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Quantum heat engines and quantum refrigerators are proposed in three-terminal quantum Hall (QH) and
quantum spin Hall (QSH) setups with a voltage-temperature probe in linear and nonlinear transport regimes. In
the linear response regime, we find that efficiency at maximum power approaches the Curzon-Ahlborn limit in
both QH and QSH setups. Similarly, in nonlinear response, we find that efficiency at maximum power reaches
the Whitney bounds. For the first time, we see that the thermoelectric efficiency limits in linear and nonlinear
transport regimes are achieved using quantum point contacts in the same setup.

Introduction: The quantum Hall resistance [1] in 2DEGs
(two-dimensional electron gas) in the presence of a normal
uniform magnetic field at low temperature arise as a conse-
quence of chiral edge modes [2], which is famously known
as quantum Hall effect. These edge modes are robust against
disorder and are immune to backscattering [3] being topolog-
ically protected. Complimentary to chiral edge modes, heli-
cal edge modes are seen in quantum spin Hall experiments
with Mercury Telluride/Cadmium Telluride heterostructures
[4–6], which are also topologically protected. Recently in
QH [7–11] and QSH [12, 13] setups, thermoelectric proper-
ties have been investigated using Landaeur-Buttiker formal-
ism [14, 15]. Quantum transport can be described in two
regimes. First is linear, wherein the applied voltage and tem-
perature biases are quite small, and thus leads to a linear re-
lation between current and the temperature or voltage biases
applied [16]. The second is nonlinear, wherein the applied
voltage and temperature biases are not small. In the linear
response regime, the efficiency at maximum power (η|Pmax )
and the maximum efficiency (ηmax) are closely related to the
figure of merit (Zθ), where θ is the reference temperature
of the setup. In this regime, there exists a bound to η|Pmax ,
which is given by Curzon-Ahlborn(CA) limit with the ef-
ficiency (ηPmax )= ηc/2 [16]. To achieve these values, one
needs to have a substantial Seebeck coefficient (S) and low
thermal conductance (K). Similarly, in the non-linear trans-
port regime, there exists an upper bound, the Whitney limit
[17, 18], i.e., efficiency at maximum power output (η|PWh

max
) =

η|PWh
max

= ηc/(1+ 0.936(1+θ2/θ1)), where θ1 and θ2 are the
temperatures of the hot and cold reservoirs, while N being
the number of edge modes. This is the nonlinear equivalent
of the CA efficiency in linear response. The study of two-
terminal setups in the nonlinear response was extended to a
three-terminal setup with a voltage probe and it was shown
that the Whitney limits are universal [19]. Ref. [19] con-
sidered boxcar-type transmission, which can be implemented
via a chain of quantum dots [17–19]. However, the electron-
electron interaction between quantum dots, which can lead to
coulomb blockade effects, is neglected in the calculation in
Ref. [17–19]. This assumption is quite extreme, as in real sys-
tems, having a chain of quantum dots without the coulomb
blockade effect is almost impossible to implement [16]. In
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Figure 1: A voltage-temperature probe. V and τ are the
applied voltage bias and temperature bias at the reservoir
(shown by wavy blue curve), which achieves Inet = 0 and
Jnet = 0 simultaneously. The purple arrows indicate the

direction of the charge currents and the red arrows indicate
the direction of the heat currents.

contrast, this work considers quantum point contact (QPC)
type tunneling, which is easier to implement experimentally
[20–23] than the boxcar-type transmission. With QPC-type of
tunneling, one also reaches the Whitney bounds in the nonlin-
ear transport regime. Previously, in Refs. [17–19] a QH setup
was only considered, however in this letter we consider both
QH and QSH setups albeit with the easier to implement QPC
type tunneling contacts for both linear as well as non-linear
response regimes.

In this letter, our interest lies in looking at the thermoelec-
tric performance of three terminal QH and QSH setups via a
voltage-temperature (VT) probe both in linear and nonlinear
transport regimes. The VT probe is used to incorporate the
inelastic scattering processes that can arise due to electron-
electron or electron-phonon scattering, phenomenologically.
In any multi-terminal setup with transport via chiral or heli-
cal edge modes, the VT probe is that terminal, where the net
charge current, as well as heat current, vanishes simultane-
ously. It is achieved by adjusting the voltage bias as well as
temperature bias in that terminal, see Fig. 1. VT probe con-
dition implies no net charge current (Inet = Iout − Iin) and no
net heat current (Jnet = Jout − Jin) through the terminal, i.e.,
Inet = Jnet = 0. Similarly, a voltage probe, which is also used

ar
X

iv
:2

40
4.

02
11

8v
1 

 [
co

nd
-m

at
.m

es
-h

al
l]

  2
 A

pr
 2

02
4



2

to incorporate inelastic scattering processes in mesoscopic de-
vices, is that terminal where only the net charge current (Inet )
is zero and the net heat current (Jnet ) is nonzero, which can
be achieved only at a fixed voltage bias. But, in principle, if
the reservoir is in contact with a scatterer in the steady state,
both the net charge current as well as heat current via the same
reservoir vanishes [16] and in this situation, a VT probe is bet-
ter and more accurate than voltage probe. In [24], a VT probe
is used to compare the scaling of Lorentz ratio with that of
the Luttinger-liquid model [25] via both phase and momen-
tum relaxation. Using voltage probes, thermoelectric coeffi-
cients have been calculated in QH [7] and QSH [12] setups
to analyze the impact of inelastic scattering. In this letter, we
propose three-terminal QH and QSH setups with the third ter-
minal acting as a VT probe that can work as a highly efficient
quantum heat engine (QHE) or as a quantum refrigerator (QR)
both in the linear and nonlinear response regimes. Further,
the efficiency at maximum power approaches the Curzon-
Ahlborn limit in linear response and the Whitney limit in non-
linear transport regimes.

This letter is organized as follows. We divide the work into
two parts. In the first part of the work, we investigate the
thermoelectric transport of the QH and QSH setups within the
linear response regime and show that efficiency at maximum
power approaches Curzon-Ahlborn in both QH and QSH se-
tups. In the second part, we focus on non-linear transport,
we see that the efficiency at maximum power approaches the
Whitney limit. The technical details of the calculation are pre-
sented in the supplementary material (SM).

Thermoelectricity in QH and QSH setups: We start by dis-
cussing the general theory for thermoelectric transport in QH
as well as QSH setups within the Landaeur-Buttiker scatter-
ing theory in both linear and non-linear regimes [14, 16]. The
charge and heat currents in a multiterminal QH sample, see
Sec. II of SM, are given as,

Iα =
2e
h

∫
∞

−∞

dE ∑
β

Tαβ( fα(E)− fβ(E)),

Jα =
2
h

∫
∞

−∞

dE ∑
β

(E −µα)Tαβ( fα(E)− fβ(E)),
(1)

where the transmission probability for an electron to scat-
ter from terminal β to terminal α is Tαβ. Here, fα(β) =(

1+ e(E−µα(β))/kBθα(β)

)−1
, µα(β) and θα(β) are the Fermi func-

tion, chemical potential and temperature of terminal α(β) re-
spectively.

Similarly, for QSH setup, with helical edge modes, the cur-
rents carry an extra spin degree of freedom and are written as
Iα = ∑σ∈{↑/↓} Iσ

α and Jα = ∑σ∈{↑/↓} Jσ
α , where [12],

Iσ
α =

e
h

∫
∞

−∞

dE ∑
β

T σ

αβ
( fα(E)− fβ(E))],

Jσ
α =

1
h

∫
∞

−∞

dE(E −µα)∑
β

T σ

αβ
( fα(E)− fβ(E))].

(2)
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Figure 2: Three terminal (a) QH with chiral edge modes, (b)
QSH sample with helical edge modes, and two QPC

constrictions connected capacitively to an external gate
voltage (Vg). For a QH sample, the edge mode of an electron,
which can scatter from constriction, is shown by the purple
solid (dashed) line. similarly, for the QSH sample, the edge

mode for a spin-up electron is shown by the purple solid
(dashed) line, which can scatter from the QPC-type

constriction, whereas the edge mode for a spin-down electron
is shown by the red solid (dashed) line. We assume QPCs’

have a single fixed energy level.

with the transmission probability for an electron to transmit
from terminal β with spin ρ to terminal α with spin σ being
T σ

αβ
= ∑ρ∈{↑/↓} T σρ

αβ
. In this three-terminal setup (both QH

and QSH) as shown in Fig. 2, θ1 = θ+ τ1,θ2 = θ+ τ2 and
θ3 = θ+ τ3, where θ is the reference temperature and τ1,τ2
and τ3 are the temperature biases applied in terminals 1, 2 and
3 respectively. For our setups, we apply temperature bias only
at terminal 1, i.e., τ1 = τ and τ2 = 0. We study the thermo-
electric properties for a QHE considering terminal 3 to be a
VT probe, where the net charge current (I3), as well as heat
current (J3) are zero. Additionally, we assume both termi-
nals 1 and 2 to be current probes with V1 = −V and V2 = 0.
Here, we have considered only one type of energy-dependent
transmission via constrictions, which is known as the quan-
tum point contact (QPC) type [26], defined mathematically
via TQPC = [1+exp(−2π(E −El)/ℏω]

−1, where l denotes the
constriction index, i.e., l ∈ {1,2}. Below a certain threshold
energy level El , TQPC vanishes, while above El , it is trans-
parent, while ℏω indicates the width of the transmission res-
onance. An explanation of TQPC is found in sec. I of SM.
Following Refs. [27, 28], where a capacitive external gate
voltage Vg is connected to the constrictions and, in turn, con-
trols the threshold energy El of QPC, where we can explore
both linear and nonlinear transport regimes for our setups in
Fig. 2(a) and (b).

Linear transport in QH and QSH setups: In the linear re-
sponse regime for the QH case, i.e., when µα(= eVα)≪ kBθ

and (θα−θ)≪ θ, one can see that the current (both charge and
heat) varies linearly with the voltage and temperature biases
applied across the sample [16]. Considering terminal 3 to be
a VT probe i.e., I3 = J3 = 0, the charge currents and heat cur-
rents in terminal 1 are modified with different Onsager matrix
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elements and are written as,(
I1
J1

)
=

(
LeV Leθ

LhV Lhθ

)(
−V

τ

)
(3)

where the Onsager matrix elements are LeV ,Leθ,LhV ,Lhθ, See
Eq. (37) in SM. These Onsager matrix elements are used to
find the transport coefficients such as conductance (G), See-
beck coefficient (S), Peltier coefficient (Π), and the thermal
conductance (K) and are given as,

G = LeV , S =
Leθ

LeV
, Π =

LhV

LeV
, K = Lhθ −

LhV Leθ

LeV
. (4)

Using a similar procedure, one can also derive the On-
sager matrix elements in the QSH case for charge current
Iσ
α and heat current Jσ

α by imposing the VT probe condition
(I3 = ∑σ∈{↑,↓} Iσ

3 = 0 and J3 = ∑σ∈{↑,↓} Jσ
3 = 0) and they can

be written in the same form as Eq. (3) (see derivation in Sec.
III A 1 in SM) and is written as,(

Iσ
1

Jσ
1

)
=

(
Lσ

eV Lσ

eθ

Lσ

hV Lσ

hθ

)(
−V

τ

)
(5)

where the spin-components of Onsager matrix elements Lσ
eV ,

Lσ

eθ
, Lσ

hV and Lσ

hθ
for VT probe are derived in Eq. (70) in

Sec. III A 1 in SM. Using the above spin-components of the
Onsager coefficients, the spin-component of transport coeffi-
cients such as Conductance (Gσ), Seebeck Coefficient (Sσ),
Peltier Coefficient (Πσ), and thermal conductance (Kσ) are
defined as

Gσ = Lσ
eV , Sσ =

Lσ

eθ

Lσ
eV

, Π
σ =

Lσ

hV
Lσ

eV
, Kσ = Lσ

hθ
−

Lσ

hV Lσ

eθ

Lσ
eV

.

(6)

The output power in terminal 1, P = I1V is maximum at the
voltage bias V = Leθτ/4LeV and is given as Pmax = L2

eθ
τ2/4LeV

and this derivation is found in Sec. II A 2 for QH and III A 2
for QSH in SM. At the maximum power, the efficiency, i.e.,
η|Pmax = Pmax/J = ηc

2
Zθ

Zθ+2 (for derivation see Eq. (33) of Sec.
II A 2 for QH and Eq. (73) of Sec. III A 2 for QSH in SM). J is
the heat current from the hotter terminal. Other quantities of
interest are the maximum efficiency, i.e., ηmax = ηc

√
Zθ+1−1√
Zθ+1+1

(see the derivation in Eq. (37) of Sec. II A 2 for QH and Eq.
(79) of Sec. III A 2 for QSH in SM).

