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Abstract

A mobile impurity particle immersed in a quantum fluid forms a polaron –
a quasiparticle consisting of the impurity and a local disturbance of the fluid
around it. We ask what happens to a one-dimensional polaron after a kick,
i.e. an abrupt application of a force that instantly delivers a finite impulse to
the impurity. In the framework of an integrable model describing an impurity
in a one-dimensional gas of fermions or hard-core bosons, we calculate the dis-
tribution of the polaron momentum established when the post-kick relaxation
is over. A remarkable feature of this distribution is a two-sided power-law
singularity that can correspond to one of two processes. In the first process,
the whole impulse is transferred to the polaron, without creating phonon-like
excitations of the fluid. In the second process, the impulse is shared between
the polaron and the center-of-mass motion of the fluid, again without creating
any fluid excitations. The latter process is, in fact, a Bragg reflection at the
edge of the emergent Brillouin zone. We carefully analyze the conditions for
each of the two cases and derive the asymptotic form of the distribution in the
vicinity of the singularity.

Contents

1 Introduction 2

2 McGuire model and its Bethe ansatz solution 3
2.1 The model 3
2.2 Bethe ansatz 4
2.3 Spectrum and a Bethe equation in the thermodynamic limit 5
2.4 Fermi polaron 6

3 Polaron after a kick 7
3.1 Distribution over polaron rapidities after a general quantum quench 7
3.2 Preparing the initial state by kicking the impurity 7
3.3 Polaron momentum distribution after the kick 8
3.4 Two-sided power-law singularity of the distribution 9

4 Discussion and outlook 11

1

ar
X

iv
:2

40
4.

02
09

9v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

 A
pr

 2
02

4



SciPost Physics Submission

A Kick as a quantum quench 12

B Momentum distribution: derivation 12
B.1 Preliminary considerations 12
B.2 Matrix element 13
B.3 From sum over eigenstates to sum over independent integers 13
B.4 Handling (detD)2 14
B.5 Factorized representation of δ(Λ− Λn,M ) 14
B.6 Combining the pieces 14

C Asymptotic analysis of the singularity 15
C.1 Asymptotics of the Fredholm determinant 15
C.2 Singularity of the momentum distribution 16

References 16

1 Introduction

The behavior of an impurity particle propagating in a host media is a paradigmatic problem
in physics. To address this problem, a concept of polaron was introduced by Landau [1]
and Pekar [2] at the down of the quantum theory of condensed matter. A polaron is a
quasiparticle consisting of the impurity along with the local disturbance of the host media
cased by the interaction between the impurity and host particles. Polaron properties, such
as mass or dispersion relation, can be quite different from that of the bare impurity [3].
The polaron framework can be universally applied to virtually any combination of impurity
particle and host media [4–7].

Current experimental advance in the ultracold atomic gases allows one to create and
control two-component mixtures with large concentration imbalance, thus offering a novel,
extremely flexible platform for studying physics of polarons [8–15]. Importantly, such ex-
periments can be performed in the reduced spatial geometries, where effects of interactions
are more pronounced.

One-dimensional polarons are particularly remarkable. Their distinctive feature is the
ability to move perpetually at zero temperature – an effect reminiscent but not identical to
superfluidity [16–18]. This effect is universal and stems from the non-trivial spectral edge
of any one-dimensional fluid [19]. It implies that the polaron momentum is a bona-fide
quantum number (at least at zero temperature).

A steadily increasing deal of attention is being attracted by non-equilibrium aspects
of the polaron formation and dynamics [20–46]. Valuable insights into the nonequilibrium
polaron physics [16,22,33] come from studies of a one-dimensional integrable model intro-
duced in 1965 by McGuire [47,48]. Importantly, integrability facilitates non-perturbative
analytical investigation of the strong correlation effects hardly available otherwise.

In this paper, we consider the effect of kicking the polaron in the McGuire model at
zero temperature. In the context of cold atom experiments, the kick can be realized by
photon scattering or absorption, or by moving optical tweezers [49]. On a formal level, the
kick corresponds to applying an external force to the impurity within a short time interval,
so that the impurity acquires a finite impulse. The kick is followed by a relaxation, when
the acquired momentum is shared between the polaron and the excitations of the fluid
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Figure 1: A cartoon of the out-of-equilibrium protocol under study. A polaron, initially in
equilibrium, is kicked by an instant application of a force to the impurity. The kick changes
the polaron momentum and creates excitations of the fluid. We describe the steady state
of the polaron after the relaxation is over and all fluid excitations have broken apart.

created by the kick. The relaxation is effectively over when all created fluid excitations
have detached and moved away from the polaron, see Fig. 1. We calculate and analyze the
probability distribution of the polaron momentum in the thus established (quasi-)steady
state.

The rest of the paper is structured as follows. In the next section we provide a concise
but self-contained description of the McGuire model and its Bethe ansatz solution, with
the focus on the polaron properties. This section is based on the prior literature [47,50–52].
Original results are presented in Section 3. There we provide the polaron momentum dis-
tribution and analyze its singularity structure. The last section discusses the implications
of the results in a broader context. Derivations and proofs can be found in the Appendix.

