is indispensable.
The dynamics of quantum electrons, particularly their

organized behavior which gives rise to collective electron
oscillations, is fundamentally a many-body quantum phe-
nomena. Analysis of this many-body quantum state is
simplified in [2] by using a canonical transform to the
basis of collective wavevector, k.
This transformation allows separating the Hamiltonian

into three major, nearly independent terms:

H = Hpart +Hcoll +Hs.r. (6)
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Eq.6 explicitly recognizes the existence of plasmons us-
ing the term Hcoll. The discrete wavevector basis is suit-
able for separation of terms contributing to H, because
plasmons are only sustained below a critical wavenum-
ber, k < kc. This critical wavenumber, kc is close to the
Thomas-Fermi screening wavenumber:

k2c ≃ k2TF = k2F

(
16

3π2

)2/3
rs
a0

(7)

This critical wavenumber motivates the canonical trans-
formation as it allows separation of terms in the small-
amplitude limit. Using this transformation, analysis of
plasmons becomes independent of individual electron dy-
namics that primarily occurs over k > kc, represented by
Hpart (individual particle states) and Hs.r. (short range).

Here, the Fermi wavevector, kF = (3π2n0)
1/3 repre-

sents electron momentum at the Fermi energy, EF =
ℏ2k2F (2me)

−1, rs is radius of the Wigner-Seitz sphere and
a0 the Bohr radius.

The energy of plasmons (Hcoll) is required to be higher
than the ground-state energy (itself greater than the
Fermi energy) of the electron assembly to eliminate their
spontaneous excitation. So, when the quantum electron
gas is externally excited to sustain plasmons, the term
Hcoll in Eq.6 becomes dominant.

Experimentally verifiable quantities such as the fre-
quency of plasmon, ωQ using the quantum model in [1]
were obtained in the small-amplitude limit by perturba-
tively expanding about a small parameter, α:

α =

〈(
k · p
mω

)2
〉

(8)

where, the parameter α is averaged over the particle mo-
menta, p and wavevectors of the collective field (or col-
lective density profile), k with ω being the frequency of
the collective oscillations. The frequency of conduction
electrons, ω was defined using quantum dispersion rela-
tion obtained based upon small α. The average plasmon
frequency, ⟨ωQ⟩ from the perturbative expansion about
small α is:

⟨ωQ⟩ ≃
(
1 + 3α

[
1 +

3

10
β2

])
ωp ≡ FQ(k,p) ωp (9)

where, ωp =
√

n0e2

ϵ0me
is the classical electron (plasma)

oscillation frequency, β = kc

kF
, and α ≃ 1

2 β2 a0

rs
.

The plasmon frequency is, therefore, material and (k,p)-
dependent as evident from the term 3α.
Quantum factor: In this work, we introduce a quan-

tum factor FQ(α, β,k,p) ≡ FQ(k,p). The character-
istics of quantum electron oscillations (ωQ) are quite
unlike the oscillations in a classical plasma (ωp) which
has randomly distributed ions (no quantum effects) and
Maxwell-Boltzmann distribution (energy continuum).

In [2], characteristics of plasmons measured in exper-
iments were demonstrated to be in agreement with the
quantum model (as opposed to a classical one).

Non-perturbative plasmons: Extreme plasmons
are not amenable to perturbative expansion because of
their large oscillation amplitude. Such oscillations have
large wavevectors, k as is evident from highly localized
density accumulation. These large collective wavevectors
are a result of relativistic momentum, p.

Due to the lack of any experimental investigations
of extreme plasmons, their underlying non-perturbative,
quantum mechanical framework and their characteristic
quantities such as oscillation frequency of extreme plas-
mons, ωQ, quantum properties are incorporated in our
model using the quantum factor, FQ(k,p). FQ (> 1
even in the small-amplitude limit) is not merely a con-
stant factor [2], it depends upon material properties and
scales with k and p of the excited states.