In Fig. 3(a), we can show a parametric plot of the total ef-
ficiency (η/ηc) and the power (P/Pmax). This has been calcu-
lated using Eqs. (3-6). For this purpose, we have considered
threshold energies of QPC 1 and QPC 2 to be E

′
1 = E1 + eVg

and E
′
2 = E1 + eVg respectively. One can see that both η|Pmax

and ηmax in both QH and QSH setups approach the Curzon-
Ahlborn efficiency at eVg = 84.8kBθ as shown in Fig. 3(a).

In Ref. [7], it has been reported that a QH setup cannot
work as a QR due to time-reversal symmetry breaking. In
contrast, the exact same setup with QSH edge modes can act
as both QHEs and QR as time-reversal symmetry is preserved
as shown in [12]. This is because in the setup used in [7], the

asymmetric parameter (AP), i.e., the Seebeck to Peltier coef-
ficient ratio, is zero or infinity [7]. AP is closely related to
a setup’s refrigeration properties, which is why it reduces the
capability of certain QH setups to work as a QR [12, 29]. On
the other hand, in the QSH setup, AP is always finite since
time-reversal symmetry is preserved [12]. However, this ob-
servation is not valid for all QH setups as in our QH case, and
the QSH setups with a VT probe can act both as a QHE and a
QR because the asymmetric parameter in our setups is finite,
see Sec. II A 4 of SM.

Similarly, for QR, we calculate the cooling power at the
maximum coefficient of performance (J|ηr

max ) and the maxi-
mum coefficient of performance (ηr

max) for both QH and QSH
setups. The coefficient of performance (COP = J/P) is gener-
ally defined as the ratio of heat taken from the cooler terminal
(J) to the power absorbed (P) by the setup. In our setup, the
heat current from the cooler terminal is −J2. The maximum
COP (ηr

max) is achieved using the condition d(COP)
dV = 0 and is

given as ηr
max = ηr

c

√
Zθ+1−1√
Zθ+1+1

, where ηr
c is the Carnot coeffi-

cient of performance. As shown in Fig. 3(b), ηr
max approaches

the Carnot limit, at eVg = 84.80kBθ. Similar to the QHE, we
have also shown the parametric plot of cooling power J and
coefficient of performance ηr in Fig. 3(c) for QH and in Fig.
3(d) for QSH.

In any nano/meso scale device, one of the ambitions is
the search for an excellent thermoelectric (TE) material with
high efficiency. QH and QSH states of matter are helpful in
this context as they have insulating bulk and conducting edge
modes. As shown in Sec. II A 2 for QH and Sec. III A 2
for QSH setup in SM, both the maximum efficiency (ηmax)
and efficiency at maximum power (η|Pmax ) are dependent on
the figure of merit (Zθ) = GS2θ/K for a QHE. Similarly, for
a QR, the maximum coefficient of performance depends on
this figure of merit (Zθ). For achieving Curzon-Ahlborn ef-
ficiency (ηc/2) Zθ needs to be much larger than 1. The key
to achieving this is to have the Seebeck coefficient (S) much
larger and thermal conductance (K) much smaller both oc-
curring for same configuration. We find that in our QH and
QSH setups with a QPC-like constriction, the Seebeck coeffi-
cient is very large, while thermal conductivity is very small at
eVg = 84.8kBθ.

Non-linear transport in QH and QSH setups: There has
been ongoing work in this direction on nonlinear thermoelec-
tric transport [17, 18, 30–32] in both QH and QSH setups.
In a two-terminal QH setup, it has been verified that there is
a significant departure from the Onsager-Casimir relation in
the nonlinear transport regime [30]. A similar investigation
has also been performed in a QSH setup with helical edge
modes [31]. In a three-terminal setup with chiral edge modes
[32] with a voltage probe, it has been verified that it can also
work as an efficient QR in the weakly non-linear regime.
Further, a normal metal Aharanov-Bohm heat engine has
been investigated in the nonlinear regime and it provides
better thermoelectric performance [27] compared to the linear
regime [28].
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Figure 3: Parametric plot of Efficiency (η) in units of Carnot
efficiency (ηc) vs power in units of maximum power (Pmax)

(a) QH, (b) QSH QHE. Parametric plot of coefficient of
performance (ηr) in units of ηr

c vs cooling power (J) in units
of J|ηr

max for a (c) QH and (d) QSH QR in the linear response
regime. Parameters taken are eVg = 84.8kBθ, ω = 0.1kBθ/ℏ,

θ1 = 1.01K,θ2 = 1.0K, µ = 0, E1 = kBθ.

In the linear response regime, the electron transport is only
dependent on the electron’s kinetic energy, whereas, in the
nonlinear regime, it is dependent on both its kinetic energy
as well as the interaction potential (U ′) of the sample where
the electron flows. It implies that in the linear response
regime, the energy value El is shifted by the gate voltage,
i.e. El −→ El + eVg, whereas it is in the nonlinear response
regime, the interaction potential U ′ shifts the energy values
El , i.e. El −→ El + eU ′ , U ′ =U +ugVg being the interaction
potential, see Eq. (56) of SM. ug is the characteristic potential,
which determines the response of U ′ to the application of gate
voltage Vg and the form of U is given below Eq. (54) of SM.
The advantage of having a gate voltage is that it helps in nul-
lifying the interaction potential (U) in the nonlinear response
regime, the argument for this is given in Sec. II B 2 of SM,
see also Ref. [27]. As discussed in Sec. II B 2 of SM, the gate
voltage needs to be of the form Vg = (−U +V ′

g)/ug, where the
first term inside the parenthesis completely nullifies the inter-
action potential U and the second term lifts the energy level
El , i.e., El −→ El + eV ′

g for the nonlinear response regime.
For non-linear transport, we start from Eq. (1) for QH and

(2) for QSH, respectively. Unlike linear response, this is a
hard problem to solve analytically but can be done numeri-
cally. The Mathematica code can be found in [33] for both
QH and QSH setups. In [33], for the case of QHE, we first
numerically solve for V3 and τ3 at a particular V and τ by im-
posing the VT probe condition, i.e., I3 = J3 = 0 and then use it
to find the current I1 and J1 (using Eq. 7) and finally, evaluate
the power P =V I1 and efficiency η = P/J1. Similarly, for the
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/η

c

(a) QH heat engine (nonlinear)
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(b) QSH heat engine (nonlinear)
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(d) QSH refrigerator (nonlinear)

Figure 4: Parametric plot for efficiency (η) in units of Carnot
efficiency (ηc) vs power (P) in units of maximum power
(PWh

max) for (a) QH heat engine and (b) QSH heat engine.
Parametric plot for the coefficient of performance (ηr) in

units of ηr
c vs cooling power (J) in units of JWh

max for (c) QH
refrigerator and (d) QSH heat engine in nonlinear response

regime. For QH (QSH) heat engine, the blue (red) dot-dashed
curve is for V = 0.14kBθ/e, the blue (red) dashed curve for

V = 0.77kBθ/e and the blue (red) dotted curve for
V = 2.7kBθ/e. The blue (red) line shows the bound to the

power and efficiency. For QH (QSH) refrigerator, blue (red)
line is for V = 20kBθ/e. The parameters taken are
ω = 0.1kBθ

h , θ1 = 2K,θ2 = 1K, µ = 0, E1 = kBθ.

case of QR too, we evaluate V3 and τ3 from VT probe con-
dition at a particular V and τ and then use to find the cooling
power J = −J2 and the coefficient of performance ηr = J/P,
where P is the power absorbed by the setup. More details re-
garding the technical details of the calculation can be found in
SM.

As shown in Refs. [17, 18] valid for QH setups, there ex-
ists a bound to maximum possible power (Pmax = PWh

max), which
is given as 0.0642 π2Nk2

B(θ1 − θ2)
2/h. Similarly, the bound

to the efficiency at the maximum power (η|Pmax ) can be found
out at PWh

max, i.e., η|PWh
max

= ηc/(1+ 0.936(1+ θ2/θ1)), where
θ1 and θ2 are the temperatures of the hot and cold reservoirs,
while N is the number of edge modes. In our work, since
we consider θ1 = 2K, θ1 = 1K and N = 1, therefore PWh

max =
0.632k2

B/h and η|PWh
max

= 0.41ηc. At finite power output (P),
much smaller than PWh

max, the bound to the maximum efficiency
(ηmax) is given as (η|Wh

max) = ηc

(
1−0.478

√
θ2P/θ1PWh

max

)
.

These quantities were derived in a two-terminal QH setup,
which has a constriction and boxcar-type transmission (see,
Sec. II B 1 of SM and also Refs. [17, 18]). We extend the
same approach to a two-terminal QSH setup and prove that
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the bounds to Pmax, η|Pmax and ηmax are exactly similar to the
QH case (see, Sec. II B 1 of SM).

For a QR, as in Refs. [17, 18], the bound to the maxi-
mum cooling power (Jmax) within this non-linear regime is
given as JWh

max is π2Nk2
Bθ2

1/6h valid for QH setup. The coeffi-
cient of performance (ηr) vanishes at this maximum cooling
power. Similarly, at any arbitrary cooling power (J), smaller
than JWh

max, the maximum coefficient of performance (ηr
max) ap-

proaches (θ1/θ2 −1)−1
(

1−1.09
√

θ1J/(θ1 −θ2)JWh
max

)
. For

the refrigerator too, we extend the same approach of Refs.
[17, 18] and find that the bounds to Jmax and ηr are same as
the QH case (see, Sec. III B 1 of SM).

Table I: Thermoelectric performance of the QH and QSH
setup in the linear and nonlinear response regime. P is in

units of Pmax = L2
eθ

τ2/4LeV for linear, and
PWh

max = 0.0642π2k2
Bτ2/h for nonlinear, η|Pmax , J is in units of

J|ηr
max for linear and JWh

max = π2k2
Bθ2

1/6h for nonlinear.

QHE QR
Regime Setup P η|Pmax

ηc

ηmax
ηc

J ηr
max
ηr

c

Linear QH 1
[Fig. 3(a)]

0.50
[Fig. 3(a)]

0.97
[Fig. 3(a)]

1
[Fig. 3(c)]

0.97
[Fig. 3(c)]

QSH 1
[Fig. 3(b)]

0.50
[Fig. 3(b)]

0.97
[Fig. 3(b)]

1
[Fig. 3(d)]

0.97
[Fig. 3(d)]

Nonlinear QH 1
[Fig. 4(a)]

0.41
[Fig. 4(a)]

0.93
[Fig. 4(a)]

1
[Fig. 4(c)]

0.86
[Fig. 4(c)]

QSH 0.76
[Fig. 4(b)]

0.41
[Fig. 4(b)]

0.93
[Fig. 4(b)]

0.75
[Fig. 4(d)]

0.86
[Fig. 4(d)]

Here, we consider the gate voltage in such a way that it
nullifies the interaction potential, this in turn shifts the energy
level of the QPC-like constriction. This is explained in sec.
II B 2 of SM with the help of a two-terminal nonlinear QH
setup and a QPC-like constriction between the two terminals,
which is capacitively connected to an external gate voltage Vg,
and is extended to a three-terminal QH setup (see, Sec. II B 3
of SM). A similar argument also has been made for a two-
terminal QSH setup in Sec. III B 2 of SM. We examine the
maximum power, efficiency at maximum power, and maxi-
mum efficiency at finite power numerically. As shown in Fig.
4(a), for the QH setup, the maximum power approaches the
Whitney limit at a particular voltage bias V = 0.14kBθ/e (See
the blue curve of Fig. 4(a)). Similarly, as one increases the
voltage bias V the power reduces and efficiency increases (see
black and red curves in Fig. 4(a)). The QHE is more efficient
as η|Pmax and ηmax approaches 0.41ηc and 0.93ηc respectively.
Similarly, in 4(c), one gets the same maximum cooling power,
which approaches the Whitney limit, whereas the maximum
coefficient of performance is around 86% of ηc. The method
to get the plot in Fig. 4(a) and (c) are discussed in Sec. II B 4
of SM.

In the case of QSH, the maximum possible power achieved
is less than the Whitney limit, but the efficiency at this power
is 0.41ηc (see, Fig. 4(b)). Similarly, the maximum efficiency
also approaches 0.93ηc similar to the chiral case (see, Fig.
4(b)). In Fig. 4(d), we observe that the maximum cooling

power is less than the Whitney limit, whereas the coefficient
of performance is around 86% of ηc. The method to obtain
the plots in Fig. 4(b), (d) are discussed in sec. III B 4 of SM.

