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What happens when an infinite number of players play a quantum game? In this paper, we will an-
swer this question by looking at the emergence of cooperation, in the presence of noise, in a one-shot
quantum Prisoner’s dilemma (QuPD). We will use the numerical Agent-based model (ABM), and
compare it with the analytical Nash equilibrium mapping (NEM) technique. To measure coopera-
tion, we consider five indicators, i.e., game magnetization, entanglement susceptibility, correlation,
player’s payoff average and payoff capacity, respectively. In quantum social dilemmas, entanglement
plays a non-trivial role in determining the behaviour of the players in the thermodynamic limit,
and for QuPD, we consider the existence of bipartite entanglement between neighbouring players.
For the five indicators in question, we observe first-order phase transitions at two entanglement
values, and these phase transition points depend on the payoffs associated with the QuPD game.
We numerically analyze and study the properties of both the Quantum and the Defect phases of the
QuPD via the five indicators. The results of this paper demonstrate that both ABM and NEM, in
conjunction with the chosen five indicators, provide insightful information on cooperative behaviour
in an infinite-player one-shot quantum Prisoner’s dilemma.

I. INTRODUCTION

In the evolutionary context, when we think about ex-
amples of social dilemmas (SD), the first thing that
comes to our mind is the classical Prisoner’s dilemma
(or, CPD)[1, 2]. In fact, it is one of the most popu-
lar game theoretic models out there that can be used to
study a vast array of topics, involving both one-shot and
repeated game settings (see, Refs. [3–5, 8, 9]). In CPD,
as the word “dilemma” in the name suggests, the Nash
equilibrium, i.e., a set of actions (or, strategies) that lead
to an outcome deviating from which one gets worse pay-
offs, is the Defect strategy. This is surprising since there
exists a Pareto optimal outcome, which for CPD, has
better payoffs for both the players and is associated with
the Cooperate strategy. The Pareto optimal strategy and
the Nash equilibrium strategy are not the same. Till
now, most research papers (see, Refs. [3, 10–13, 20]) have
been largely restricted to CPD and on understanding how
players behave in the thermodynamic (or, infinite popu-
lation) limit (denoted as TL). However, much less focus
has been given to the quantum counterpart of CPD, i.e.,
quantum Prisoner’s dilemma (QuPD) in the TL. Previ-
ously, it was shown, in Refs. [3–5, 8, 9, 16, 18], that by
quantizing the CPD (see, Eisert-Wilkens-Lewenstein, or
EWL, protocol in Ref. [9]) and by introducing a unitary
quantum strategy (Q) in the modified CPD set-up, we
can remove the dilemma associated with the CPD game.
Further research works involving an infinite number of
players (see, Refs. [3, 4, 8, 16]) have also shown that
the QuPD game can help us understand the emergence
of cooperation among the players. However, all these re-
search works have an analytical, rather than a numerical,
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approach to understanding the question of the emergence
of cooperative behaviour.

In this paper, we will numerically study and analyze
how cooperative behaviour arises among an infinite num-
ber of players playing a one-shot QuPD game, and how
entanglement (γ) affects them. To do so, we will take
the help of five different indicators, namely, Game mag-
netization (µ), Entanglement susceptibility (χγ), Corre-
lation (cj), Player’s payoff average (⟨Λ⟩) and the Pay-
off capacity (℘C), all of them are analogues to the ther-
modynamic counterparts, i.e., Magnetization, Magnetic
susceptibility, Correlation, average Internal energy (or,
⟨E⟩) and the Specific heat capacity at constant volume
(or, ∁V), respectively. We will adopt a numerical Agent-
based modelling (ABM) technique to study cooperative
behaviour among players in the QuPD game, and we will
compare our results with the analytical Nash equilib-
rium mapping (NEM) method. There exist other ana-
lytical methods, like Darwinian selection (DS) and Ag-
gregate selection (AS), to analyze µ, χγ , cj , ⟨Λ⟩ and ℘C ,
in addition to NEM method. However, in a previous
work (see, Ref. [13]), we have shown via a detailed cal-
culation the incorrectness of these analytical methods.
Hence, in this work, we will only compare the NEM
with the numerical ABM, since both DS and AS are
incorrect. Both ABM and NEM are based on the 1D-
Periodic Ising chain (or, IC) with nearest neighbour in-
teractions (see, Refs. [7, 8, 11, 13]). Before moving fur-
ther, we try to understand what the five aforementioned
indicators actually mean. In a symmetric 2-player, 2-
strategy social dilemma game, 2 players (say, P1 and
P2) have 2 different strategies $1 and $2 available at
their disposal. Thus they have a choice between the
two accessible strategies ($1 or $2), which could result
in the same or different outcomes (aka, payoffs) for each
of them. The four strategy sets for P1 and P2, i.e.,
($|P1