In the large-amplitude quantum limit, the plasmon fre-
quency and coherence-limit of quantum electron oscilla-
tions are obtained by extending into the quantum domain
using FQ. Our experiments [10, 17–19] will comprehen-
sively address these considerations.

Preceding models: Quantum mechanical treatment
of conduction electron oscillations in [2] was preceded
by hydrodynamic theory of Kronig and Korringa [21]
which treated the quantum electron gas as a classical
fluid. This model accounted for collisions as viscous fric-
tion which led to the erroneous conclusion that collision
rate increased with the velocity of oscillating electrons.

Subsequently, Kramers proposed an alternative model
[23] in line with an earlier classical kinetic treatment by
Drude which was developed prior to the atomic model
[22]. But, this kinetic model still treated individual elec-
trons with classical properties. This model arrived at the
important understanding that the effect of collisions was
negligible. However, by not accounting for the quantum
mechanical basis of the collisionless behavior, this model
also erroneously predicted that the rate of collision in-
creased with electron velocity.

Tomonaga [24] first developed a quantum mechanical
model of one-dimensional collective oscillations of Fermi
electron gas. However, this model approximated the
many-body wavefunction of the electron gas to be merely
a collection of free electrons with a Fermi distribution
at absolute zero, instead of electronic states with dis-
crete wavevectors. In [24], the degenerate electron gas is
found to merely execute classical plasma oscillations in
disagreement with experiments.

As is evident from models preceding Pines [2], classi-
cal model contradict experiments while even simplified
quantum models [2] are sufficient (including the effects
of Bloch theorem, material dependence such as lattice
structure etc.). The assumption that electrons in the
presence of an ionic lattice merely form a classical fluid,
entirely ignores the discrete electron states.

Thus, classical approximations of a quantum system
result in inaccurate predictions and are incapable of ex-
plaining experimental observations.
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E. Quantum coherence limit

Extreme plasmons [7, 10] for the first time access the
coherence limit of oscillations of the quantum electron
gas that is inherent in conductive media.

The conduction electrons that are excited to energy
states, E ≫ EF , attain large kℓ. Collectively, electrons
with various large kℓ superpose to excite a large k plas-
mon, apparent from its field and density profile.

For states with E ≫ EF , oscillations have large trajec-
tories due to being strongly displaced from equilibrium.
This increase in displacement requires a corresponding
increase in restoring force exerted by the lattice to up-
hold the plasmon frequency, ωQ,

ωQ = FQ(k,p) ωp

≃ FQ 56.4
√

n0[1024cm−3] ×1015rad/s
(10)

While the quantum factor, FQ depends on inherent char-
acteristics of the material and properties of excitation, it
primarily arises from the change in properties of a cor-
related many-body system relative to an ensemble of in-
dependent single electron states. It may be interpreted
as the ability of quantum entities to be compressed to a
density, n0 = F 2

Qne higher than uncorrelated ones. It
is well known that a quantum ensemble becomes more
collisionless at higher densities.

The restoring field that is capable of maintaining ωQ in
Eq.10 under coherence limited amplitude of oscillations
of ultradense electron gas is,

EQ = FQ(k,p)

(
mec

2

e

)
2π

λQ

≃ 0.1FQ

√
n0[1024cm−3] PVm−1.

(11)

The displaced Fermi electron gas that sustains the ex-
treme plasmon, undergoes highly localized accumulation
or compression which is ultimately limited by breaking of
mutual coherence of plasmon under extreme amplitude,
δ ≃ λQ. This limit is a consequence of onset of trajectory
overlap or collisions.

The density displaced δne (= ne−n0) significantly ex-
ceeds equilibrium density, δne

n0
≳ 1 owing to near com-

plete displacement and compression as seen in Fig.2.
Consequently, the ionic lattice gets locally bared by evac-
uation of the enveloping Fermi electron gas. The electric
field in Eq.11 is thus also the instantaneous Coulomb field
of the unneutralized ionic lattice or the Fermi gas that
get spatially segregated over plasmon timescales.