Experimental Realization and Conclusion: We consider
three-terminal QH and QSH setups with QPC-like con-
striction and observe that the best possible thermoelectric
performance is achieved as it approaches the benchmarks
set for efficiency as a QHE and coefficient of performance
as a QR both in the linear (see, Fig. 3) and non-linear (see,
Fig. 4) response regimes. Additionally, for the nonlinear
response, the maximum value of power generated as a QHE
approaches the Whitney bound, i.e. PWh

max (see Fig. 4(a), Table
I). For a QR too, the maximum cooling power approaches
JWh

max (see Fig. 4(c), Table I) for QH setup. In case of QSH,
the maximum power as a QHE is reduced from PWh

max, but the
efficiency at maximum power is still 0.41ηc (the equivalent
of Curzon-Ahlborn efficiency for nonlinear response regime)
(see, Fig. 4(b), Table I). Similarly, as a QR, the maximum
possible cooling power generated is below JWh

max (see Fig.
4(d), Table I). This suppression of power (both PWh

max and
JWh

max) arises as a result of helical edge mode transport with
a VT probe as there is a finite spin current in three-terminal
QSH setup, which is absent in chiral case. This is another
way to distinguish between chiral and helical edge mode
transport. However, experimentally, a VT probe is slightly
more difficult to design as the probe reservoir can interact
with the surroundings, which may initiate heat flow between
the reservoir and surroundings and ultimately change its
steady state temperature [16]. We have considered QPC-type
tunneling, which has been used in Refs. [20–23] to study
electron transport in 2DEGs, and is easier to implement
experimentally as it can be controlled electrostatically with
the help of split gate [34–36].

To conclude, this letter proposes a setup that can achieve
the Curzon-Ahlborn (CA) limit in the linear response regime
and the corresponding Whitney bound in the nonlinear re-
sponse regime. This work has been done in three-terminal
QH and QSH setups and can be easily generalized to multi-
terminal QH and QSH setups with multiple VT probes. Not
only that, but one can also perform this study on other edge
mode systems such as trivial helical [37–39] and anomalous
edge modes [40–42].
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In this supplementary material, we discuss various aspects of linear and nonlinear thermoelectricity for both quantum Hall
(QH) and quantum spin Hall (QSH) systems with voltage-temperature probe. We also discuss the technical details, and methods,
and summarize the calculations. In Sec. I, we discuss the QPC type and Boxcar type of transmission function and discuss how
implementing QPC-type transmission is easier than implementing boxcar-type transmission experimentally. In Sec. II, we derive
the formulae for charge and heat current for the transport via chiral edge mode in a generic multiterminal QH setup and discuss
the linear transport regime (See Sec. II A), and derive charge and heat current in terms of Onsager coefficients. In Sec. II A 1, we
discuss our setup and the transmission probabilities and also derive the Onsager coefficients with a voltage-temperature probe.
In Sec. II A 2, we derive the formula for maximum power (Pmax), efficiency at maximum power (η|Pmax ) and maximum efficiency
(ηmax) for QH setup as a quantum heat engine. Further in Sec. II A 3, we derive the formula for the maximum coefficient of
performance (ηr

max) and maximum cooling power J|ηr
max and in Sec. II A 4, we discuss why our QH setup can work as a quantum

refrigerator even if time-reversal symmetry is broken, whereas a QH setup discussed in [7] cannot work as a refrigerator. In Sec.
II B, we discuss the transport in the nonlinear transport regime for a QH setup, whereas in Sec. II B 1, we discuss the QH setup
as a nonlinear quantum heat engine and quantum refrigerator using Whitney’s approach. Then in Sec. II B 2, we discuss the 2T
QH setup both as a quantum heat engine and refrigerator using our approach, where we extend the same study to a 3T QH setup
in Sec. II B 3. Finally, in Sec. II B 4, we study the nonlinear thermoelectricity both as a quantum heat engine and refrigerator
for the 3T QH setup with a voltage-temperature probe. In Sec. III, we discuss the charge and heat currents for Helical edge
mode transport in a generic multiterminal QSH setup in the linear response regime, and Sec. III A discusses the transport in the
linear response regime in a generic multiterminal QSH setup. Next, we discuss our QSH setup and its transmission probabilities
and in Sec. III A 1 the Onsager coefficients are derived with a voltage-temperature probe. In Sec. III A 2, we derive Pmax, η|Pmax

and ηmax for the QSH setup as a quantum heat engine. In Sec. III A 3, we further discuss the cooling power and coefficient of
performance in our 3T QSH setup as a quantum refrigerator. In Sec. III B, we discuss the nonlinear transport regime in QSH
setup, whereas in Sec. III B 1, we discuss the QSH setup as a nonlinear quantum heat engine and quantum refrigerator using
Whitney’s approach. Then in Sec. III B 2, we discuss the 2T QSH setup both as a quantum heat engine and refrigerator using
our approach, where we extend the same study to a 3T QSH setup in Sec. III B 3. Finally, in Sec. III B 4, we study the nonlinear
thermoelectricity both as a quantum heat engine and refrigerator for the 3T QSH setup with a voltage-temperature probe.

I. QUANTUM POINT CONTACT VS BOXCAR-TYPE TRANSMISIION

In this section, we discuss the two types of transmission, which we have extensively considered in this work. The first is the
quantum point contact (QPC)-type tunneling [26] and the other one is the boxcar-type [17, 18].

A quantum point contact can be modeled by a potential

V (x,y,z) =V0 −
1
2

mω
2
xx2 +

1
2

mω
2
yy2 +

1
2

mω
2
z z2, (7)

where m is the effective mass of the electron and the electron feels the potential V (x,y,z) when the QPC is present in a setup. As
derived in [26], the transmission probability (TQPC) for this constriction is given as

TQPC = ∑
ny,nz

1
1+ exp [−2π(E −E(ny,nz))/ℏωx]

, (8)

where, E(ny,nz) = V0 + ℏωy (ny +1/2) + ℏωz (nz +1/2), with ny,nz = 0,1,2, .... We denote E(ny,nz) as En in the 2D limit,
where only a few subbands are below the Fermi energy EF , one can consider ny,nz = 1 and ωx,ωy,ωz = ω and we have the
transmission probability (TQPC) as,

TQPC =
1

1+ e−2π(E−E1)/ℏω
, (9)

which has been shown in Fig. 5(a), where below a certain energy value E1, it vanishes, and above this, it is always one. Here,
ℏω is the width of the step. In our work, we have capacitively connected a gate voltage Vg to the QPC-type constriction, giving
V (nx,ny,nz) =⇒ V (nx,ny,nz)+U ′, which implies E1 → E1 +U ′, where U ′ = eVg. We denote E1 +V ′ as E ′

1.
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Figure 5: (a) QPC type, (b) Boxcar-type transmission.

Similarly, the boxcar-type of transmission is 1 in the energy range E1 < E < E ′
1, otherwise zero [17, 18], See Fig. 5(b). This

transmission function will be used while we discuss Whitney’s approach to studying the thermoelectrics of a two-terminal QH
and QSH setup. As discussed by Whitney, one can generate a boxcar-type of transmission by considering many quantum dots
in a region between two terminals [17, 18]. When there is only a single quantum dot with a single energy level, the transmission
probability via it will be the resonant-tunneling type [43]. With one quantum dot, the electron will hop into it from one terminal
and later hop out into the other terminal. But when one increases the number of quantum dots, each having a single energy
level, then the electrons hop repeatedly between the quantum dots while going from one terminal to the other, which gives a
boxcar-type transmission, which is 1 in between two arbitrary energy levels E1 and E ′

1 as shown in Fig. 5(b). When E ′
1 → ∞, the

boxcar type transmission becomes QPC-like, always 1 above E1 and zero otherwise.
However, implementing the boxcar-type transmission is more difficult than implementing the QPC-type transmission. In the

derivation of boxcar-type transmission by Whitney [17, 18], the electron-electron interaction is completely ignored, meaning
the coulomb blockade effects are also ignored. However, coulomb blockade effects cannot be ignored in real systems with
real quantum dots [16]. This would mean that experimentally achieving the boxcar-type transmission by a chain of quantum
dots is extremely difficult as the Coulomb blockade effect becomes an obstacle [16]. On the other hand, implementing a QPC-
type transmission experimentally is easier. In fact, this was the first type of tunneling used to study the quantum transport in
2DEGs [20–23] such as GaAs-AlGaAs heterostructure. Most of the ballistic or edge mode transport can be done much more
conveniently with the help of QPC in mesoscopic samples. For the implementation of QPC, one needs to control electrostatically
the local electrostatic potential, which is felt by the electron with the help of metallic split gates [34–36]. Here, in this work, with
the help of only the QPC-type of tunneling, one can study the nonlinear transport, which can help reach the Whitney bounds.

II. CHARGE AND HEAT CURRENTS IN CHIRAL QH SETUP

For a multiterminal QH setup, the charge and heat current in terminal α can be derived using Landauer-Buttiker formalism.

First, we focus on the charge current in terminal α, which has a Fermi-Dirac distribution fα(E) =
(

1+ e
E−µα
kBθα

)−1

, where µα

and θα are the equilibrium chemical potential and temperature in terminal α respectively. The current outgoing from terminal α

is given as,

Iout
α =

e
L ∑

k
v fα(E), where the summation is over all ‘k’ states of electrons. (10)

Electrons can enter terminal α from any other terminal β including itself. The fraction of particles incident from terminal β in
edge channel m that scatter into terminal α in edge channel n is ∑β,m,n |sαn,βm|2 fβ, where sαn,βm is the amplitude for an electron
to scatter from terminal β in the edge channel m into terminal α in the edge channel n. Thus, the incoming current in terminal α
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is given as,

Iin
α =

e
L ∑

k
v ∑

β,m,n
|sαn,βm|2 fβ(E). (11)

Thus, the total current in terminal α is,

Iα = Iout
α − Iin

α =
e
L ∑

k
v

(
fα(E)− ∑

β,m,n
|sαn,βm|2

)
fβ(E) =

e
L ∑

k
v ∑

β,m,n

(
δαβδmn −|sαn,βm|2

)
fβ(E). (12)

Converting the summation into integral, i.e., ∑k = 2× L
2π

∫
dk, Eq. (12) becomes,

Iα = 2e
∫

∞

−∞

dk
2π

v(k) ∑
β,m,n

(
δαβδmn −|sαn,βm|2

)
fβ(E). (13)

where, the extra 2 has been taken due to spin degeneracy. Inserting v(k) = 1
ℏ

dE
dk in Eq. (13), we get,

Iα =
2e
h

∫
∞

−∞

dE ∑
β

fβ(E)[Nαδαβ −Tr(s†
αβ

sαβ)], (14)

where, Nα being the number of edge modes in terminal α and s†
αβ

sαβ = |sαβ|2 = Tαβ is the transmission probability for an
electron to transmit from terminal β to terminal α. From probability conservation, i.e., ∑β Tαβ = Nα, Eq. (14) can also be written
as,

Iα =
2e
h

∫
∞

−∞

dE ∑
β

Tαβ( fα − fβ). (15)

This is the general formula for electric charge current irrespective of whether transport is linear or nonlinear. Now, the heat
current can be found using the first law of thermodynamics. According to this law, the heat in terminal α with chemical potential
µα, wherein volume is kept constant, is given as,

dQα = dEα −µαdNα. (16)

where, dEα is the change in the internal energy and dNα is the change in particle number in terminal α. Taking the time derivative
of the above equation, we get Jα = JαE − µαJαN , where Jα is the heat current, JαE is the energy current and JαN is the particle
current in terminal α, given as

JαE =
2
h

∫
∞

−∞

dEE ∑
β

fβ(E)[Nαδαβ −Tr(s†
αβ

sαβ)], and JαN =
2
h

∫
∞

−∞

dE ∑
β

fβ(E)[Nαδαβ −Tr(s†
αβ

sαβ)]. (17)

The heat current is thus [16],

Jα =
2
h

∫
∞

−∞

dE(E −µα)∑
β

fβ(E)[Nαδαβ −Tr(s†
αβ

sαβ)] =
2
h

∫
∞

−∞

dE(E −µα)∑
β

Tαβ( fα − fβ). (18)

This is the general formula for heat current irrespective of whether transport is linear or nonlinear.