, $|P2
) ∈ {($1, $1), ($2, $1), ($1, $2), ($2, $2)}, are

each linked to the payoffs (m,n,p, q) via the symmetric
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payoff matrix (Λ):

Λ =

 $1 $2
$1 m,m n,p
$2 p,n q, q

 . (1)

The Game magnetization (µ), analogous to the ther-
modynamic magnetization, is calculated by subtracting
the number of players choosing $2 strategy from the num-
ber of players choosing $1 strategy. The Entanglement
susceptibility provides the variation in the rate of change
in µ, owing to a change in the entanglement γ. Cor-
relation indicates how closely two players’ strategies, at
two separate sites, correlate with one another, while the
individual player’s payoff average, the analogue of ⟨E⟩
for thermodynamic systems, is simply the average payoff
that a player receives after playing the game in a one-
shot environment. Finally, Payoff capacity, the analogue
of ∁V for thermodynamic systems, indicates the amount
the player’s payoff changes for a unit change in noise.
The uncertainty associated with the selection of a strat-
egy by a player is termed noise.

A brief introduction to CPD and QuPD, along with a
note on NEM and ABM, is presented in Sec. II, wherein,
we will also understand how QuPD can be mapped to the
1D-Ising chain (or, IC). In QuPD, for all the five indica-
tors in question, we find that ABM and NEM results ex-
actly match with each other, and they clearly predict the
entanglement γ range (defined by two critical γ values:
γA and γB) in between which, i.e., for γ ∈ [γA, γB ], quan-
tum becomes the dominant strategy. For all indicators
we observe an interesting phenomenon of two first-order
phase transitions, namely, the change of strategies from
Defect (D) → Quantum (Q) (at entanglement value γA)
and Q → D (at entanglement value γB), regardless of
noise in the system. This result is very similar to that
observed in Type-I superconductors, at a certain criti-
cal temperature and in the absence of an external field
(see, Refs. [3, 21]). This also showcases the fact that for
QuPD, at finite entanglement γ and zero noise, we ob-
serve a change in the Nash equilibrium condition from
All-D to All-Q and this is marked by a first-order phase
transition in all the indicators. After analyzing the re-
sults obtained for all five indicators via ABM and NEM,
we see that all five indicators can identify the phase tran-
sition, occurring at two different values of entanglement,
i.e., γA and γB , in QuPD. Remarkably, at finite entan-
glement, we also see that all five indicators show a phase
transition as a function of payoffs too.

The organization of the paper is as follows: In Sec. II,
we will discuss both CPD and QuPD, followed by a
detailed description of the mathematical framework of
NEM and the algorithm of ABM, and how we map our
QuPD game to the 1D-IC. Then, in Sec. III, we will
discuss and analyze the results obtained for all the five
indicators in question, in the TL, and finally, we conclude
our paper by summarizing all the important observations
from our work in Sec. IV.

II. THEORY

Here, we will discuss both Classical andQuantum Pris-
oner’s dilemma (PD), followed by a brief introduction to
the analytical Nash equilibrium mapping (NEM) tech-
nique, and finally, we will conclude this section by dis-
cussing the algorithm associated to the numerical Agent-
based modelling (ABM). Both NEM and ABM are based
on the exactly solvable 1D-IC, and instead of dealing
with dynamical strategy evolutions, we involve equilib-
rium statistical mechanics. Hence, we consider a one-shot
PD game in the infinite-player limit, for both Classical
and Quantum cases.