Eq.11, first introduced by our extreme plasmon model
[7, 10, 14] is the electric field at the coherence limit
of one-dimensional electron oscillations of a nonclassical
gas. Although given the lack of appropriate experiments,
Eq.11 does not yet represent experimentally verified co-
herence limit of quantum electron oscillations. Specifi-
cally, a quantum gas where individual electrons are dis-
tinguishable with a well-defined quantum state.

For a classical electron gas (Maxwell-Boltzmann statis-
tics) commonly obtained by ionizing an atomic or molec-
ular gas to plasma state, experiments have confirmed
scaling of peak Ep [25] with square root of ionized elec-
tron density,

√
ne . Note that it is important to distin-

guish classical, ionized electron density, ne against quan-
tum, Fermi electron density, n0. Importantly, classical
gasses can hardly be compressed to ne > 1019cm−3.
In contrast, the quantum electron gas that is inherent

in conductive materials is naturally ultradense (n0) even
at equilibrium. This is because the periodic ionic poten-
tial of the background lattice quantizes the electron en-
ergy levels in cognizance with the presence of lattice [5].
The resulting electronic states are naturally independent
of collisions with the lattice (without impurities, incon-
sistencies or thermal vibrations).
Similarly, electron-electron collision cross-sections are

suppressed due to a finite separation in electron energies
especially owing to spin states, per the exclusion prin-
ciple [6]. Furthermore, correlation energy of electrons
effectively allows higher spatial compression.
It is these implicit quantum effects that make possible

existence of plasmons.

F. Relativistic quantum dynamics

Relativistic quantum tunneling: As the Fermi
electron gas gains kinetic energy approaching (and even-
tually exceeding) the surface potential, the probability
of its traversing the material interface through tunneling
increases [28]. The rate of tunneling increases with mag-
nitude of the applied electric field. In our model, electron
tunneling which is an ultrafast process with attosecond
timescale [29], occurs well within collisionless timescales.
The conduction electron gas, thus, radially oscillates (see
sec.IV) across the interface.
Relativistically induced ballistic transport: It is

well known that the mean free path, λMFP of conduction
electrons is significantly higher than that of a classical
electron gas only due to its quantum nature. Specifically,
the Fermi-Dirac distribution sets up the average velocity
around the Fermi velocity, vF ≃ 0.01c at equilibrium,
resulting in λMFP ≫ d0.
Ultrafast excitation of the quantum gas from Fermi

velocity, at equilibrium to relativistic velocities, corre-
spondingly increases λMFP by about at least two orders
of magnitude. This new effect of relativistically induced
ballistic transport uncovered in our work is, thus a key
characteristic of extreme plasmons.

III. CONTROLLED EXCITATION

Our work [9] devises an experimentally realizable
mechanism to controllably excite coherence-limited os-
cillations of quantum electron gas.
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This is made possible using a new type of plasmon, the
surface crunch-in plasmon [11, 12], which unlike conven-
tional plasmons, allows sufficient control (under specific
constraints per below) to make extreme plasmons and
the PV/m field frontier realizable.

The effectiveness of surface crunch-in plasmons lies in
overcoming the constraints in experimental realization of
extreme plasmons. Key requirements listed below not
only allow practically viable nanometric confinement but
also optimize energy exchange:

1. Collisionless interaction such that the excitation
propagates (in vacuum) along a conductive surface
without any direct contact with the material.

2. Pre-pulse energy (longer timescale) is minimized to
avoid disruption of the properties of the material
ahead of the main excitation.

3. Maximize energy transfer by enclosing the propa-
gating excitation with quantum electron gas in sur-
faces that surround it.

4. Matching the properties of excitation with those of
the material including its size, surface structure,
conduction electron density (n0) etc.

5. Continual focusing of a significant part of the exci-
tation pulse to avoid dilution of its intensity owing
to natural divergence.

Collisionless excitation: Direct interaction between
the excitation pulse (charged particle or photon bunch)
and the ionic lattice is highly disruptive. The pulse dis-
integrates due to rapid growth of numerous instabilities
apart from uncontrolled, collisional loss of excitation en-
ergy. As a result, sustained interaction of charged parti-
cle beam with bulk solids has been impractical and ex-
perimentally unrealizable due to rapid breakup of the
excitation[26]. A key requirement is, therefore, to miti-
gate direct collision.