A. Transport in the linear response regime in the QH setup

We can write charge and heat current as in Eqs. (15) and (18) in the linear response regime. We denote the chemical potential
and temperature of reservoir i as µi and θi respectively, we is given as,

µi = µ+ eVi, θi = θ+ τi, i ∈ all terminals, (19)
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with Fermi-Dirac distribution fi =

(
1+ e

E−µi
kBθi

)−1

. µ and θ are the equilibrium chemical potential and temperature respectively

for terminal i with Fermi-Dirac distribution f =
(

1+ e
E−µ
kBθ

)−1

and Vi and τi are the voltage bias and temperature bias applied

in terminals i. Now, doing a Taylor series expansion of fi up to the first order, we get,

fi = f +
∂ fi

∂µi

∣∣∣∣
µi=µ,θi=θ

eVi +
∂ fi

∂θi

∣∣∣∣
µi=µ,θi=θ

τi. (20)

Using the property of fi,

∂ fi

∂µi

∣∣∣∣
µi=µ,θi=θ

=
−∂ f
∂E

and,
∂ fi

∂θi

∣∣∣∣
µi=µ,θi=θ

=−
(

E −µ
kBθ

)
∂ f
∂E

=⇒ fi = f − ∂ f
∂E

(
eVi +

E −µ
kBθ

τi

)
. (21)

We can use Eq. (21) in Eqs. (15) and (18) to get the Onsager coefficients. The charge current as in Eq. (15) becomes,

Iα =
2e
h

∫
∞

−∞

dE ∑
β

(
f − ∂ f

∂E

(
eVβ +

E −µ
θ

τβ

))
[Nαδαβ −Tαβ], (22)

and, the heat current as in Eq. (18) becomes,

Jα =
2
h

∫
∞

∞

dE(E −µ)∑
β

(
f − ∂ f

∂E

(
eVβ +

E −µ
θ

τβ

))
[Nαδαβ −Tαβ], (23)

where going from Eq. (18) to Eq. (23), we have taken µα ≃ µ and Tαβ = Tr(s†
αβ

sαβ). Now in Eqs. (22) and (23), the equilibrium
distribution f makes zero contribution, since without any bias, there will be zero charge current and heat current, which is why
Eqs. (22) and (23) reduce to,

Iα = ∑
β

(GαβVβ +Lαβτβ), and Jα = ∑
β

(ΠαβVβ +Kαβτβ). (24)

where, Gαβ =
2e2

h

∫
∞

−∞

dE
(
− ∂ f

∂E

)
[Nαδαβ −Tαβ], Lαβ =

2e
hθ

∫
∞

−∞

dE(E −µ)
(
− ∂ f

∂E

)
[Nαδαβ −Tαβ],

Παβ =
2e
h

∫
∞

−∞

dE(E −µ)
(
− ∂ f

∂E

)
[Nαδαβ −Tαβ], Kαβ =

2
hθ

∫
∞

−∞

dE(E −µ)2
(
− ∂ f

∂E

)
[Nαδαβ −Tαβ].

(25)

The quantities as written in Eq. (25) are Onsager coefficients in linear response regime.
In the subsequent subsections, we derive Onsager coefficients for our QH setup (See, Sec. II A 1) with a three-terminal

voltage-temperature probe. In Sec. II A 2, we derive the general formulae for power and efficiency as a quantum heat engine.
Further in Sec. II A 3, we discuss the cooling power and coefficient of performance as a quantum refrigerator and in Sec. II A 4,
we discuss why our QH setup can work as a quantum refrigerator even if time-reversal symmetry is preserved although, the QH
setup used in [7] cannot be used as a quantum refrigerator.

1. Derivation of Onsager coefficients in a three-terminal QH setup in the linear response regime

It is also possible to find the transmission probabilities Tαβ for this three-terminal QH arrangement (see Fig. 6). We talk
about one instance, T12, which is the probability that an electron will scatter from terminal 2 to terminal 1. For this process,
the electron injects from terminal 2 with probability 1 and transmits via the constriction 2 and 1 with probabilities T2 and T1
respectively. Thus, the total probability for the electron to reach terminal 1 from terminal 2 is T1T2. Similarly, one can determine
other transmission probabilities and they are given as,

T11 = 1−T1, T12 = T1T2, T13 = T1(1−T2), T21 = 0, T22 = (1−T2), T23 = T2, T31 = T1,

T32 = (1−T1)T2, T33 = (1−T1)(1−T2).
(26)
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1 2

V1, 𝞃1 V2, 𝞃2

Constriction 1 Constriction 2

Vg Vg

Figure 6: Three terminal QH sample with chiral edge modes and two QPC-type constrictions. The edge mode of an electron,
which can scatter from constriction, is shown by the purple solid (dashed) line. Terminal 3 is a voltage-temperature probe.

Here, we assume τ1 = τ and τ2 = 0. For the voltage-temperature probe in our setup (see Fig. 2), we solve for both V3 and τ3.
According to Landauer-Buttiker formalism as shown in Eq. (24), the charge and heat currents in terminal 3 are given as,

I3 = ∑
β

G3βVβ +∑
β

L3βτβ, J3 = ∑
β

Π3βVβ +∑
β

K3βτβ. (27)

Putting I3 = J3 = 0, we get the solution for V3 and τ3. They are given as,

V3 =
(−K33L31 +L33K31)τ− (−K33G31 +L33Π31)V

X
, τ3 =

(−G33K31 +Π33L31)τ− (−Π33G31 +G33Π31)V
X

. (28)

where, X = G33K33 −L33Π33. Now, the current conservation in this setup implies Ie
1 = −Ie

2 . The charge and heat currents in
terminal 1 are given as,

I1 = ∑
β

G1βVβ +∑
β

L1βτβ, J1 = ∑
β

Π1βVβ +∑
β

K1βτβ. (29)

Now, using V3 and τ3 from Eq. (28), Eq. (29) can be rewritten as,(
I1
J1

)
=

(
LeV Leθ

LhV Lhθ

)(
−V

τ

)
(30)

where,

LeV = G11 +
G13(L33Π31 −G31K33)

X
− L13(G33Π31 −G31Π33)

X
,

Leθ = L11 +
G13(L33K31 −L31K33)

X
− L13(G33K31 −L31Π33)

X
,

LhV = Π11 +
Π13(L33Π31 −G31K33)

X
− K13(G33Π31 −G31Π33)

X
,

Lhθ = K11 +
Π13(L33K31 −L31K33)

X
− K13(G33K31 −L31Π33)

X
.

(31)

Here, Eq. (31) is the expression for Onsager coefficients. These coefficients determine the transport parameters such as charge
conductance G, Seebeck coefficient S, Peltier coefficient Π, and thermal conductance K.
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2. Power and efficiency in 3T QH setup as a quantum heat engine

Now, the charge power generated in terminal 1 is given as [16],

P =V I1 =V (−LeVV +Leθτ). (32)

The maximum charge power can be obtained by finding V , for which ∂P
∂V = 0, i.e., V = Leθτ

2LeV
. Thus maximum power is Pmax =

L2
eθ

τ2

4LeV
.

Similarly, the efficiency at maximum power (η|Pmax ) is,

η|Pmax =
Pmax

J1
=

θηc

2
L2

eθ

2LhθLeV −LhV Leθ

=
ηc

2
Zθ

Zθ+2
. (33)

Here, Zθ is the figure of merit, which is defined as

Zθ =
LhV Leθ

LeV Lhθ −LeθLhV
=

GS2θ

K
. (34)

For Zθ → ∞, η|Pmax = ηc
2 . The maximum value of efficiency at maximum power (η|Pmax ) one can attain is half of Carnot

efficiency, which is defined as Curzon-Ahlborn efficiency.
Similarly, one can find maximum efficiency. The general expression for efficiency is given as,

η =
V I1

J
=

V (−LeVV +Leθτ)

−LhVV +Lhθτ
. (35)

The voltage bias Vmax required to achieve maximum efficiency is for ∂η

∂V = 0,

Vmax =
Lhθ

LhV

(
1−

√
LeV Lhθ −LeθLhV

LeV Lhθ

)
τ (36)

which can be derived from the condition dη

dV = 0 and one can verify that d2η

dV 2 < 0. Thus, the maximum efficiency is given as [16]

ηmax = ηcx
√

Zθ+1−1√
Zθ+1+1

, (37)

where, x = θLeθ

LhV
= θS

Π
is the asymmetric parameter (AP) of the setup. For x = 1 and in the limit Zθ → ∞, the maximum efficiency

approaches Carnot efficiency.

3. Cooling power and coefficient of performance in 3T QH setup as a quantum refrigerator

One can similarly derive the maximum coefficient of performance (ηr
max) and cooling power at maximum coefficient of

performance (J|ηr
max ) for a QH setup to act as a quantum refrigerator since the asymmetric parameter, i.e., the ratio of Seebeck to

the Peltier coefficient is 1, which plays a major role in the setup’s performance as a heat engine. Here, the heat will be absorbed
from the cooler terminals (terminals 2 and 3 with voltage probe condition, and only terminal 2 with voltage-temperature probe)
and dumped into the hotter terminal (terminal 1 in either voltage probe or voltage-temperature probe). For a quantum refrigerator,
the coefficient of performance (ηr) is defined as the ratio of heat taken from the cooler terminal (JQ) and the power absorbed (P)
by the setup, i.e., ηr = JQ

P . Here, JQ = −(J2 + J3) for voltage probe and -J2 for voltage-temperature probe and can be derived
from Eq. (30). Similarly, P = I1V can also be derived from Eq. (30). Now, ηr

max can be found using the condition dηr

dV = 0, which
gives

V |ηr
max =

Lhθ

LhV

(
1+

√
LeV Lhθ −LhV Leθ

LeV Lhθ

)
(38)

where, V |ηr
max is the voltage required to achieve ηr

max. From here onwards one can derive ηr
max by using Eq. (30) in ηr = JQ

P ,
which yields

η
r
max =

ηr
c

x

√
Zθ+1−1√
Zθ+1+1

(39)
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Figure 7: Asymmetric parameter as a function of gate voltage eVg
kBθ

of our setup. Parameters taken are ω = 0.1kBθ/ℏ, θ = 1.0K,
µ = 0, E1 = kBθ.

where ηr
c = Carnot COP = θ

∆θ
= η−1

c and x is the asymmetric parameter (AP). when x = 1 and Zθ → ∞, ηr
max approaches ηr

c.
Similarly, the cooling power at maximum coefficient of performance (J|ηr

max ) is given as,

J|ηr
max = LhVVmax +LhT τ = LhT

(√
LeV Lhθ −LhV Leθ

LeV Lhθ

)
τ. (40)

4. Why the QH setup in Ref. [7] can not work as a quantum refrigerator, whereas our setup does?

In this section, we discuss why our QH setup can work as a quantum refrigerator, whereas the QH setup, which is considered
in [7] cannot work. The ability of a QH setup to work as a quantum refrigerator is closely related to its AP, which is evident
from Eq. (39). As shown in [29], when the AP deviates from one, then the coefficient of performance is reduced and can go to
zero as AP is further increased, although it can still work as a quantum heat engine. There is a possibility that the coefficient
of performance can achieve the Carnot limit ηr

c at AP = 1 only [29]. Now, in the setup considered in [7], the AP is either zero
or infinity, resulting from time-reversal symmetry breaking. In this case, according to Ref. [29], the coefficient of performance
should be very small, which means the setup’s ability to work as a quantum refrigerator is reduced. But in our setup, the AP is
always one, shown in Fig. 7, enabling us to use it as a quantum refrigerator. One can also see this analytically using Eq. (31).
From the Leθ expression in Eq. (31), one can see that

θLeθ = Π11 +
G13(Π33K31 −Π31K33)

X
− Π13(G33K31 −Π31Π33)

X
(41)

Comparing Eq. (41) with LhV of Eq. (31), one can see that both of them are almost same, which makes AP to be one regardless
of any parameter.