2 McGuire model and its Bethe ansatz solution

2.1 The model

We use a simple and yet non-trivial integrable model of a polaron. This model was
introduced by McGuire who obtained its Bethe-ansatz solution in 1965 [47,48]. Later the
McGuire model turned out to represent a specific sector of a more general Yang-Gaudin
model [53,54]. Much later it was realized that the Bethe eigenstates of the McGuire model
can be represented as Slater-like determinants [16,50,55]. This discovery opened an avenue
for a flurry of exact results [16, 22, 33, 50–52, 56–59]. In the present section we review the
McGuire model and its solution. The exposition mostly follows ref. [51].

McGuire model describes a single impurity particle immersed into a one-dimensional
gas of N spinless fermions (or, equivalently [19], hard-core bosons), the mass of the impu-
rity and a fermion being the same. Fermions do not interact one with another but interact
with the impurity. We work in the first quantization, where the Hamiltonian of the model
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reads

H =
1

2
P 2
imp +

1

2

N∑
j=1

P 2
j +

2 pF
α

N∑
j=1

δ(xj − ximp). (1)

Here, xj (Pj) is the coordinate (momentum) of the j’th fermion, j = 1, . . . , N, and ximp

(Pimp) is that of the impurity. Translation invariance is imposed by introducing periodic
boundary conditions with the circumference L. Any wave function should be periodic in
any coordinate with the period L and antisymmetric in fermionic coordinates. The number
of fermions, N , is assumed to be odd. The Fermi momentum is defined as pF = π(N−1)/L.
We will be interested in the thermodynamic limit of N,L → ∞ with pF being fixed. Only
the case of repulsion will be considered here, which corresponds to a positive interaction
strength (2 pF )/α.

The total momentum Ptot = Pimp +
∑N

j=1 Pj is an integral of motion of the model.
Its eigenvalues (denoted by the same symbol Ptot) are quantized with the momentum
quantum 2π/L,

Ptot =
2π

L
M, (2)

where M is an integer.

2.2 Bethe ansatz

The eigenstates of the McGuire model are labelled by N + 2 integers. One of them is M ,
and others are organized in an ordered set n = {n1, n2, . . . nN+1}, n1 < n2 < · · · < nN+1

satisfying the constraint
N+1∑
l=1

nl ∈ [M,M +N ]. (3)

An eigenstate |n,M⟩ is given by

|n,M⟩ = N eiPtotximp

∣∣∣∣∣∣∣∣∣∣∣∣∣

eik1y1 eik2y1 ... eikN+1y1

eik1y2 eik2y2 ... eikN+1y2

. . . .

. . . .
eik1yN eik2yN ... eikN+1yN

e−iδ1 sin δ1 e−iδ2 sin δ2 ... e−iδN+1 sin δN+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4)

where N is a normalization constant, yj ≡ (xj − ximp)modL is the position of the j’th
fermion relative to the position of the impurity, and (N + 1) pseudomomenta kl are fixed
by integers nl up to phase shifts δl ∈ [0, π),

kl =
2π

L

(
nl −

δl
π

)
, l = 1, 2, . . . , N + 1. (5)

The phase shifts δl should be found from Bethe equations. We do not need the complete
set of Bethe equations since in the thermodynamic limit and for eigenstates in the bottom
of the spectrum (whose precise meaning is discussed in the next subsection) the it reduces
to a single equation on an auxiliary but very important variable – polaron rapidity Λ ∈
(−∞,+∞). This is the equation (8) introduced in the next subsection. It has a single
root Λn,M whenever the constraint (3) is satisfied, and no roots otherwise. The (N + 1)
phase shifts are expressed through this root as

δl =
π

2
− arctan

(
Λn,M − 2π

L
αnl

)
, (6)

up to corrections negligible in the thermodynamic limit.
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Figure 2: Schematic dependence of the polaron energy E , velocity v and rapidity Λ on the
polaron momentum Q. The units of the vertical axis are arbitrary. E(Q) is shifted by a
constant to ensure E(0) = 0.

2.3 Spectrum and a Bethe equation in the thermodynamic limit

The total momentum Ptot and energy Etot of the eigenstate |n,M⟩ can be expressed
through the corresponding pseudomomenta,

Ptot =

N+1∑
l=1

kl, Etot =
1

2

N+1∑
l=1

k2l . (7)

In fact, the right hand sides (r.h.s.) of these equations give the expectation values of
operators Ptot and H, respectively, for a state of the form (4) for arbitrary kl, not neces-
sarily the solutions of Bethe equations. In the thermodynamic limit, one can obtain the
sole relevant Bethe equation on the rapidity by plugging expressions (5),(6) into the first
equation (7) and replacing the sum by the integral. The resulting equation on Λ reads

Q(Λ) =
2π

L

(
M −

N+1∑
l=1

(
nl −

1

2

))
, (8)

where the function Q(Λ) is defined as

Q(Λ)

pF
=

1

πα

(
(Λ + α) arctan (Λ + α)− (Λ− α) arctan (Λ− α) +

1

2
log

1 + (α− Λ)2

1 + (α+ Λ)2

)
.