In our work, extreme plasmons are excited in a hol-
low tube such that the charged particle beam propagates
inside the evacuated core. This substantially minimizes
direct collision of the beam particles (except those in the
wings) with the material in the wall.
Eliminate pre-pulse: When pulses are temporally
compressed to sub-picosecond timescales, their interac-
tion with materials become quite distinct compared to
nanosecond or longer pulses [27].

However, ultrafast pulses are known to be accompa-
nied by significant energy in pre-pulse ahead of the main
pulse. This energy disrupts the material structure and
its quantum nature. In a particle accelerator, an accel-
eration bucket which accepts a particle bunch inherently
filter our any particles in the pre-pulse.
Maximize energy exchange: In our work the quan-
tum electron gas surrounds the excitation azimuthally
enclosing it and participates in the collisionless energy
exchange unlike a planar or bulk material.
Tunable nanomaterials: Nanofabrication technology
allows highly tunable properties of plasmonic materi-
als. Structures with dimensions approaching the inher-
ent scales of plasmons enable tunability of response of

the media to external excitations.
Continual focusing: Focusing the excitation pulse in-
side the tube is not possible using conventional surface
modes or plasmons (such as the Transverse Magnetic
mode). Moreover, these conventional “purely” electro-
magnetic modes of tubes are highly sensitive to trans-
verse spatial or angular misalignments which disrupt and
deflect the beam, a problem that rapidly grows with de-
creasing tube radius.
The surface “crunch-in” plasmon [11, 12] addresses this

critical need to continually focus the excitation (as well
as a trailing bunch in the right phase). This becomes pos-
sible as the crunch-in plasmon is strongly electrostatic,
unlike linear surface modes, and sustains strong focusing
fields of the same order as Eq.11.

IV. SURFACE CRUNCH-IN PLASMON

In the analysis below we present the kinetic model of
surface crunch-in plasmon excited by a charged particle
beam. Our model is applicable over collisionless and co-
herent timescales of extreme plasmon. In consideration
of the symmetry of interaction, with quantum electron
gas in a tube surrounding the beam, our model is formu-
lated in cylindrical coordinates.
Radial oscillations: The charged particle beam

which propagates in the positive z-direction is taken to be
sufficiently relativistic, γb ≫ 1 such that its electric field,
Eb is primarily radial. Therefore, conduction electrons
interacting with the radial fields of the beam predomi-
nantly oscillate radially. These radial collective oscilla-
tions of the quantum electron gas across the surface are
significantly different from conventional plasmons. The
beam density, nb (Eb ∝ nb) is sufficiently high to strongly
excite conduction electrons, max[r(t)]− r0 ≃ λQ (see be-

low) in less than, 2πω−1
Q .

Discrete momentum states: While conduction
electrons are delocalized and free to occupy any arbitrary
radial position, r(t), the same is not true about their
momentum, p which is quantum mechanically, ℏkℓ. The

classical continuum in electron momentum, dr(t)
dt is not

valid in a quantum system. Therefore, a specific electron
lattice wavevector, kℓ needs to exist to accommodate an
excited electron.
However, to simplify our analysis we make a reasonable

assumption that electrons excited such that they occupy
large quantum numbers in the extreme limit, have dis-
crete quantum states that can be approximated using a
continuum. Under this approximation, below momentum

states are simplified to be represented as dr(t)
dt .

Nevertheless, the effect of ionic lattice on constraining
occupancy to specific lattice wavevectors, kℓ, the effect
of momentum, p and the effect of collective wavevector,
k on quantum electron gas oscillations, is accounted for
using the quantum factor, FQ(p,k).
Mixed states: The simplification afforded by assum-

ing a continuum in momentum also helps in handling the
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challenge posed by conduction electrons tunneling across
the surface. This changes (oscillates) their quantum na-
ture (discrete states) in the presence of the lattice to
being free electrons (continuum) in vacuum.