B. Transport in the nonlinear response regime in the QH setup

In this section, we turn to the non-linear regime of transport [17, 18] in the same QH setup as shown in Fig. 6. From Landaeur-
Buttiker formalism, the charge and heat current in terminal α as derived in Eqs. (15) and (18), at finite temperature are given
as,

Iα =
2e
h

∫
∞

−∞

dE ∑
β

Tαβ( fα − fβ), Jα =
2
h

∫
∞

−∞

dE(E −µα)∑
β

Tαβ( fα − fβ). (42)
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As discussed in Sec. II A, when applied biases are small compared to the relevant thermal energy scale (eV ≪ kBθ, τ ≪ θ),
then we are in the linear transport regime and when it is not that small i.e., eV ≈ kBθ, τ ≈ θ, then we are in the non-linear
transport regime. In case of linear thermoelectrics, electron transport is only dependent on its kinetic energy, whereas, in non-
linear regime, electron transport is dependent on both its kinetic energy as well as the potential (U) of the sample where it flows
[44, 45]. When the voltage bias and temperature bias are small compared to the relevant thermal energy scale (kBθ) i.e., in the
linear transport regime, then U is much smaller compared to the kinetic energy of the electron and does not play much role in
electron transport, and therefore we ignore it in the linear response regime [44, 45]. However, in the nonlinear transport regime,
the applied biases are not small and are comparable to kBθ, and therefore in this case, U cannot be ignored. When the electrons
are injected from a terminal into a sample, it perturbs the charge distribution inside the sample, eventually affecting the behavior
of electrons via electron-electron interaction. This means the potential energy of the whole system is changed by the voltage and
temperature biases applied, which ultimately tells us that the transmission probability Tαβ is not only a function of kinetic energy
here, but a function of potential (U) as well, which in turn is dependent on voltage as well as temperature biases applied across
the sample. This has to be calculated in a self-consistent manner [44–48]. This is why Tαβ is dependent only on the kinetic
energy of the electron for linear transport, while it is dependent on both kinetic energy as well as the potential of the sample in
the nonlinear transport regime [44–48].

In the subsequent subsections, we discuss the two-terminal (2T) QH setup as a nonlinear quantum heat engine and a quantum
refrigerator in Sec. II B 1 using Whintey’s approach. In Sec. II B 2, we discuss the two-terminal QH set up both as a heat engine
and refrigerator using our approach, which is an amalgamation of the approaches of Sanchez, Lopez and Büttiker [44–48] and
Haack, Giazotto [27]. We then extend our approach to a three-terminal (3T) QH setup in Sec. II B 3. Finally, in Sec. II B 4, we
use our approach to discuss the thermoelectric properties of a 3T QH setup with a voltage-temperature probe.

1. Nonlinear thermoelectrics in 2T QH setup (Whitney’s approach)

Here, we discuss the nonlinear thermoelectricity of a 2T QH setup as shown in Fig. 8(a) using the approach of Whitney
following the Refs. [17, 18]. We consider the voltage biases to be V1 = −V,V2 = 0 and θ1 and θ2 being the temperatures of
terminals 1 and 2 respectively. Here, the power generated (P) as a quantum heat engine is given as

P = (V2 −V1)I1 =
2eV

h

∫
∞

−∞

dE T12( f1 − f2), (43)

where, T12 represents the transmission probability that an electron will scatter from terminal 2 to terminal 1, and the f1 and f2
are the Fermi-Dirac distributions of reservoirs 1 and 2 respectively. Similarly, from Eq. (18), the heat current out of terminal 1 is

J1 =
2
h

∫
∞

−∞

dE(E + eV )T12( f1 − f2), (44)

where we have taken µ1 =−eV . Using Eqs. (43) and (44), one can evaluate the efficiency i.e., η = P/J1.
In [17, 18], Whitney proved that T12 needs to be a boxcar-type transmission as shown in Fig. 1(b) to extract the best possible

performance as a heat engine. Considering a single edge mode, the boxcar-type transmission probability T12 = 1 for E1 <E <E
′
1,

otherwise it is zero. When E
′
1 → ∞, T12 is a QPC type, where it is one above E1 and zero otherwise as shown in Fig. 1. Here,

E1 = eV/
(

θ1
θ2
−1
)−1

and E
′
1 = eV J

′
1/P

′
[17, 18], where the prime in J1 and P denotes the first derivatives with respect to V.

The maximum possible power (Pmax) is generated when P
′
= 0, which makes E

′
1 = ∞, and consequently one can also derive the

efficiency at the maximum power (η|Pmax ). Similarly, the maximum efficiency (ηmax) can be achieved when E
′
1 is closer to E1 so

that the finite power (P) generated won’t be only much lesser than Pmax, but the maximum efficiency will also be close to Carnot
efficiency (ηc). All these quantities of interest such as Pmax, η|Pmax and ηmax as derived by Whitney are given as [17, 18],

Pmax = PWh
max = 0.0642

π2k2
Bτ2

h
, η|Pmax = η|PWh

max
=

ηc

1+0.936(1+θ2/θ1)
, ηmax = η

Wh
max = ηc

(
1−0.478

√
θ2P

θ1PWh
max

)
, (45)

where, τ = θ1 −θ2 = temperature bias applied across the sample, ηc = Carnot efficiency, θ1 = temperature in terminal 1, θ2 =
temperature in terminal 2, P = Finite output power with P ≪ PWh

max and we have taken spin degeneracy into account.
Similarly, for a quantum refrigerator, the cooling power (J =−J2) of this 2T QH setup is given as

J = J2 =
2
h

∫
∞

−∞

dEET21( f2 − f1). (46)
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Figure 8: (a) Two-terminal QH setup used in Whitney’s approach, where the constriction in between has boxcar-type of
transmission, (b) Two-terminal QH setup used in our approach, where the constriction has QPC-type transmission and

capacitively connected to the external gate voltage.

Using the cooling power J and the power absorbed P = I1V (see, Eq. (43)), one can determine the coefficient of performance
i.e., ηr = J/P. Similar to the quantum heat engine also, T21 should be a Boxcar-type of transmission probability, which provides
the best possible performance as a refrigerator in a two-terminal QH nonlinear setup as proved in Refs. [17, 18], except E

′
1 is

eV J
′
2/P

′
and with the form of E1 remaining same. Now the maximum cooling power (Jmax) can only be extracted when J

′
2 = 0

and the applied voltage bias is large making E
′
1 = 0 and Ex → ∞ [17, 18]. When the maximum cooling power is reached, then

due to the large voltage bias, the power absorbed P by the system will be large, which makes the coefficient of performance (ηr)
vanish. Similarly, the maximum coefficient of performance (ηr

max) can be achieved when Ex is closer to E
′
1 and the extracted

cooling power (J) is much lesser than Jmax. So, the quantities of interest such as Jmax and ηr
max as derived by Whitney are given

as [17, 18]

Jmax = JWh
max =

π2

6h
Nk2

Bθ
2
2, and η

r
max = η

r,Wh
max = η

r
c

(
1−1.09

√
θ2

θ1 −θ2

J
JWh

max

)
, (47)

where ηr
c = Carnot coefficient of performance, θ1 = temperature in terminal 1, θ2 = temperature in terminal 2, J = Finite cooling

output power and J ≪ JWh
max.

2. Nonlinear thermoelectrics in 2T QH setup (Our approach)

Now, we discuss the nonlinear thermoelectrics in a 2T QH setup as shown in Fig. 8(b) by considering a QPC-like constriction
between the two terminals. As discussed in the introduction, See Sec. II B, in the nonlinear response regime, the interaction
potential (U) comes into the picture because the applied biases are not small. Thus, this interaction potential must be a function
of the voltage bias (V ) as well as the temperature bias (τ). In that case, the general form of the interaction potential U in a
mesoscopic system is [46–48]

U = ∑
α

uαVα +∑
α

zατα. (48)

where, α is the index for terminals, with uα = ∂U
∂Vα

and zα = ∂U
∂τα

are the so-called characteristic potentials, which determine
the response of interaction potential U to an applied voltage bias Vα and temperature bias τα respectively in terminal α. The
characteristic potentials uα and zα can be derived from particle injectivity ν

p
α(E) and entropic injectivity νe

α(E) [46–48]. The
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expression for ν
p
α(E) and νe

α(E) are given as,

ν
p
α(E) =

1
2πi ∑

β

Tr
[

s†
βα

dsβα

dE

]
, ν

e
α(E) =

1
2πi ∑

β

Tr
[

E
θ

s†
βα

dsβα

dE

]
. (49)

where sβα represents the scattering amplitude that an electron will scatter to terminal β from terminal α.
When the gate voltage is capacitively applied to the constriction, see Fig. 8(b). Therefore, there will be an additional contri-

bution to U due to the gate voltage as derived in Refs. [46–48] and the modified U is,

U ′ =U +ugVg = ∑
α

uαVα +∑
α

zατα +ugVg, (50)

where, ug is the characteristic potential, which determine the response of U to the external gate voltage Vg.
In [46, 47], the derivations to the characteristic potentials in a two-terminal ballistic setup with a resonant-tunneling-type of

constriction in between the two terminals has been done, whereas in [48], the same derivation has been done in presence of
QPC-like constriction. For a two-terminal ballistic setup either with QPC-like or resonant tunneling-like, the general form of the
interaction potential U ′ using Eq. (50) is given as

U ′ = u1V1 +u2V2 + z1τ1 + z2τ2 +ugVg. (51)

In the presence of either resonant-tunneling or QPC-like constriction with single-level energy (E
′
), the form of the character-

istic potentials is given as [46–48]

u1 =
e2Dp

1
C+ e2D

, u2 =
e2Dp

2
C+ e2D

, z1 =
eDe

1
C+ e2D

, z2 =
eDe

2
C+ e2D

, ug =
C

C+ e2D
. (52)

where, Dp
1 = −

∫
dEν

p
1(E)

∂ f
∂E , Dp

2 = −
∫

dEν
p
2(E)

∂ f
∂E , De

1 = −
∫

dEνe
1(E)

∂ f
∂E , De

2 = −
∫

dEνe
1(E)

∂ f
∂E , where D = Dp

1 +Dp
2 , with

the injectivities ν
p
1 , ν

p
2 , νe

1, νe
2 given as (See, Eq. (49)),

ν
p
1 =

1
2πi

Tr
[

s†
11

ds11

dE
+ s†

21
ds21

dE

]
, ν

p
2 =

1
2πi

Tr
[

s†
11

ds11

dE
+ s†

12
ds12

dE

]
,

ν
e
1 =

E
2πiθ

Tr
[

s†
11

ds11

dE
+ s†

21
ds21

dE

]
, ν

e
2 =

E
2πiθ

Tr
[

s†
11

ds11

dE
+ s†

12
ds12

dE

]
,

(53)

Here, f is the equilibrium Fermi-Dirac distribution, when there are no biases applied across the sample, i.e., f =
(

1+ e
E

kBθ

)−1
.

D is a Lindhard screening function, which determines the screening charge that is developed inside the conductor due to the
interaction of injected charges from the reservoirs with the interaction potential U [44–48], that is developed due to the voltage
and temperature biases in terminal α, and the expression for U is given in Eq. (48). For the resonant-tunneling, the s-matrix
elements sβα are given in [43] and for QPC-type, it is given in [26]. Using the s-matrix elements, one can find the injectivities
ν

p
1(2), νe

1(2), for a resonant tunneling or QPC and subsequently find Dp
1(2),D

e
1(2). . In the case of resonant tunneling [46, 47],

Dp
1(2) and De

1(2) are dependent upon the width Γ of the resonant tunneling as well as single energy level E ′
RT . Similarly, for the

QPC-like constriction also, Dp
1(2),D

e
1(2) are dependent on the width ω and its single energy level E ′

QPC [48]. If the energy level
of QPC is fixed and the widths of the constrictions, then for a fixed capacitance C, one sees that the characteristic potentials
u1(2),z1(2) are constants. Therefore, ug will also be a constant.