(9)
As we discuss in the next subsection, Q(Λ) is interpreted as the polaron momentum. It

is a monotonically increasing function of Λ (see Fig. 2), therefore the equation (8) has at
most one root Λn,M . Further, Q(Λ) ∈ [−pF, pF], which implies that a root exists whenever
the constraint (3) is satisfied.

For a given total momentum, one can define a (momentum-dependent) ground state.
Its energy is denoted by E(Ptot). The latter function constitutes the lower edge of the
many-body spectrum. In the thermodynamic limit, it is periodic with the period 2pF.
The spectrum is therefore divided into Brillouin zones of width 2pF. The main Brillouin
zone corresponds to Ptot ∈ [−pF, pF].

The set n of each ground state consists of consecutive integers. All eigenstates within
a Brillouin zone share the same set n but have different M . The main Brillouin zone
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corresponds to the set n = {−(N −1)/2, . . . , (N +1)/2}. This implies Ptot = Q(Λn,M ) for
each ground state |n,M⟩ from the main Brillouin zone. Other Brillouin zones have total
momentum Ptot = Q(Λn,M ) + 2mpF, where an integer m is the number of the zone. The
momentum shift (2mpF) corresponds to the center-of-mass motion of the Fermi gas.

We say that an eigenstate is in the bottom of the spectrum whenever its energy differs
from E(Ptot) by a value that is O(1) in the thermodynamic limit. The set n for such an
eigenstate differs from that for a ground state by “particle-hole excitations” whose number
is o(N) in the thermodynamic limit.

2.4 Fermi polaron

The impurity along with the disturbance of the Fermi gas around it is commonly known as
Fermi polaron (another term “depleton” is also used in the one-dimensional context [60–
62]). In the McGuire model the polaron can be characterized in a remarkably precise and
rigorous way. Namely, it turns out that, for any eigenstate in the bottom of the spectrum,
any local property of the impurity (e.g. its momentum distribution, static correlation
function etc) depends only on the corresponding polaron rapidity. In other words, if the
rapidities of two eigenstates |n,M⟩ and |n′,M ′⟩ are identical up to finite size corrections,
Λn′,M ′ = Λn,M + O(1/N), then local properties of the impurity in these two states are
also identical up to finite size corrections. Therefore one can consistently interpret an
eigenstate |n,M⟩ as containing a polaron with the rapidity Λn,M and a certain number of
Fermi sea excitations. The latter do not alter local polaron properties since their density
vanishes in the thermodynamic limit.

Ground states is the main Brillouin zone contain only a polaron, without additional ex-
citations of the Fermi sea. For this reason the momentum Q(Λ) and the energy E(Q(Λ)) =
E(Λ) of such ground states are interpreted as the polaron momentum and energy, respec-
tively. The polaron energy is explicitly given by

E(Λ)
p2F

=
1

πα
− 1 + α2 − Λ2

2πα2

(
arctan (Λ + α) + arctan (Λ− α)

)
+

Λ

2πα2
log

1 + (α− Λ)2

1 + (α+ Λ)2
.

(10)
A distinct feature of a polaron in one dimension is that it can move perpetually with a

velocity below a critical one (no matter whether the model is integrable or not) [16–18,22].
The critical velocity does not exceed the speed of sound in the medium hosting the polaron
[17, 18]. The velocity operator is defined through the Heisenberg equation as i[H,ximp]
and, for the Hamiltonian (1), coincides with the impurity’s momentum operator Pimp.

In the McGuire model the impurity’s velocity v(Λ) is expressed through the polaron
rapidity as

v(Λ)

vF
= ⟨n,M |Pimp|n,M⟩ = Λ

α
+

1

2α

log 1+(α−Λ)2

1+(α+Λ)2

arctan(α− Λ) + arctan(α+ Λ)
, (11)

where vF = pF is the Fermi velocity, see Fig. 2. One can verify that the polaron velocity
satisfies the usual relation for the group velocity,

v(Λ) =
∂E
∂Λ

(
∂Q

∂Λ

)−1

=
∂E
∂Q

. (12)

Explicit formula for the complete velocity distribution of an impurity in a polaron eigen-
state can be found in ref. [52].

Since Q(Λ) is a monotonic function, it can be inverted, Λ = Λ(Q). As a consequence,
the polaron can be unambiguously labelled not only by its rapidity Λ ∈ (−∞,∞) but also
by its momentum Q ∈ [−pF, pF].
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3 Polaron after a kick

3.1 Distribution over polaron rapidities after a general quantum quench

A quantum quench initializes a system in an out-of-equilibrium state |in⟩. The quench
is followed by relaxation and, eventually, by establishing a post-quench equilibrium state.
The long-time expectation value O∞ of an observable O can be obtained by averaging
the observable over the diagonal ensemble [63]. Specifically, employing our notations for
eigenstates, one obtains

O∞ =
∑
|n,M⟩

∣∣⟨n,M |in⟩
∣∣2 ⟨n,M |O|n,M⟩. (13)