FIG. 3. Notations in our surface crunch-in plasmon kinetic
model. Here, rt is the tube radius, rm is the maximum radial
amplitude of plasmon and ∆w is the wall thickness of the
tube.This is zoomed-in version of Fig.2.

The parameters of the geometry of conduction electron
gas are (depicted in Fig.3):

i. n0 is the conduction electron density.
ii. rt is the radius of the vacuum core of the tube de-

fined by its inner wall.
iii. ∆w is the wall thickness with the corresponding

outer wall radius being rt +∆w.
The excitation beam is assumed to approximate a

Gaussian distribution (with azimuthal symmetry):

nb(r, z) = nb0 exp

(
− r2

2σ2
r

)
exp

(
− (z − zm)

2

2σ2
z

)
(12)

where the beam parameters are as follows:
i. σz is the standard deviation along the longitudinal
dimension of the Gaussian bunch and characterizes
its bunch length.

ii. σr is the standard deviation along the radial di-
mension (under transverse symmetry) of the Gaus-
sian bunch and characterizes the bunch waist-size
at tube entrance.

iii. nb(r, z) is the beam density (nb0 = Nb

(2π)3/2σ2
rσz

is

the peak density at r = 0 and z = zm).
iv. Nb is the number of beam particles and Qb =

sgn[Qb] e Nb is the bunch charge, and Nb =∫∞
−∞

∫∞
0

∫ 2π

0
nb(r, z) dθ rdr dz.

v. vb = βbc is beam velocity and γb = (1− β2
b )

−1/2.
The electric field lines of a gaussian bunch of ultra-

relativistic charged particles, γb ≫ 1 are predominantly
radial and perpendicular to the direction of the bunch
velocity, |βb| =

√
1− 1/γ2

b . The radial electric field
Eb(r, z) of the beam assuming azimuthal symmetry and
γb ≫ 1 is obtained using Gauss’s law,

Eb(r, z) = −sgn[Qb] ω
2
p(n0)

me

e

nb0

n0
×

σ2
r

2π

[
1− exp

(
− r2

2σ2
r

)]
r

exp

(
− (z − zm)

2

2σ2
z

) (13)

The beam is here assumed to be in a classical state
(plasma, ωp) but it may also attain a quantum state when
it satisfies the conditions on Γ and χ in sec.II A.
As the beam undergoes focusing being acted

upon by the radial fields of the extreme plasmon,
its profile gets modified and the field changes to

−sgn[Qb] ω2
p(n0)

me

e
nb0(ξ)
n0

∫ r

0
dr P(r, z, ξ), where

P(r, z, ξ) is the profile function of the continually focused
beam. Here, we simplify the analysis assuming that the
profile changes slowly and remains Gaussian.

A. Quantum kinetic equation using FQ(k,p)

A kinetic equation is developed here within the quan-
tum kinetic framework using modified single-particle ap-
proach (sec.II C). Specifically, an equation of motion of
individual conduction electrons oscillating at average fre-
quency, ωQ is obtained.
Assuming azimuthal symmetry, radial motion over an

infinitesimally thin disk of thickness dz is considered.
The key parameters of the kinetic model are:
r0: is the equilibrium position of a tube electron which

always satisfies the condition, rt < r0 < rt +∆w
r(t): is the instantaneous radial position of an oscillating

tube electron (r = r0 +∆r where, ∆r is the radial
displacement of the electron which can be positive
or negative)

rm: is the maximum radius to which the strongly driven
tube electrons reach and bunch up to form an elec-
tron sheath

H(r): is the step function which is defined as H(0+) = 1
and H(0−) = 0. This function models the step-like
change in the density across the surface.

Coherent oscillations: Radially oscillating conduc-
tion electrons retain mutual coherence until they main-
tain the same ordering in the radial direction, as that at
equilibrium. Ordering precludes crossing of trajectories
and disallows electron-electron collisions, a key require-
ment for ballistic oscillations.
This condition requires that a conduction electron lo-

cated at an equilibrium radial position, r0 which is ini-
tially less than that of a neighboring electron, always
remains at a lesser instantaneous radii, r(t) throughout
its trajectory underlying the plasmon.