Now, for our purpose, we will restrict our discussion to a setup with QPC-like constriction [48]. In the presence of interaction
potential U , the single energy level of QPC: E ′

QPC is modified to E ′
QPC + eU . In the linear response regime, the first and second

terms of RHS of Eq. (50) are ignored as voltage and temperature biases are very small in that regime. The only term that stays
relevant in the linear response regime is the third term of Eq. (50). But, D in the case of linear response regime is zero, which
means ug = 1, because there won’t be any screening of charges inside the conductor, thus D = 0. In the case of linear response,
the modified single energy level in the presence of gate voltage is E ′′

QPC = E ′
QPC+eVg, but in case of a nonlinear-response regime,

the modified single energy level is E ′′
QPC = E ′

QPC +U ′. In our setup, we consider V1 =−V,V2 = 0,τ1 = τ,τ2 = 0 with QPC-like
constriction. In this case, the interaction potential U using Eq. (48) is

U = u1V1 + z1τ1 =−u1V + z1τ, (54)

and, when the constriction is capacitively connected to the gate voltage Vg, the interaction potential U is modified as (See Eq.
(51))

U ′ =−u1V + z1τ+ugVg =U +ugVg, (55)
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Figure 9: (a) Parametric plot of the power (P) and efficiency as a heat engine. The blue thick line corresponds to
V = 0.57kBθ/e, blue dotted line corresponds to V = 1.77kBθ/e, red thick line corresponds to V = 2.52kBθ/e, (b) Parametric

plot of the cooling power (J) and coefficient of performance (ηr) as a refrigerator of a two-terminal QH (chiral) setup at
V = 20kBθ/e. Here, we have taken E ′

QPC = kBθ, where θ1 = 2θ2 = 2K and τ = θ1 −θ2 = 1K. For the QPC, we have taken
ω = 0.1kBθ/e. These results are similar to the three-terminal QH setup without any probe with V1 =−V,V2 =V3 = 0 and

τ1 = τ,τ2 = τ3 = 0.

where, the other characteristic potentials u2 and z2 are ignored as there are no applied biases in terminal 2. The form of u1,z1
and ug is same as in Eq. (55). As already discussed, the quantities such as u1, u2, and ug are constant when C and ω are constant.
For this setup, it is assumed that capacitance C is constant, while the width of the QPC ω is also constant, which implies that
u1,z1 and ug will also be constant throughout the work. This can be done experimentally as well. If the setup is kept at a constant
voltage bias V and temperature bias τ, then the interaction potential U will also be constant. At the same time, one can always
apply Vg to nullify U as discussed in Ref. [27] depending upon the value of V and τ. Therefore, at a fixed voltage bias V and τ,
for the quantum heat engine, we consider the gate voltage to be

Vg = ((u1V − z1τ)+V ′
g)/ug = (−U +V ′

g)/ug, (56)

The first term inside the parenthesis of Vg in Eq. (56) is used to nullify the interaction potential U =−(u1V −z1τ) and the second
term V ′

g is used to lift the energy level of QPC, which means

E ′′
QPC = E ′

QPC + eU + eugVg = E ′
QPC + eV ′

g. (57)

Now, the transmission probability of the QPC becomes

TQPC =
1

1+ e−2π(E−E ′′
QPC)/ℏω

=
1

1+ e−2π(E−E ′
QPC−eV ′

g)/ℏω
, (58)

and this form is always maintained at any voltage bias V and V ′
g. With this, the power delivered (P = I1V ) and efficiency

(η = P/J1) can be found using the formulae given in Eq. (42). Now, in this work, we fix the values of V and τ and evaluate the
power and efficiency with different values of V ′

g. We plot them parametrically in Fig. 9(a). Now, we fix V = 1.14kBθ/e, τ = 1K,
we find that at a particular Vg, the maximum power approaches PWh

max as shown in Fig. 9(a).
Similarly, for the refrigerator, again we consider Vg =−U +V ′

g. We now calculate the cooling power J = J2 and coefficient of
performance (ηr = J/P), where P = I1V for different values of V . The parametric plot of the cooling power J and ηr is shown
in Fig. 5(b). The maximum cooling power approaches JWh

max and the best coefficient of performance reach is 86% of ηr
c. Here,

we conclude that one can achieve the best thermoelectric performance as a refrigerator in our two-terminal setup with maximum
possible cooling power approaching JWh

max and 87% of ηr
c.

3. Nonlinear thermoelectrics in 3T QH setup (Our approach)

Here, we discuss the power and efficiency of a simple three-terminal QH setup without any voltage probe or voltage-
temperature probes with two QPC-like constrictions as shown in Fig. 6 by controlling the transmission of QPC 1 and QPC
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2 by an applied gate voltage using the conditions: E
′
1 = E1 + eVg and E

′
2 = E2 + eVg, with E1 = E2. We consider a simple case

with V1 =−V,V2 =V3 = 0, and τ1 = τ,τ2 = τ3 = 0. Similar to the 2T QH case as in Sec. II B 2, the interaction potential in the
presence of a gate voltage of the same form as Eq. (54). Therefore, the interaction potential can be nullified by considering the
gate voltage Vg of the same form as in Eq. (56). For the heat engine, the power delivered (P = I1V ) and efficiency (η = P/J1) can
be found by using the formula given in Eq. (42) for different values of voltage bias (V ), the performance exactly matches with
the result of two-terminal heat engine as shown in Fig. 9(a). Similarly, for the refrigerator, we take Vg = −U +V ′

g and cooling
power (J = (J2 +J3)) and coefficient of performance (ηr = J/P) exactly matches the result of the two-terminal refrigerator as in
Fig. 9(b).

4. Nonlinear thermoelectrics in 3T QH setup with voltage-temperature probe (Our approach)

Next, we extend our approach to a 3T nonlinear QH setup as shown in Fig. 6 with a voltage-temperature probe by controlling
the transmission of QPC 1 and QPC 2 via a gate voltage. We consider the threshold of energies of QPC’s E

′
1 = E1 + eVg and

E
′
2 = E2 + eVg above which the transmission is 1 with E1 = E2. We consider terminal 3 to be a voltage-temperature probe and

calculate V3 and τ3 from the voltage-temperature condition I3 = J3 = 0, where V1 = −V,V2 = 0,τ1 = τ,τ2 = 0. This is hard to
solve analytically, therefore we do it numerically using Mathematica. The Mathematica code is uploaded to GitHub [33]. Here,
in the presence of gate voltage Vg, the interaction potential U ′ is given as

U ′ =−u1V + z1τ+u3V3 + z3τ3 +ugVg =U +ugVg, (59)

where, U = −u1V + z1τ+ u3V3 + z3τ3 is the interaction potential in the absence of the gate voltage Vg. As discussed in Sec.
II B 2, the characteristic potentials are constant if one assumes the capacitance C and the width of the QPC ω are constant. The
solutions V3 and τ3 will also be constants if the voltage bias V and temperature bias τ are kept constant. Now, one can consider
the gate voltage Vg to be

Vg = (−U +V ′
g)/ug, (60)

Which will nullify the interaction potential U and the energy level of the QPC becomes E ′′
QPC = EQPC + eV ′

g. Considering this,
one can calculate power and efficiency as a quantum heat engine by changing V

′
g at fixed values of V,τ and we observe that the

maximum power approaches the Whitney bound, whereas the maximum efficiency is 0.93 ηc as shown in Fig. 4(a) of the main
text.

Similar to the quantum heat engine, we investigate the three-terminal QH setup as a quantum refrigerator with both voltage
probe and voltage-temperature probe by our approach and considering identical values of E

′
1 and E

′
2 same as used for quantum

heat engine. The coefficient of performance ηr = J
P and the cooling power J is (J2 + J3) are evaluated with either probe and

the parametric plot are shown in Fig. 4(c) of the main text. With these conditions, in the three-terminal QH setup for a voltage-
temperature probe, we observe that Jmax reaches JWh

max, while ηr reaches about 86% of ηr
c as shown in Fig. 4(c) of the main

text.

III. CHARGE AND HEAT CURRENT IN QSH SETUP

For a multiterminal QSH setup, the charge and heat current in terminal α can be derived using Landauer-Buttiker formalism
[12, 49]. The total current in terminal α is a sum of currents due to spin-up as well as spin-down electrons. The charge current
due to an electron with spin σ =↑ or ↓ is,

Iσ
α =

e
h

∫
∞

−∞

dE ∑
β

fβ(E)[Nαδαβ −T σ

αβ
], (61)

where, T σ

αβ
= ∑ρ=↑/↓ T σρ

αβ
with T σρ

αβ
represents the transmission probability that an electron will scatter from terminal β with spin

ρ to terminal α with spin σ. Similarly, the heat current is given as,

Jσ
α =

1
h

∫
∞

−∞

dE(E −µα)∑
β

fβ(E)[Nαδαβ −T σ

αβ
]. (62)
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A. Transport in the linear response regime in the QSH setup

Similar to the chiral case, in the linear response regime, both charge and heat currents can be derived as,

Iσ
α = ∑

β

(Gσ

αβ
Vβ +Lσ

αβ
τβ), Jσ

α = ∑
β

(Πσ

αβ
Vβ +Kσ

αβ
τβ), (63)

where,

Gσ

αβ
=

e2

h

∫
∞

−∞

dE
(
− ∂ f

∂E

)
[Nαδαβ −T σ

αβ
], Lσ

αβ
=

e
hθ

∫
∞

−∞

dE(E −µ)
(
− ∂ f

∂E

)
[Nαδαβ −T σ

αβ
],

Π
σ

αβ
=

e
h

∫
∞

−∞

dE(E −µ)
(
− ∂ f

∂E

)
[Nαδαβ −T σ

αβ
], Kσ

αβ
=

1
hθ

∫
∞

−∞

dE(E −µ)2
(
− ∂ f

∂E

)
[Nαδαβ −T σ

αβ
].

(64)

The quantities as written in Eq. (64) are the spin-polarized Onsager coefficients for helical edge mode transport.
In the subsequent subsections, we derive Onsager coefficients for our QH setup (See, Sec. III A 1) with a three-terminal

voltage-temperature probe. In Sec. III A 2, we derive the general formulae for power and efficiency as a quantum heat engine.
Further in Sec. III A 3, we discuss the cooling power and coefficient of performance as a quantum refrigerator.

1. Derivation of Onsager coefficients in a three-terminal QSH setup in the linear response regime

In this section, we discuss the thermoelectric properties of a three-terminal QSH setup as shown in Fig. 4 with terminal 3
acting as either a voltage probe or a voltage-temperature probe. For this setup, we consider τ2 = τ3 = 0, i.e., θ2 = θ3 = θ and
θ1 = θ+ τ1, wherein τ1 = τ. Similarly for the QSH setup as shown in Fig. 8, there will be electron motion via both spin-up
and spin-down electrons in the opposite directions because of helical edge mode transport. Thus, for s =↑ / ↓ and σ =↑ / ↓, the
transmission probabilities (T sσ

αβ
) that an electron will scatter from terminal β with initial spin σ to enter terminal α with final spin

s are as follows,

T ↑↑
11 = T ↓↓

11 = (1−T1), T ↑↑
12 = T ↓↓

21 = T1T2, T ↓↓
12 = T ↑↑

21 = 0, T ↑↑
13 = T ↓↓

31 = T1(1−T2), T ↓↓
13 = T ↑↑

31 = T1

T ↑↑
22 = T ↓↓

22 = (1−T2), T ↑↑
23 = T ↓↓

32 = T2, T ↓↓
23 = T ↑↑

32 = (1−T1)T2, T ↑↑
33 = T ↓↓

33 = (1−T1)(1−T2).
(65)

Similar to the previous case, we consider τ1 = τ, τ2 = 0, but we consider terminal 3 to be a voltage-temperature probe, i.e.,
both the charge current I3 and the heat current J3 through terminals are zero, and terminal 2 is a current probe, with, V2 = 0.
Here, chemical potential µ is taken to be zero. We derive the Onsager coefficients, as follows from Eq. (63), the charge and heat
currents in terminal 3 is given as,

I3 = ∑
σ∈{↑,↓}

Iσ
3 = ∑

σ∈{↑,↓}

(
∑
β

Gσ

3β
Vβ +∑

β

Lσ

3β
τβ

)
, J3 = ∑

σ∈{↑,↓}
Jσ

3 = ∑
σ∈{↑,↓}

(
∑
β

Π
σ

3β
Vβ +∑

β

Kσ

3β
τβ

)
. (66)

Substituting I3 = J3 = 0, we get solutions for V3 and τ3, as,

V3 =
(−K33L31 +L33K31)τ− (−K33G31 +L33Π31)V

X
, τ3 =

(−G33K31 +Π33L31)τ− (−Π33G31 +G33Π31)V
X

. (67)

where, X = (G33K33 −L33Π33) and Gi j = ∑σ∈{↑,↓} Gσ
i j,Li j = ∑σ∈{↑,↓} Lσ

i j,Πi j = ∑σ∈{↑,↓} Πσ
i j and Ki j = ∑σ∈{↑,↓} Kσ

i j for i, j =
1,2,3. The spin-polarized charge and heat currents in terminal 1 is given as,

Iσ
1 = ∑

β

Gσ

1β
Vβ +∑

β

Lσ

1β
τβ, and Jσ

1 = ∑
β

Π
σ

1β
Vβ +∑

β

Kσ

1β
τβ. (68)

Using V3 and τ3 from Eq. (67), Iσ
1 and Jσ

1 can be written as,(
Iσ
1

Jσ
1

)
=

(
Lσ

eV Lσ

eθ

Lσ

hV Lσ

hθ

)(
−V

τ

)
, (69)



20

V3, 𝞃3

3

1 2

V1, 𝞃1 V2, 𝞃2

Constriction 1 Constriction 2
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Figure 10: Three terminal QSH sample with helical edge modes and two constrictions. The red solid (dashed) line represents
the edge mode for spin-down electrons, whereas the purple solid (dashed) line represents the edge mode for spin-up electrons,

which can scatter from the constrictions. Terminal 3 is a voltage-temperature probe.

where,

Lσ
eV = Gσ

11 +
Gσ

13(L33Π31 −G31K33)

X
−

Lσ
13(G33Π31 −G31Π33)

X
,

Lσ

eθ
= Lσ

11 +
Gσ

13(L33K31 −L31K33)

X
−

Lσ
13(G33K31 −L31Π33)

X
,

Lσ

hV = Π
σ
11 +

Πσ
13(L33Π31 −G31K33)

X
−

Kσ
13(G33Π31 −G31Π33)

X
,

Lσ

hθ
= Kσ

11 +
Πσ

13(L33K31 −L31K33)

X
−

Kσ
13(G33K31 −L31Π33)

X
.