A. Classical Prisoner’s Dilemma (CPD)

In CPD [1, 2], as the name suggests, two independent
players (say, P1 and P2), accused of committing a crime,
are being interrogated by the law agencies, and they have
either option to Cooperate (C) with each other or Defect
(D). If both players opt for C-strategy, then they are
rewarded with a payoff R, whereas, if both choose D-
strategy, then they get the punishment payoff P. How-
ever, if both P1 and P2 choose opposite strategies, then
the one choosing C-strategy gets the sucker’s payoff S,
and the one choosingD-strategy gets the temptation pay-
off T, respectively. The payoffs have to fulfil the criteria:
T > R > P > S. Hence, the CPD payoff matrix (Ξ̃) is,

Ξ̃ =

 C D
C R,R S,T
D T,S P,P

 . (2)

From Ξ̃ in Eq. (2), one would think that the two ra-
tional players, who are always looking for payoff max-
imization, would choose the Pareto optimal C-strategy
since it is a win-win situation for both. However, ow-
ing to independence in strategy selection, both P1 and
P2 choose the D-strategy (thus the name “dilemma”) to
ensure that none of them receives the minimum payoff,
i.e., the sucker’s payoff S, due to a unilateral change in
the opponent’s strategy. Hence, the Nash equilibrium in
CPD is D. For our case, we rewrite the CPD payoffs
{R,S,T,P} in terms of a new set of payoffs: Cooperation
bonus (B) and Cost (C), where we redefine R = B− C
(i.e., cooperation bonus with the cost subtracted out),
T = B (or, the entire Cooperation bonus), S = −C (i.e.,
bearing the cost without any bonus) and P = 0, respec-
tively. Here, B ≥ C ≥ 0, with B ≥ (B− C) ≥ 0 ≥ −C
(i.e., T > R > P > S criteria is satisfied in this case also),
and we will be using the same {B,C} as our payoffs when
we deal with the quantum Prisoner’s dilemma in the next
section.
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B. Quantum Prisoner’s Dilemma (QuPD)

The topic of extending the framework of CPD to the
quantum regime is discussed elaborately in Refs. [3–5, 9].
Still, we will discuss them in this paper for the reader’s
convenience. The players in CPD, say P1 and P2, are
now treated as qubits in QuPD, and the state of the
qubits represent the strategies adopted by the players.
Analogous to CPD, in QuPD, the Cooperate-strategy is
denoted by |C⟩ and the Defect-strategy is denoted by |D⟩,
respectively. Note that even though the players are de-
noted by qubits, the strategies available to the players are
still classical in nature. Here,

|C⟩ = [1 0]⊥, and |D⟩ = [0 1]⊥, (3)

where, ⊥ denotes transpose of the given row matrices.
The strategy to be adopted by every player is given by
acting the unitary operator [9],

Û(φ, ϑ) =

[
eiφ cos (ϑ2 ) sin (ϑ2 )
− sin (ϑ2 ) e−iφ cos (ϑ2 )

]
, (4)

on the initial state of the players. The operator Û(φ, ϑ)
∀ ϑ ∈ [0, π], φ ∈ [0, π

2 ], acts independently on the in-

dividual Hilbert spaces of both players. Here, Û(φ =

0, ϑ = 0) = Î2×2 (i.e., Identity operator) represents the
cooperation strategy, and

Û(φ = 0, ϑ = π) =

[
0 1
−1 0

]
,

represents the defection strategy [3, 9]. Since we are deal-
ing with QuPD, the concept of entanglement comes into
the picture, and before any strategy-modification opera-
tion, the two distinct, individual qubits of the two players
are entangled via the unitary entanglement operator [9],

Γ̂(γ) =

(
cos

γ

2

)
Î⊗ Î−

(
i sin

γ

2

)
ŜY ⊗ ŜY , (5)

where, Î is the 2× 2 Identity operator, ŜY =

[
0 −i
i 0

]
is

the Pauli-Y operator, and γ denotes the entanglement
parameter in QuPD, i.e., for γ = π