The particular quench studied in the present paper excites only eigenstates in the
bottom of the spectrum. As discussed above, for such states the diagonal matrix element
of any polaron observable depends only on the polaron momentum, ⟨n,M |O|n,M⟩ =
O(Λn,M ). Therefore, it makes sense to rewrite eq. (13) as

O∞ =

∫ ∞

−∞
dQΓ(Λ)O(Λ), (14)

where
Γ(Λ) =

∑
|n,M⟩

∣∣⟨n,M |in⟩
∣∣2 δ(Λ− Λn,M ) (15)

is the probability distribution of the equilibrium post-quench state over polaron rapidities.
Eq. (14) allows for a transparent physical interpretation. The post-quench equilibrium

state features a polaron of rapidity Λ with the probability Γ(Λ). In addition, this state
contains Fermi sea excitation that, however, break off far apart from the polaron (since
their velocity always exceeds that of the polaron [17, 18, 64]) and thus have no effect on
the observables related to the impurity.

3.2 Preparing the initial state by kicking the impurity

In the present paper we consider a specific way to prepare the initial out-of-equilibrium
state. It consists of applying a large force F to the impurity over a small time interval τ .
We consider the limit of F → ∞, τ → 0 with the delivered impulse ∆P = Fτ fixed. This
may be viewed as an instant kick applied to the impurity.

We assume that prior to the kick the system is in an eigenstate |n0,M0⟩ with the
polaron rapidity Λ0 ≡ Λn0,M0 and momentum Q0 = Q(Λ0). This eigenstate is assumed
to belong to the bottom of the spectrum. Naively, kicking the impurity at time t = 0
can be described by adding the term −F ximp δ(t/τ) to the Hamiltonian (1). Then the
out-of-equilibrium state immediately after the kick reads

|in⟩ = ei∆P ximp |n0,M0⟩. (16)

The above simple consideration is not rigorous since the linear potential breaks the
translation invariance and is incompatible with periodic boundary conditions. Neverthe-
less, eq. (16) remains correct, provided ∆P is an integer of momentum quanta 2π/L
which we assume in what follows. We justify eq. (16) in Appendix A by employing a more
elaborate (although somewhat cumbersome) argument.

7
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Figure 3: Left: Color plots of ΓQ0→Q for various impulses ∆P . Bragg reflection is
clearly seen for smaller values of ∆P . The bright green color indicates the position of
the singularity. Top right: The range of the initial polaron momentum Q0 and impulse
∆P where the post-kick polaron momentum distribution ΓQ0→Q has a two-sided power
law singularity. Points indicate values of Q0 and ∆P chosen for the bottom right plot.
Dashed lines mark the boundaries of the Brillouin zone. Bottom right: Three typical
shapes of ΓQ0→Q as a function of Q (with Q0 = 0 and values ∆P specified in the plot).
For ∆P = 0.3pF the kick acts within the main Brillouin zone and ΓQ0→Q features a sharp
singularity at Q = Q0 + ∆P . For ∆P = 1.1pF the Bragg reflection from the Brillouin
zone boundary occurs, the singularity at Q = Q0 +∆P − 2pF is accompanied by a broad
maximum on the opposite side of the Brillouin zone. For ∆P = 1.7pF the singularity is
absent. The coupling constant is α = 2.

3.3 Polaron momentum distribution after the kick

Here we present the result for the polaron rapidity distribution established as a result of
relaxation after the kick. We choose to employ a more detailed notation ΓΛ0→Λ for this
distribution. It has the same meaning as Γ(Λ) in eq. (14) but explicitly contains the pre-
kick rapidity Λ0. The new notation highlights its physical meaning: ΓΛ0→Λ is the density
of the probability that the polaron with the initial rapidity Λ0 will acquire the rapidity Λ
after the kick with the impulse ∆P .

The explicit expression for the rapidity distribution is the first main result of the
present paper. It reads

ΓΛ0→Λ =
∆P 2

(Λ− Λ0)2 Q′(Λ0)
Re

∞∫
0

dx

π
e−i∆P x det(1 + K̂). (17)

Here det(1 + K̂) is a Fredholm determinant, and the operator K̂ acts on L2[−pF, pF] and
has an integrable kernel

K(q, q′) = (Λ0 − Λ)2
e−ix(q+q′)/2

π
√
(αq/pF − Λ0)2 + 1

√
(αq′/pF − Λ0)2 + 1

e(q)− e(q′)

q − q′
pF,

(18)

8
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e(q) =
eixq − eixΛpF/αe−x pF/α

α q/pF − Λ− i
− eixq

Λ0 − Λ
. (19)

Note that K̂ depends on x, Λ0, Λ and α as parameters. Note also a shorthand notation
Q′(Λ) = ∂Q/∂Λ introduced in eq.(17).

One can view the Fredholm determinant as a thermodynamic limit of a finite deter-
minant with matrix elements δij + (2π/L)K(qi, qj), where qi, qj ∈ [−pF, pF] are quantized
momenta with momentum quantum 2π/L. More details on properties of Fredholm de-
terminants and an algorithm for their effective numerical computation can be found in
ref. [65]. The derivation of eq. (17) is presented in Appendix B.