(70)

Eq. (70) are the Onsager coefficients for 3T QSH system with voltage-temperature probe. The total conductance G, Seebeck
coefficient S, Peltier coefficient Π and thermal conductance K are given as,

G = ∑
σ∈{↑,↓}

Gσ, S =
1
2 ∑

σ∈{↑,↓}
Sσ, Π =

1
2 ∑

σ∈{↑,↓}
Π

σ, K = ∑
σ∈{↑,↓}

Kσ. (71)

2. Power and efficiency in 3T QSH setup as a quantum heat engine

Now, the charge power generated in terminal 1 is given as,

P =V I1 =V ∑
σ∈{↑,↓}

Iσ
1 =V ∑

σ∈{↑,↓}
(−Lσ

eVV +Lσ

eθ
τ) =V (−LeVV +Leθτ) (72)

The maximum charge power can be obtained from ∂P
∂V = 0, i.e., V = Leθτ

2LeV
. Thus maximum power is Pmax =

L2
eθ

τ2

4LeV
. Similarly,

the efficiency at maximum power is given as,

η|Pmax =
Pmax

J
=

θηc

2
L2

eθ

2LhθLeV −LhV Leθ

=
ηc

2
Zθ

Zθ+2
. (73)

Here, Zθ is the figure of merit, which is defined as

Zθ =
LhV Leθ

LeV Lhθ −LeθLhV
=

GS2θ

K
. (74)
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For Zθ → ∞, η|Pmax = ηc
2 . The maximum value of efficiency at maximum power (η|Pmax ) one can attain is half of Carnot

efficiency, which is defined as Curzon-Ahlborn efficiency [16].
Similarly, one can find maximum efficiency. The general expression for efficiency is given as

η =
V I1

J
=

V (−LeVV +Leθτ)

LhVV +Lhθτ
. (75)

The voltage bias Vmax is given as,

Vmax =
Lhθ

LhV

(
1−

√
LeV Lhθ −LeθLhV

LeV Lhθ

)
τ (76)

which can be derived from the condition dη

dV = 0. Thus, the maximum efficiency is given as

ηmax = ηcx
√

Zθ+1−1√
Zθ+1+1

, where Zθ =
GS2θ

K
= Figure of merit. (77)

where, x = θLeθ

LhV
= θS

Π
is the asymmetric parameter (AP) of the setup. For x = 1 and in the limit Zθ → ∞, the maximum efficiency

approaches Carnot efficiency.

3. Cooling Power and coefficient of performance in 3T QSH setup as a quantum refrigerator

One can similarly derive the maximum coefficient of performance (ηr
max) and cooling power at maximum coefficient of

performance (J|ηr
max ) for a QSH setup to act as a quantum refrigerator. Here, the heat will be absorbed from the cooler terminals

(terminals 2 and 3 with voltage probe condition, and only terminal 2 with voltage-temperature probe) and dumped into the
hotter terminal (terminal 1 in either voltage probe or voltage-temperature probe). For a quantum refrigerator, the coefficient of
performance (ηr) is defined as the ratio of heat taken from the cooler terminal (JQ) and the power absorbed (P) by the setup,
i.e., ηr = JQ

P . Here, JQ =−(J2 + J3) for voltage probe and -J2 for voltage-temperature probe and can be derived from Eq. (63).
Similarly, P = I1V can also be derived from Eq. (52). Now, ηr

max can be found using the condition dηr

dV = 0, which gives

V |ηr
max =

Lhθ

LhV

(
1+

√
LeV Lhθ −LhV Leθ

LeV Lhθ

)
(78)

where, V |ηr
max is the voltage required to achieve ηr

max. From here onwards one can derive ηr
max by using Eq. (72) in ηr = JQ

P ,
which yields

η
r
max =

ηr
c

x

√
Zθ+1−1√
Zθ+1+1

(79)

where ηr
c = Carnot COP = θ

∆θ
= η−1

c . Similarly, the cooling power at maximum coefficient of performance (J|ηr
max ) is given as,

J|ηr
max = LhVVmax +LhT τ = LhT

(√
LeV Lhθ −LhV Leθ

LeV Lhθ

)
τ. (80)

B. Transport in the Nonlinear response regime in the QSH setup

The charge and heat current in a QSH setup is given as

Iσ
α =

e
h

∫
∞

−∞

dE ∑
β

fβ(E)[Nαδαβ −T σ

αβ
], Jσ

α =
1
h

∫
∞

−∞

dE(E −µα)∑
β

fβ(E)[Nαδαβ −T σ

αβ
]. (81)

Here too, the theory of nonlinear transport is similar as discussed in Sec. II B. In the subsequent subsections, we follow the
same pattern as QH, where we first discuss 2T nonlinear QSH setup as a heat engine and refrigerator using Whitney’s approach
in Sec. III B 1, then do the same thing with our approach in 2T setup in Sec. III B 2 and in 3T setup without any probes in Sec.
III B 3. Finally, we conclude this section by addressing the nonlinear transport property of QSH setup with both voltage and
voltage-temperature probe in Sec. III B 4.



22

Constriction

1 2

Constriction

1 2

(a) (b) Vg

Figure 11: (a) Two-terminal QSH setup used to analyze Whitney’s approach, wherein the constriction has a boxcar-type
transmission, (b) Two-terminal QSH setup used in our approach, where the constriction has QPC-type transmission and is

capacitively connected an external gate voltage.

1. Nonlinear thermoelectrics in 2T QSH setup (Whitney’s approach)

Here, we discuss the nonlinear thermoelectricity of a 2T QSH setup as shown in Fig. 11(a) following the approach of Whitney
[17, 18] both as a quantum heat engine as well as a quantum refrigerator. This analysis is novel as Whitney only used his
approach for a 2T QH setup. Similar to the QH case, we consider V1 = −V,V2 = 0, and θ1 and θ2 are the temperatures of
terminals 1 and 2 respectively. First, we discuss the quantum heat engine and later, we will discuss the quantum refrigerator.

Using the formula given in Eq. (81), the power generated (P) for a quantum heat engine is

P =V (I↑1 + I↓1 ) =
eV
h

∫
∞

−∞

dE(T ↑
12 +T ↓

12)( f1 − f2), (82)

where, T ↑
12(T

↓
12) represents the transmission probability that a spin-up (spin-down) electron will scatter from terminal 2 to termi-

nal 1. The Fermi-Dirac distributions for terminals 1 and 2, respectively, are f1 and f2. Similarly, the heat current out of terminal
1 using Eq. (81) is given as,

J1 = J↑1 + J↓1 =
1
h

∫
∞

−∞

dE(E + eV )(T ↑
12 +T ↓

12)( f1 − f2) =
1
h

∫
∞

−∞

dE(E)(T ↑
12 +T ↓

12)( f1 − f2)+P, (83)

wherein we have taken µ1 = −eV . Using Eqs. (82) and (83), one can evaluate the efficiency, i.e., η = P/J1. For a heat engine,
the power generated is always positive. From Eq. (82), one can see that the positive contribution to P comes, when f1 − f2 > 0.
Now, from Fig. 12, one sees that f1 − f2 is positive above an energy value Ex, which is given as,

Ex =
eV(

θ1
θ2
−1
) , (Derived from the condition f1 = f2). (84)

As proposed by Whitney [17, 18], one can maximize the power generated by a heat engine by blocking the transmission of
the electrons with energy E below Ex, which means only the electrons above energy Ex will contribute to the power P. Now, by
comparing Eqs. (81) and (82), one can see that for higher energy values i.e., for E > Ex, the rate of increase of J1 is higher than
that of P as J1 is always more than P, See Eq. (82). This means that high-energy electrons contribute to power (P) less efficiently
than it does for the heat current (J1). So, one can guess to have a transmission probability in the energy range Ex < E < E

′
x, where

E
′
x is the voltage-dependent energy just like Ex, above which the transmission is zero. Here the analysis is exactly similar to the

QH case as in Sec. II B 1 as the helical edge modes is a composition of two chiral edge modes each for spin-up and spin-down
electrons, then both T ↑

12 and T ↓
12 are boxcar type as shown in Fig. in some energy range Ex < E < E

′
x to have the best possible
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Ex
f1-f2
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Ex

Figure 12: Plot of f1 − f2 in the 2T QSH setup.

performance as a quantum heat engine, where E
′
x = eV J

′
1/P

′
. The expression for E

′
x is derived in [18]. Considering single edge

mode for spin-up electron, T ↑
12 will be 1 for Ex < E < E

′
x, otherwise zero. Similarly, in the same energy range EX < E < E

′
x, T ↓

12
will be 1, otherwise zero. At some voltage bias, when E

′
x → ∞, then both T ↑

12 as well as T ↓
12 will become QPC-like transmission

as shown in Fig. 1. Here, E
′
x = eV J

′
1/P

′
[17, 18], where the prime in J1 and P denotes the first derivatives of J1 and P with

respect to the applied voltage bias V . Now, the maximum possible power (Pmax) is generated, when P
′
= 0, which makes E

′
x = ∞,

and consequently one can derive the efficiency at the maximum power (η|Pmax ). The maximum power is given as

Pmax =
2e
h

∫
∞

Ex

dE( f1 − f2), (85)

and the heat current from the terminal 1, when P
′
= 0 is

J|Pmax =
2e
h

∫
∞

Ex

dE( f1 − f2). (86)

One can derive the efficiency at maximum power by using the formula η|Pmax = Pmax/J|Pmax . Following the Ref. [18], one can
similarly derive the expressions for the maximum power (Pmax) and efficiency at maximum power (η|Pmax ) and they are given as

Pmax = PWh
max = 0.0642

π2k2
Bτ2

h
, η|Pmax = η|PWh

max
=

ηc

1+0.936(1+θ2/θ1)
. (87)

Similarly, when Ex and E
′
x are close to each other the finite power generated will be low, and then the expression for maximum

efficiency ηmax can be derived for generic values of Ex and E
′
x. Now, following Whitney’s result [17, 18], ηmax is given as

ηmax = η
Wh
max = ηc

(
1−0.478

√
θ2P

θ1PWh
max

)
, (88)

where, τ = θ1 −θ2 = temperature bias applied across the sample, ηc = Carnot efficiency, θ1 = temperature in terminal 1, θ2 =
temperature in terminal 2, P = Finite output power with P ≪ PWh

max.
Similarly, for a quantum refrigerator, the cooling power (J = J2) of this 2T QSH setup is given as

JQ = J2 = (J↑2 + J↓2 ) =
1
h

∫
∞

−∞

dEE(T ↑
21 +T ↓

21)( f2 − f1). (89)

From Eq. (89), the positive contribution to the cooling power J comes when ( f2 − f1)> 0, means when f1 − f2 < 0. Now, from
Fig. 12, it is clear that, f1 − f2 is negative below the energy value Ex, which is given in Eq. (83). According to the argument of
Whitney [17, 18], one needs to maximize the cooling power by allowing the transmission of electrons only below energy Ex and
blocking above them. Similarly, one can also look into maximizing the coefficient of performance ηr = J/P1, where P = I1/V is
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the power delivered on the system, which is given in Eq. (76). Now, one can guess a transmission function in the energy range
Ex2 < E < Ex, where Ex2 is also a voltage-dependent energy, above which the transmission is zero. From now onwards, the
analysis is similar to the QH case as in Sec. II B 2 as the helical edge mode is a composition of two chiral edge modes each for
spin-up and spin-down electrons. Then, T ↑

21 and T ↓
21 are boxcar-type transmission, which is 1 in the energy range Ex2 < E < Ex,

where Ex2 = eV J
′
2/P

′
, as derived by Whitney [18]. So, the cooling power J is given as

J = J2 =
2
h

∫ Ex

Ex2

dEE( f2 − f1), (90)

where the cooling power is maximum when J
′
2 = 0, which makes the lower limit of integration Ex2 = 0. Now, to have a large

cooling power, the upper limit of the integration Ex needs to be large, which means Ex → ∞. Now, from Eq. (84), it is clear
that Ex → ∞, when V → ∞, which will make f1 → 0. Then the maximum cooling power (JWh

max) following Whitney’s approach is
given as

JWh
max =

2
h

∫
∞

0
dEE( f2) =

π2

6h
k2

Bθ
2
2 (91)

Similarly, the power delivered on the system (P = I1V ) is large, when the maximum cooling power (JWh
max) is reached. So,

the coefficient of performance at JWh
max is JWh

max/P is zero as P is very large. Similarly, one achieves the maximum coefficient
of performance when the finite cooling power is much smaller than JWh

max, which can be achieved when Ex and Ex2 are close.
Then one can calculate the cooling power and power delivered at generic values of Ex and Ex2, which are quite close as done by
Whitney [17, 18]. In that case, the coefficient of performance is large, which is given as

η
r
max = η

r,Wh
max = η

r
c

(
1−1.09

√
θ2

θ1 −θ2

J
JWh

max

)
. (92)

where J ≪ JWh
max.