It requires that when other conduction electrons which
are located at an equilibrium radial position less than the
electron under consideration (between r0 and rt) move
with it, they remain ordered and just behind r(t). This
adherence to equilibrium ordering during oscillation en-
sures coherent and collisionless oscillations.

Mutual coherence along with collisionless characteris-
tics ensure that the plasmon does not collisionally dissi-
pate energy coupled to it.

Ionic lattice phase: When a conduction electron un-
der consideration is radially displaced from r0 (by the
force of beam fields), it uncovers the ionic lattice in the
tube wall. Upon radial displacement of this electron, all
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the electrons located at equilibrium radii between rt and
r0 move together and are displaced to a new radial loca-
tion r(t). These electrons bunch together into a sheath
layer at the trajectory maxima due to inward force of the
uncovered ionic lattice. The inward force exerted due to
uncovering of the ionic lattice (using Gauss’s law) is:

−e Elattice(r > rt) = −meω
2
p(n0)

(r2 − r2t )

2r
(14)

However, in addition to the ionic force on the electron
under consideration (originally located at r0), the elec-
trons with an equilibrium radii smaller than r0 (located
between r0 and rt) collectively move with the electron
under consideration and compress together to produce a
collective field opposite to that of the lattice. The com-
pressed density is higher in the quantum regime by F 2

Q.
The force of electrons collectively compressed together,
balances the force exerted by the lattice to form dynamic
equilibria (zero velocity) at the trajectory maxima, rm.
The field due to accumulation of conduction electrons

located between r0 and rt and collectively moving out-
wards along with the electron at r0 while maintaining the
equilibrium radial ordering is,

−e Ee(r) = meω
2
Q(n0)

(r20 − r2t )

2r
(15)

As conduction electrons undergo a compression greater
by F 2

Qn0, the field is correspondingly higher.
Crunch-in phase: After the equilibrium at the out-

ward radial maxima, rm electron momentum becomes
radially negative. Being part of large-amplitude oscilla-
tions, the electron under consideration gains large enough
velocity to tunnel across the surface and move into the
hollow region of the tube. As there is no lattice in the
core region of the tube, the collectively moving electrons
do not experience any ionic force.

However, since the electrons collectively oscillate, the
tube electrons located between r0 and rt collectively
crunch-in into the hollow region. The stronger the force
of the beam, the deeper is the radial excursion into the
core region of the tube. Under this condition, inside the
tube core region the only force acting to restore the elec-
trons back to equilibrium is due to electron accumulation.
This is equivalent to the force in Eq.15.

Therefore, the net collective force acting on the elec-
trons can be written using the Heaviside step function,
H(r) to segregate the forces controlling the dynamics in
the wall in contrast with that inside the tube:

Fcoll(r > rt) = −e Elattice(r > rt)− e Ee(r > rt)

= −meω
2
Q(n0)

(r2 − r2t )H(r − rt)− (r20 − r2t )

2r

(16)

H(r − rt) in Eq.16 indicates that the first term which is
due to the lattice along with the second term together act
on the electrons while their instantaneous radial position
is in the wall. However, the second term only applies to

electrons with instantaneous position in the evacuated
region, r < rt, as the effect of lattice ceases at rt.
It is important to note that due to the termination

of the lattice at r = rt, the kinetic equation does not
account for quantum effects inside the tube core. But,
continuity of momentum across the boundary needs to
be taken into account. An additional term, ∂

∂t

(
∂r
∂t

)
|r=rt

is used to take this continuity in momentum.
Beam force: When negatively charged, sgn[Qb] = −1

beam, such as an electron beam, excites the conduction
electrons, they initially propagate outwards and com-
press together at rm. On the other hand, when excited
by a positively charged beam, conduction electrons ini-
tially accelerate inwards towards the core region. The
bunch length is taken to be smaller than, λQ such that
the beam fields terminate in the crunch-in phase.
Kinetic equation: For a conduction electron located

at r(z, t), the equation of motion of collective surface

oscillation excited by the beam field is γeme
∂2r(z,t)