Since the polaron momentum Q is a more intuitive quantity compared to the polaron
rapidity Λ, we also introduce the polaron momentum distribution ΓQ0→Q. Its physical
meaning is as follows: ΓQ0→Q is the density of the probability that the polaron with the
initial momentum Q0 will acquire the momentum Q after the kick with the impulse ∆P .
The two distributions are related as

ΓQ0→Q = ΓΛ0→Λ/Q
′(Λ) (20)

Plots of the momentum distribution for various impulses and initial polaron momenta
is shown in Fig. 3. The distribution can feature two related effects, the Bragg reflection
from the edge of the Brillouin zone and power-law singularities. Both of them are discussed
in detail in the next subsection.

The polaron momentum can be hard to measure in the experiment since it is shared
between the impurity and the accompanying disturbance of the Fermi sea. The polaron
rapidity also does not have a direct operational meaning. In contrast, the polaron velocity
coincides with the velocity of the impurity and thus can be readily measured. One can
straightforwardly obtain the velocity distribution Γv0→v from the rapidity distribution (17)
and expression (11) for v(Λ), keeping in mind that the latter map is two-to-one and thus
folding should be employed.

To compute the average polaron velocity in the post-quench equilibrium state, one
should convolve v(Λ) with ΓΛ0→Λ according to eq. (14). In practice, the integration in
eq. (14) is performed (analogously to those in ref. [33]) over a deformed contour in the
complex plane. The result is shown in Fig. 4. It is compared with an analogous result
for a different quench protocol described in ref. [33] – injection of the impurity with the
momentum ∆P into initially undisturbed Fermi sea. Although these two protocols, the
injection and the kick, are very similar at the first sight, they result in quite different
values of the equilibrium impurity velocity, particularly for larger interactions strength.

3.4 Two-sided power-law singularity of the distribution

The singularity in the distribution ΓQ0→Q is present for the range of parameters depicted
in the top right panel of Fig. 3 and analytically specified below in eq. (25). It can be
obtained from the asymptotics of the Fredholm determinant, see Appendix C. The result
reads

Γsing
Q0→Q =



C+

(Q−Qsing)1−(ξ−m)2−(ξ+m)2
, Q > Qsing,

C−

(Qsing −Q)1−(ξ−m)2−(ξ+m)2
, Q < Qsing.

(21)

The position of the singularity Qsing is determined by the value of (Q0 +∆P ), namely,

Qsing = Q0 +∆P − 2mpF, (22)

9
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Figure 4: Steady state polaron velocity established after the kick as a function of the im-
pulse (solid lines). The initial polaron momentum is Q0 = 0. Different curves correspond
to different coupling constants 2π/α = 3, 6, 10 (from top to bottom). For comparison, the
results for a different quench protocol are shown (dashed lines) [33], where a bare impurity
is injected in the initially undisturbed fluid with the momentum ∆P .

where the integer m is chosen such that

Qsing ∈ [−pF, pF]. (23)

The exponent of the singularity is constructed from

ξ±m =
1

π

(
arctan(Λ0 ∓ α)− arctan(Λ∓ α)

)
−m, (24)

where Λ = Λ(Q) and Λ0 = Λ(Q0). The constants C± are given in Appendix C, see eq. (52).
The true distribution ΓQ0→Q is close to Γsing

Q0→Q for polaron momenta in the vicinity of
Qsing.

From the mathematical point of view, the singularity (21) is similar in origin to the
threshold X-ray singularity [66]. While there is no any threshold here, the amplitudes C±
of the left and right parts of the singularity differ, therefore it resembles two threshold
singularities glued together. We adopt the term two-sided for such type of singularity.

The condition for the existence of the singularity is that the exponent in the asymp-
totics (21) is positive,

1− (ξ−m)2 − (ξ+m)2 > 0. (25)

In general, this is a complicated nonlinear condition, see Fig. 3 for illustration. However,
one simple fact about it can be easily obtained: the condition is never satisfied when
|m| ≥ 2. Therefore, in fact only m = 0 or m = ±1 are allowed. Let us discuss these two
cases separately.

When m = 0, the kick acts within the main Brillouin zone, i.e. Q0 +∆P ∈ [−pF, pF].
In this case the singularity corresponds to the process where the whole impulse of the kick
is transferred to the polaron, with no Fermi sea excitations created. The smaller is the
impulse ∆P , the more probability weight is concentrated in the vicinity of the singularity,
see Fig. 3. In the limit of vanishing ∆P , the singularity turns into the delta-function

10
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embracing all the weight, i.e.

ΓQ0→Q
∆P→0−−−−→ δ(Q−Q0), (26)

see Appendix C for the proof.
When m = ±1, the kick drives the system through the boundary between two Brillouin

zones. In this case the Bragg reflection occurs: The impulse of the kick is shared between
the polaron and the center-of-mass motion of the Fermi sea, the latter acquiring the
momentum ±2pF. Again, no Fermi sea excitations are created at Q = Qsing. One can see
from Fig. 3 that in this case the singularity carries a relatively low share of probability
weight, with the majority weight being carried by a broad peak on the opposite side of
the Brillouin zone.