One can conclude that the best possible performance of a 2T QSH setup is exactly similar to that of 2T QH setup as done by
Whitney.

2. Nonlinear thermoelectrics in 2T QSH setup (Our approach)

Here, we discuss nonlinear thermoelectrics for a 2T QSH setup by considering a QPC-like constriction in between, See Fig.
11(b), where we have applied a gate voltage (Vg) to the constriction. Here, the gate voltage controls the energy level of QPC i.e.,
E

′
1 = E1 +eU , where U is the interaction potential. For this case, we consider V1 =−V,V2 = 0,τ1 = τ and τ2 = 0. Here, also we

follow the same argument used for the 2T QH setup as in Sec. II B 2. This can be understood in the following way.
The general form of U (interaction potential) in any multiterminal QSH setup is [31] can be written as,

U = ∑
σ=↑,↓

Uσ =Ueq +∑
α,σ

uασVα +∑
α,σ

zαστα, (93)

where Ueq is the equilibrium potential. uασ = ∂Uσ/∂Vα and zασ = ∂Uσ/∂τα are spin-dependent characteristic potentials, which
determine the response of potential U to a voltage bias and temperature bias respectively [31]. The characteristic potentials uασ

and zασ can be derived from particle injectivity ν
p
α(E,σ) and entropic injectivity νe

α(E,σ) [31]. The expression for ν
p
α(E,σ) and

νe
α(E,σ) are given as,

ν
p
α(E,σ) =

1
2πi ∑

β

Tr
[

s†
βα

dsβα

dE

]
, ν

e
α(E,σ) =

1
2πi ∑

β

Tr
[

E
θ

s†
βα

dsβα

dE

]
. (94)

where, sβα represents the scattering amplitude that an electron will scatter from terminal α to terminal β.
When the gate voltage is capacitively applied to the constriction, see Fig. 11(b). Therefore, there will be an additional

contribution to U due to the gate voltage as derived in Refs. [46–48] and the modified U is,

U ′ =U +ugVg = ∑
α,σ

uασVα +∑
α

zαστα +∑
σ

ugσVg, (95)

where, ugσ is the characteristic potential, which determine the response of Uσ to the external gate voltage Vg.
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For a two-terminal QSH setup with QPC-like constriction, the general form of the interaction potential U ′ using Eq. (95) is
given as

U ′ = ∑
σ=↑,↓

u1σV1 + ∑
σ=↑,↓

u2σV2 + ∑
σ=↑,↓

z1στ1 + ∑
σ=↑,↓

z2στ2 + ∑
σ=↑,↓

ugσVg.= u1V1 +u2V2 + z1τ1 + z2τ2 +ugVg, (96)

where, u1 = ∑σ=↑,↓ u1σ,u2 = ∑σ=↑,↓ u2σ,z1 = ∑σ=↑,↓ z1σ,z2 = ∑σ=↑,↓ z2σ,ug = ∑σ=↑,↓ ugσ are the characteristic potentials. Sim-
ilar to the 2T QH case as discussed in Sec. II B 2, these characteristic potentials will be constant if the capacitance C and width
ω of the QPC are assumed to be constant.

In the presence of interaction potential U , the single energy level of QPC: E ′
QPC is modified to E ′

QPC + eU . In the presence
of gate potential it is further modified as E ′′

QPC = E ′
QPC +U ′. In our setup, we consider V1 = −V,V2 = 0,τ1 = τ,τ2 = 0 with

QPC-like constriction. In this case, the interaction potential U using Eq. (96) is

U = u1V1 + z1τ1 =−u1V + z1τ, (97)

and, when the constriction is capacitively connected to the gate voltage Vg, the interaction potential U is modified as (See Eq.
(96))

U ′ =−u1V + z1τ+ugVg =U +ugVg, (98)

where, the other characteristic potentials u2 and z2 are ignored as there are no applied biases in terminal 2. The form of u1,z1
and ug is same as in Eq. (52). As already discussed, the quantities such as u1, u2, and ug are constant when C and ω are constant.
For this setup, it is assumed that capacitance C is constant, while the width of the QPC ω is also constant, which implies that
u1,z1 and ug will also be constant throughout the work. This can be done experimentally as well. If the setup is kept at a constant
voltage bias V and temperature bias τ, then the interaction potential U will also be constant. At the same time, one can always
apply Vg to nullify U as discussed in Ref. [27] depending upon the value of V and τ. Therefore, at a fixed voltage bias V and τ,
for the quantum heat engine, we consider the gate voltage to be

Vg = ((u1V − z1τ)+V ′
g)/ug = (−U +V ′

g)/ug, (99)

The first term inside the parenthesis of Vg in Eq. (99) is used to nullify the interaction potential U =−(u1V −z1τ) and the second
term V ′

g is used to lift the energy level of QPC, which means

E ′′
QPC = E ′

QPC + eU + eugVg = E ′
QPC + eV ′

g. (100)

Now, the transmission probability of the QPC becomes

TQPC =
1

1+ e−2π(E−E ′′
QPC)/ℏω

=
1

1+ e−2π(E−E ′
QPC−eV ′

g)/ℏω
, (101)

and this form is always maintained at any voltage bias V and V ′
g. With this, the power delivered (P = I1V ) and efficiency

(η = P/J1) can be found using the formulae given in Eqs. (81). Now, in this work, we fix the values of V and τ and evaluate the
power and efficiency with different values of V ′

g. We plot them parametrically in Fig. 3(a). Now, we fix V = 0.14kBθ/e, τ = 1K,
we find that at a particular Vg, the maximum power approaches PWh

max as shown in Fig. 9(a).
Similarly, for the refrigerator, again we consider Vg =−U +V ′

g. We now calculate the cooling power J = J2 and coefficient of
performance (ηr = J/P), where P = I1V for different values of V . The parametric plot of the cooling power J and ηr is shown
in Fig. 9(b). The maximum cooling power approaches JWh

max and the best coefficient of performance reach is 86% of ηr
c. Here,

we conclude that one can achieve the best thermoelectric performance as a refrigerator in our two-terminal setup with maximum
possible cooling power approaching JWh

max and 87% of ηr
c.

3. Nonlinear thermoelectrics in 3T QSH setup (Our approach)

Here, we discuss the power and efficiency of a simple three-terminal QSH setup without any voltage probe or voltage-
temperature probes with two QPC-like constrictions as shown in Fig. 8 by controlling the transmission of QPC 1 and QPC 2 by
an applied gate voltage using the conditions: E

′
1 = E1 + eVg and E

′
2 = E2 + eVg, with E1 = E2. We consider a simple case with

V1 = −V,V2 = V3 = 0, and τ1 = τ,τ2 = τ3 = 0. Similar to the 2T QSH case as in Sec. III B 2, the interaction potential in the
presence of a gate voltage of the same form as Eq. (98). Therefore, the interaction potential can be nullified by considering the
gate voltage Vg of the same form as in Eq. (99). For the heat engine, the power delivered (P = I1V ) and efficiency (η = P/J1) can
be found by using the formula given in Eqs. (81) for different values of voltage bias (V ), the performance exactly matches with
the result of two-terminal heat engine as shown in Fig. 9(a). Similarly, for the refrigerator, we take Vg = −U +V ′

g and cooling
power (J = (J2 +J3)) and coefficient of performance (ηr = J/P) exactly matches the result of the two-terminal refrigerator as in
Fig. 9(b).
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Figure 13: (a) Parametric plot of the power (P) and efficiency as a heat engine. The blue thick line corresponds to
V = 0.57kBθ/e, blue dotted line corresponds to V = 1.77kBθ/e, red thick line corresponds to V = 2.52kBθ/e, (b) Parametric

plot of the cooling power (J) and coefficient of performance (ηr) as a refrigerator of a two-terminal QSH (helical) setup at
V = 20kBθ/e. Here, we have taken E ′

QPC = kBθ, where θ1 = 2θ2 = 2K and τ = θ1 −θ2 = 1K. For the QPC, we have taken
ω = 0.1kBθ/e. These results are similar to the three-terminal QH setup without any probe with V1 =−V,V2 =V3 = 0 and

τ1 = τ,τ2 = τ3 = 0.

4. Nonlinear thermoelectrics in 3T with a voltage-temperature probe (Our approach)

Next, we extend our approach to a 3T nonlinear QSH setup as shown in Fig. 4 with a voltage-temperature probe by controlling
the transmission of QPC 1 and QPC 2 via a gate voltage. We consider the threshold of energies of QPC’s E

′
1 = E1 + eVg and

E
′
2 = E2 + eVg above which the transmission is 1 with E1 = E2. We consider terminal 3 to be a voltage-temperature probe and

calculate V3 and τ3 from the voltage-temperature condition I3 = J3 = 0, where V1 = −V,V2 = 0,τ1 = τ,τ2 = 0. This is hard to
solve analytically, therefore we do it numerically using Mathematica. The Mathematica code is uploaded to GitHub [33]. Here,
in the presence of gate voltage Vg, the interaction potential U ′ is given as

U ′ =−u1V + z1τ+u3V3 + z3τ3 +ugVg =U +ugVg, (102)

where, U =−u1V + z1τ+u3V3 + z3τ3 is the interaction potential in the absence of the gate voltage Vg and u1 = ∑σ=↑,↓ u1σ,u2 =

∑σ=↑,↓ u2σ,u3 = ∑σ=↑,↓ u3σ,z1 = ∑σ=↑,↓ z1σ,z2 = ∑σ=↑,↓ z2σ,z3 = ∑σ=↑,↓ z3σug = ∑σ=↑,↓ ugσ. As discussed in Sec. III B 2, the
characteristic potentials are constant if one assumes the capacitance C and the width of the QPC ω are constant. The solutions
V3 and τ3 will also be constants if the voltage bias V and temperature bias τ are kept constant. Now, one can consider the gate
voltage Vg to be

Vg = (−U +V ′
g)/ug, (103)

Which will nullify the interaction potential U and the energy level of the QPC becomes E ′′
QPC = EQPC + eV ′

g. Considering this,
one can calculate power and efficiency as a quantum heat engine by changing V

′
g at fixed values of V,τ.

Similar to the quantum heat engine, we investigate the three-terminal QSH setup as a quantum refrigerator with both voltage
probe and voltage-temperature probe by our approach and considering identical values of E

′
1 and E

′
2 same as used for quantum

heat engine. The coefficient of performance ηr = J
P and the cooling power J is (J2 + J3) are evaluated with either probe and the

parametric plot are shown in Fig. 4(b) of the main text. With these conditions, in the three-terminal QH setup for a voltage-
temperature probe, we observe that Jmax reaches JWh

max, while ηr reaches about 86% of ηr
c as shown in Fig. 13(b).

Like the heat engine, we investigate the refrigeration property of the three-terminal QSH setup with the voltage-temperature
probe by considering the same values of E

′
1 and E

′
2 as in the heat engine. The coefficient of performance ηr = J

P and the cooling
power J is (J2 + J3) can also be evaluated with both types of probes, and the parametric plot is shown in Fig. 4(b) in the main
text. Here, too, we consider Vg = (−U +V ′

g)/ug. With these considerations, in the three-terminal QSH setup with a voltage-
temperature probe, we observe that Jmax reaches 0.75JWh

max in the case of voltage-temperature probe, while ηr reaches about 86%
of ηr

c as shown in Fig. 4(b) of the main text. Here, one can also distinguish between chiral and helical edge mode transport
as a refrigerator at its best possible performance. For the chiral edge mode with the voltage-temperature probe, the maximum
cooling power approaches JWh

max, whereas for helical edge mode transport, it is well below JWh
max.
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