∂t2 =

Fcoll + eEb. Here, γe =
(
1 + p

mec
· p
mec

)1/2

is the rela-

tivistic factor of the conduction electrons and beam field
is simplified under the condition, σr ≲ rt.
The kinetic equation of the nonlinear surface wave sus-

tained by localized crunch-in plasmons is obtained by
transforming to a coordinate co-moving with the beam,
ξ = cβbt− z such that ∂ξ

cβb
= ∂t and using Eq.13,

∂2r(z, t)

∂ξ2
+

ω2
p(nt)

γec2β2
b

1

2r

[
(r2 − r2t )H(r − rt)− F 2

Q(r
2
0 − r2t )

]
+ sgn

[
∂r

∂ξ

]
∂2r

∂ξ2

∣∣∣∣
r=rt

= −sgn[Qb]
ω2
p(n0)

γec2β2
b

nb0

n0

σ2
r

2π

1

r
e−(z−zm)2/(2σ2

z)

(17)

The kinetic equation, Eq.17 is used obtain the radial

maxima of electron trajectory, r = rm where ∂2r
∂t2 = 0,

rm =

[
r2t + 2

nb0

n0

σ2
r

2π

]1/2
(18)

Existence condition of crunch-in plasmon, (rt+∆w) >
rm is also obtained as,

∆w

(
1 +

∆w

2rt

)
>

n0

nb0

σ2
r

2πrt
(19)

Extreme plasmon is excited only when (rm−rt)λ
−1
Q ≫

0, which is simplified as,

0 ≪
(
nb0

n0

σ2
r

2πrt

)
λ−1
Q ≃ 1 (20)

V. FIELDS OF THE EXTREME PLASMON

When the existence, Eq.19 and excitation condition,
Eq.20 are satisfied, the kinetic model in Eq.17 and the



9

expression for rm in Eq.18, allow determination of the net
charge displaced in the plasmon. Using the net charge
that crunches-in into the core region of the tube, magni-
tude of peak fields is obtained.

The total charge that builds up in the electron com-
pression layer at rm during the outward radial excursion
phase, is restored back towards the axis by the force of
the uncovered ionic lattice. However, instead of merely
reverting to their respective equilibrium positions, the
excited electrons collectively cross the surface to crunch
in towards the axis, r = 0.
During this crunch-in phase of radially inward electron

compression, the force of ionic lattice ceases to exist for
r < rt. So, electrons continue to crunch in until the total
compressed electron density results in a radial electric
field, Er that opposes further compression. The electrons
first crunch in to a minimum radius, rc at the longitudinal
position, ξrc . This minimum radius, rc is dictated by
their initial acceleration at excitation.

The charge density that crunches in within the radial
area enclosed by rc is calculated using the collective mo-
tion of all electrons between rm and rt to result in their
collective collapse into the tube.

The net change displaced in the excited electron rings
with infinitesimal slice thickness, dz, that crunch-in at
the longitudinal position, ξrc of maximum inward com-
pression (equal to the charge at maximum outward com-
pression) using Eq.18 is,

δQm(ξrc) = −en0π(r
2
m − r2t ) dz = −enb0σ

2
r dz (21)

The minimum radius to which the electrons crunch-
in to is represented relative to the tube radius, rc =
rt/(FQΘ), where Θ > 1. The minimum radius to which
the electrons compress increases by FQ. The peak radial
electric field using the net charge, Qm, and its simplifi-
cation using SI units is,

Er(ξrc) = −FQ
2Θ

(2π)3/2
1

rt

Qb

σz

= −FQ Θ
114.2

rt[100nm]

Qb[nC]

σz[100nm]

TV

m

(22)

Because the beam field, Eb(r) outside the beam decreases
radially, conduction electrons at increasing radial equi-
librium positions r0 > rt, gain decreasing initial momen-
tum. Thereby, when electrons crunch into the tube each
reaches a different crunch-in radius, rc(r0, t) at any in-
stant. Er(r), therefore, increases radially outwards until
rt, as the net crunched in charge increases. Consequently,
Θ depends upon the excitation conditions.