4 Discussion and outlook

We have calculated the polaron momentum distribution established after a kick. The
kick can be thought as a limiting case of a more general external driving with the force
F applied to the impurity for the time interval τ , the acquired impulse being given by
∆Pτ = F τ . In one dimension, such driving in general can lead to Bragg reflection from the
boundary of the emergent Brillouin zone of the fluid, an effect first theoretically predicted
for adiabatic driving [20,60,61] and subsequently observed for a finite driving force in an
experiment with ultracold atoms [11]. We are able to rigorously determine the conditions
for Bragg reflection in our setting. In particular, in contrast to the conventional Bragg
reflection from crystals, here such reflection is operational only between neighbouring
Brillouin zones, with the only available momentum change equal to ±2pF.

In the adiabatic limit of fixed ∆P and F = ∆P/τ → 0 the polaron was predicted to ex-
perience Bloch-like oscillations [20,60,61] with the polaron momentum Q ≃ Ft mod (2pF)
(see also [18,22,67–69]). Adiabatic driving can be emulated by a periodic sequence of small
kicks. Whenever the interval between the kicks exceeds the polaron relaxation time, our
result for the polaron momentum distribution can be applied after each kick. Since in the
limit of the small impulse the distribution approaches the delta-function, see eq. (26), the
above simple picture of Bloch-like oscillations is restored. This is consistent with the fact
that Bloch-like oscillations are particularly robust for polarons that are heavier than the
host particles [18, 22, 70, 71] (the effective mass of the polaron was calculated in [47]; it
always exceeds the mass of the host fermion).

The two-sided power-law singularities that show up in the polaron momentum distri-
bution correspond to processes where no host medium excitations are created, analogously
to such genuinely solid state effects like X-ray singularities [66] or Mössbauer effect [72].
This highlights the peculiarity of one-dimensional fluids that originates from geometrically-
enhanced quantum correlations.

An interesting question for further exploration is to what extent the qualitative pic-
ture established here survives the breakdown of the integrability. We note in this respect
that the results obtained in integrable systems are often quite robust and do not change
quantitatively away from the integrable point [22, 73]. Other intriguing directions of fur-
ther research include the polaron dynamics at a finite temperature and the dynamics of
attractive polarons.
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A Kick as a quantum quench

In order to rigorously define the kick in the translation-invariant system, one introduces
a more general Hamiltonian

HΦ =
1

2
(Pimp − Φ)2 +

1

2

N∑
j=1

P 2
j +

2pF
α

N∑
j=1

δ(xj − ximp), (27)

depending on the parameter Φ. This Hamiltonian is solvable by Bethe ansatz for arbi-
trary value of Φ (not necessarily an integer of the momentum quantum), with eigenstates
|n,M⟩Φ of the form (4) and the equation on the rapidity that can be obtained from eq. (8)
by substituting (2π/L)M = Ptot → Ptot −Φ. If the value of Φ is an integer of momentum
quanta 2π/L, the eigenstates |n,M⟩Φ are related to the eigenstates |n,M⟩ = |n,M⟩Φ=0

in a simple way,
|n,M⟩Φ = eiΦximp |n,M⟩, (28)

which can be verified directly by applying HΦ to both sides of the above relation.
The “kick” protocol of impurity preparation described in Section 3.2 corresponds to

preparing the system in an eigenstate of the Hamiltonian HΦ with Φ = ∆P and subse-
quently quenching the value of Φ to zero. In view of the relation (28), such quantum
quench results in the state (16).

B Momentum distribution: derivation

B.1 Preliminary considerations

To lighten the notations we employ the convention

pF = 1 (29)

throughout the rest of the Appendix. One can always restore pF by dimensionality.
In this section we outline the derivation of the rapidity distribution defined as

Γ(Λ) =
∑
|n,M⟩

∣∣⟨n,M | ei∆P ximp |n0,M0⟩
∣∣2 δ(Λ− Λn,M ), (30)

cf. eqs. (15),(16). We use the technique employed earlier to calculate the Green’s function
of the impurity [51,57,74].

It turns convenient to introduce functions k(n,Λ) and δ(n,Λ),

k(n,Λ) =
2π

L

(
n− δ(n,Λ)

π

)
, δ(n,Λ) =

π

2
− arctan

(
Λ− 2π

L
αn

)
. (31)

They can be used to specify solutions of Bethe equations. Indeed, k(nl,Λn,M ) = kl and
δ(nl,Λn,M ) = δl are, respectively, the l’th Bethe pseudomomentum and phase of the
eigenstate |n,M⟩, cf. eqs. (5),(6).

Note that eq. (9) for Q(Λ) is in fact obtained as the thermodynamic limit of

Q(Λ) =
2π

L

(N+1)/2∑
n=−(N−1)/2

(
1

2
− 1

π
δ(n,Λ)

)
. (32)

12
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This equation along with eq. (31) imply the identity

N+1∑
l=1

∂k

∂Λ
(nl,Λ) = Q′(Λ) +O(1/N), Q′(Λ) ≡ ∂Q(Λ)

∂Λ
, (33)

valid for an arbitrary state |n,M⟩ from the bottom of the spectrum.
The importance of the quantity ∂k/∂Λ stems from the identity

∂k

∂Λ
(nl,Λn,M ) =

2

L
(sin δl)

2 +O(1/N2) (34)

that follows from the complete set of Bethe equations. Thanks to this identity, ∂k/∂Λ
enters matrix elements between eigenstates (4).

B.2 Matrix element

The matrix element entering eq. (30) is obtained from the determinant representation (4)
of the eigenfunction [50]. It reads

∣∣⟨n,M | ei∆P ximp |n0,M0⟩
∣∣2 =δM,M0+∆M

(
∆P

Λn,M − Λ0

)2 1

Q′(Λ0)Q′(Λ)
(detD)2

× (Λn,M − Λ0)
2N+2

N+1∏
l=1

∂k

∂Λ
(nl,Λ)

N+1∏
l=1

∂k

∂Λ
(n0

l ,Λ0). (35)

HereD is (N+1)×(N+1) Cauchy matrix constructed from the two sets of pseudomomenta
corresponding to eigenstates |n0,M0⟩ and |n,M⟩,

D =

∥∥∥∥ 1

k(nl,Λn,M )− k(n0
l′ ,Λ0)

∥∥∥∥
l,l′=1,2,...,(N+1)

. (36)

Due to momentum conservation the matrix element is nonzero for a single value of M
given by

M = M0 +∆M, ∆M ≡ L

2π
∆P. (37)

It should be reminded that Λ0 ≡ Λn0,M0 .

B.3 From sum over eigenstates to sum over independent integers

The next step is to replace the summation over eigenstates in eq. (30) by the summation
over independent integers nl, l = 1, 2, . . . . This is done as follows:∑

|n,M⟩

−→ 1

(N + 1)!

∑
n1

∑
n2

...
∑
nN+1

θM (n). (38)

Here each nl runs over all integers, M is fixed according to eq. (37), the prefactor 1/(N+1)!
accounts for permutations within the set n, the function θM (n) equals 1 provided the
constraint (3) is satisfied and 0 otherwise, and terms where at least two integers are equal
vanish automatically thanks to the determinant detD in the matrix element (35).
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B.4 Handling (detD)2

The Cauchy-Binet theorem allows one to convert (N + 1) sums over (detD)2 to a single
determinant,

1

(N + 1)!

∑
n1

∑
n2

...
∑
nN+1

δ(Λ− Λn,M ) (detD)2
N+1∏
l=1

f(nl,Λn,M ) =

δ(Λ−Λn,M ) det

∥∥∥∥∥
∞∑

n=−∞

f(n,Λ)(
k(n,Λ)− k(n0

l ,Λ0)
)(
k(n,Λ)− k(n0

l′ ,Λ0)
)∥∥∥∥∥

l,l′=1,2,...,(N+1)

,

(39)

where f(n,Λ) is an arbitrary function.

B.5 Factorized representation of δ(Λ− Λn,M)

Since the Bethe equation (8) has a single solution Λ = Λn,M provided n and M satisfy the
constraint (3), and no solutions otherwise, one can rewrite θM (n) δ(Λ− Λn,M ) as follows:

θM (n) δ(Λ− Λn,M ) =

+∞∫
−∞

dx

2π
Q′(Λ) e

ix

(
N+1∑
l=1

(k(nl,Λ)−k(n0
l ,Λ0))−∆P )

)
. (40)

Here the momentum conservation and the identity (33) has been employed. The exponen-
tial in the integrand can be factorized, which will prove useful in what follows.

B.6 Combining the pieces

We combine eqs. (35), (33), (38), (39) and (40) to obtain

Γ =
∆P 2

(Λ− Λ0)2Q′(Λ0)
Re

∞∫
0

dx

π
e−i∆P x detA (41)

where the (N + 1)× (N + 1) matrix A has matrix elements

All′ =(Λ− Λ0)
2

√
∂k

∂Λ
(n0

l ,Λ0)

√
∂k

∂Λ
(n0

l′ ,Λ0

)
e−ix

(
k(n0

l ,Λ0)+k(n0
l′ ,Λ0)

)
/2

×
∞∑

n=−∞

∂k

∂Λ
(n,Λ)

eix k(n,Λ)(
k(n,Λ)− k(n0

l ,Λ0)
) (

k(n,Λ)− k(n0
l′ ,Λ0))

(42)

For l ̸= l′ the second line of the above equation can be reorganized as

e
(
k(n0

l ,Λ0)
)
− e
(
k(n0

l′ ,Λ0)
)

k(n0
l ,Λ0)− k(n0

l′ ,Λ0)
(43)

with

e
(
k(n0

l ,Λ0)
)
=

∞∑
n=−∞

∂k

∂Λ
(n,Λ)

eix k(n,Λ)

k(n,Λ)− k(n0
l ,Λ0)

(44)

This function has a nice thermodynamic limit that can be obtained by presenting the sum
as a contour integral, a technique described in refs. [51,74]. The result is given by eq. (19).
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Figure 5: Comparison of the exact Fredholm determinant (18) (blue) and its asymptotic
expression (46) (magenta) for Λ0 = 0, Λ = 10, α = 3.