The peak longitudinal field, Ez is obtained using
the Panofsky-Wenzel theorem [30], 1

r
∂rEz

∂r = −∂Er

∂ξ or

lim∆→0
∆rEz

∆r = −r∆Er

∆ξ . Ez radially varies over ∆r ≃ rt
as the phase of the radial field transitions from negative
to positive over ∆ξ = κλc. The crunch-in wavelength for
a given set of beam properties, λc is itself proportional
to the tube radius rt [10]. As the tube radius increases,

per the excitation condition in Eq.20 the plasmon be-
comes less nonlinear. On the other hand, as rt → 0
(bulk media) λc ≃ λQ. Therefore, relativistically cor-
rected wavelength of the surface crunch-in plasmon is,

λc = λQ

√
⟨γe⟩

[
rt
λQ

+ 1
]
.

An approximate expression for the average ⟨γe⟩ is ob-
tained using ∆pr = eEb

σz

c ≳ mec, such that, γe =√
1 +

(
pr

mec

)2

≃ ω2
p(n0)

c2
1
rt

nb0

n0

σ2
rσz

2π . Using this γe, the

peak longitudinal field, Ez is evaluated as:

Ez = Er
rt

κ 2πc

ωQ(n0)√
γe

= Er
rt

κ
√
2π

√
n0rt

nb0σ2
rσz

(23)

The peak longitudinal field, Ez(ξrc) is obtained using
Eq.22 with (1 + rt/λQ) ≃ 1 and simplified using SI units,

Ez(ξrc) =
FQ

κ

√
2

(2π)7/4

√
Qb

e

√
rtre
σz

EQ

= F 2
Q

3

4κ

√
n0[cm−3] rt[100nm]

√
Qb[nC]

σz[100nm]

TV

m
(24)

The expressions for peak electric fields in Eq.22 and
Eq.24 are evaluated against previously published simula-
tion results based on classical kinetic theory.
From the nanoporous metal simulations in [7], using

n0 = 2× 1022cm−3, rt = 100nm, Qb = 315 pC, and σz =
400nm; the peak radial field is, Er = FQ Θ 9 TV/m and

longitudinal field with κ = 0.25 is, Ez =
FQ

κ 5.74 TV/m.
Similarly, for semiconductor plasmon simulations in [10],
with n0 = 1018cm−3, rt = 12.5µm, nb0 = 1018cm−3,
Qb = 1.5 nC and σz ≃ 10µm; the peak radial field is,
Er = FQ Θ 13.7 GV/m and peak longitudinal field with

κ = 0.25 is, Ez =
FQ

κ 39.4 GV/m. This establishes a good
agreement with both previously published simulation re-
sults validating the quantum model of extreme plasmon
presented here.
However, precise characteristics including Θ, κ, and

especially FQ that emanates from the quantum nature
need dedicated efforts to develop a comprehensive un-
derstanding. Our ongoing work including experiments
[17–19] is geared towards addressing this.

VI. CONCLUSION

In conclusion, characteristics of the new class of plas-
mons necessitate a non-perturbative, quantum kinetic
framework.
A modified independent electron approximation intro-

duced here that accounts for quantum frequency of plas-
mons, ωQ using, FQ(k,p), is found to be valuable to sim-
plify the underlying non-perturbative, collisionless and
relativistic quantum dynamics. The kinetic model of
experimentally realizable extreme plasmon, the surface
crunch-in plasmon, based on this approximation provides
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the existence and excitation conditions, in addition to ex-
pressions of its focusing and longitudinal fields.

For further strengthening the extreme plasmon model
towards unprecedented PVm−1 fields, desired experimen-
tal efforts are ongoing [17–19].
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