For diagonal entries, l = l′, eq. (43) still can be used if interpreted in the l’Hôpital sense,
with extra care required to keep both the O(1) and O(1/N) terms:

All = 1 + (Λ− Λ0)
2 e−ixk ∂k

∂Λ
∂ke(k)

∣∣∣
k=k(n0

l ,Λ0)
+O(1/N2). (45)

Combining eqs. (41),(42),(43) and (19) one arrives at eq. (17).

C Asymptotic analysis of the singularity

C.1 Asymptotics of the Fredholm determinant

The singularities in the rapidity and momentum distributions stem from the asymptotic
behavior of det(1 + K̂) for large x. The latter is given by

det(1 + K̂) ≃
1∑

m=−1

CΛ0,Λ[ξm]

(2i)(ξ
−
m)2(−2i)(ξ

+
m)2

ei x (Q−Q0+2m)

x(ξ
−
m)2+(ξ+m)2

, x ≫ 1/pF, (46)

where ξm is a function given by

ξm(q) =
1

π

(
arctan(Λ0 − αq)− arctan(Λ− αq)

)
−m, (47)

ξ±m equals ξm(±1) (which is consistent with the definition (24) in the main text), the
functional CΛ0,Λ[ξ] reads

C[ξ] =
(
G(1− ξ−)G(1 + ξ+)

)2
(2π)ξ

−−ξ+ e−C̃Λ0,Λ
[ξ], (48)

with the subscript m in ξm(q), ξ±m omitted for brevity, G(a) is the Barnes function, and

C̃Λ0,Λ[ξ] =

1∫
−1

dq
ξ(q) cot

(
πξ(q)

)
1 + (Λ− αq)2

− 2α

Λ0 − Λ

1∫
−1

dq ξ(q)

+
1

2

1∫
−1

dq

1∫
−1

dq′
(
ξ(q′)− ξ(q)

q′ − q

)2

−
1∫

−1

dq
ξ(−1)2 − ξ(q)2

1 + q
−

1∫
−1

dq
ξ(1)2 − ξ(q)2

1− q
.

(49)
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The asymptotics (46) is derived with the help of the standard soft mode resummation
technique [75–78] (see section 5 in ref. [74] for a pedagogical introduction).

It should be emphasized that we have restricted the summation over m in eq. (46)
by three terms m = 0,±1. Only these terms can be relevant for the singularity of the
distribution, as discussed in Section 3.4.

Importantly,
CΛ0,Λ[ξ] = CΛ,Λ0 [−ξ], (50)

thanks to the following property of the Barnes function:

G(1− z) =
G(1 + z)

(2π)z
exp

π

z∫
0

x cot(πx) dx.

 (51)

We compare the asymptotics (46) to the exact Fredholm determinant (18) in Fig. 5.
One can see an excellent agreement for sufficiently large x. High frequency oscillations at
small x that are not captured by the asymptotics (46) stem from the term eixΛpF/αe−|x|pF/α

in eq. (19). They are visible only for large values of Λ.

C.2 Singularity of the momentum distribution

Plugging the asymptotics (46) into eq.(17) and performing the integration over x, one
obtains eq. (21) with

C± =
∆P 2

(Λ− Λ0)2 Q′(Λ0)Q′(Λ)

Γ
(
1− (ξ−m)2 − (ξ+m)2

)
π 2(ξ

−
m)2+(ξ+m)2

CΛ0,Λ[ξm] sin
(
π (ξ∓m)2

)
. (52)

Here Γ(a) is the gamma-function and CΛ0,Λ[ξm], ξm, ξ±m are defined in the previous sub-
section, with m chosen to satisfy the condition (23). The latter rule implies that a single
term from the sum in eq. (46) contributes to the singularity. Note also that the argument
of the gamma-function is always in the interval (0, 1) thanks to the condition (25).

The limit ∆P → 0 deserves a separate consideration. In this limit m = 0, the position
of the singularity Qsing approaches Q0, and ξ0(q), ξ

±
0 → 0, CΛ0,Λ[ξ0] → 1. Therefore the

Fourier transform of the asymptotics (46) leads to the delta-function,

lim
∆P→0

Γsing
Q0→Q =

1

π
Re

i

(Q−Q0 + i0)
= δ(Q−Q0), (53)

where the latter equality is the Plemelj-Sokhotski formula. The normalization condition
implies that Γsing

Q0→Q = ΓQ0→Q in the limit ∆P → 0. This way one arrives at eq. (26).
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U. Schollwöck, T. Giamarchi, C. Gross, I. Bloch and S. Kuhr, Quantum dynamics of
a mobile spin impurity, Nature Physics 9(4), 235 (2013), doi:10.1038/nphys2561.

[11] F. Meinert, M. Knap, E. Kirilov, K. Jag-Lauber, M. B. Zvonarev, E. Demler and
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[45] A. Petković, Microscopic theory of the friction force exerted on a quantum im-
purity in one-dimensional quantum liquids, Phys. Rev. B 101, 104503 (2020),
doi:10.1103/PhysRevB.101.104503.
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