2 , we have maximal
entanglement and for γ = 0, we have minimal entangle-
ment. Both the players are well aware of the entangle-
ment operator Γ̂(γ). If both the players/qubits (say, P1

and P2) choose |C⟩ as their initial states and Γ̂(γ) acting
on them gives the entangled state (from, Eq. (5)) [9],

|α⟩ = Γ̂(γ)|CC⟩ = cos
γ

2
|CC⟩+ i sin

γ

2
|DD⟩. (6)

Subsequently, both players apply Û(φ, ϑ) on their respec-
tive qubits, giving us the intermediate state [9],

|β⟩ = Û(φP1
, ϑP1

)⊗ Û(φP2
, ϑP2

)Γ̂(γ)|CC⟩. (7)

Finally, before any measurement is made, the disentan-
gling operator Γ̂†(γ) is acted on |β⟩, given in Eq. (7), and
the final non-entangled state is given as [9],

|F⟩ = Γ̂†(γ)Û(φP1
, ϑP1

)⊗ Û(φP2
, ϑP2

)Γ̂(γ)|CC⟩. (8)

Similar to CPD, we can determine the game payoffs for
QuPD by projecting the final non-entangled state |F⟩
onto the basis vectors that entirely span the combined
Hilbert space of the two-players, i.e., |CC⟩, |DD⟩, |CD⟩
and |DC⟩, respectively. These values, coupled with the
CPD payoffs (see, Eq. (2) and new payoffs B,C), give us
the QuPD payoffs (Λ) for both players: P1 and P2, as,

ΛP1 = (B− C)σCC − CσCD + BσDC +��7
0

PσDD (9)

ΛP2
= (B− C)σCC − CσDC + BσCD +��7

0
PσDD (10)

where, σCC = |⟨F|CC⟩|2, σCD = |⟨F|CD⟩|2, σDC =
|⟨F|DC⟩|2, and σDD = |⟨F|DD⟩|2, respectively. By in-

troducing a Quantum strategy operator [3], Q̂ = iŜZ =

Û(φ = π
2 , ϑ = 0), where, ŜZ =

[
1 0
0 −1

]
is the Pauli-

Z operator, we have the players opting for a different
strategy than the available classical strategies C and D.
Initially, superposition states like 1√

2
(|C⟩ + |D⟩) used to

remain invariant under the action of classical strategies.
However, upon the action of Q̂ on 1√

2
(|C⟩+ |D⟩), we get

an orthogonal state 1√
2
eiπ/2(|C⟩ − |D⟩), where eiπ/2 is a

global phase factor. In QPD, we involve both quantum
and classical strategies, and the payoff matrix is:

Λ̃ =


C D Q

C B− C,B− C −C,B L1,L1

D B,−C 0, 0 L3,L2

Q L1,L1 L2,L3 B− C,B− C

 . (11)

where, L1 = (B− C) cos2 γ, L2 = −C cos2 γ + B sin2 γ,
and L3 = B cos2 γ − C sin2 γ. Hence, QPD is a three-
strategy game, but it is difficult to map the three-strategy
QuPD to an exactly solvable spin-1 IC [3]. However, pre-
vious works on QuPD (see, Refs. [3, 5, 9]) have shown how
Q fare against the classical strategies C and D, indicating
that it will be a wiser choice to divide our three-strategy
QuPD into two two-strategy QuPD problems (so that
we can map them individually to a spin-1/2 IC), and we
can compare the (Q vs D) as well as the (Q vs C) cases.
As visualized in Fig. 1, for each case of the two-strategy
QuPD, we have two entangled players (playing the two-
strategy QuPD) at every site of the infinitely long 1D-IC
(i.e., the thermodynamic limit), and each site is coupled
to its nearest neighbouring sites via the coupling constant
T . All the sites, each consisting of two entangled players,
are subjected to a uniform external field F (analogous to
the external magnetic field Ising factor). From Eq. (11),
one can notice from the given payoff matrix Λ that for
(Q vs C) case, both (Q,Q) and (C,C) strategy pairs gives



4

FIG. 1: NEM/ABM: Visualization of QuPD in thermodynamic (or, infinite-player) limit. The QuPD game is
mapped to a 1D-Ising chain, where at each site, two entangled players reside, and they play the two-strategy QuPD.

The players also interact with their nearest neighbours via a classical coupling T , in the presence of an external
uniform field F and noise β.

the same payoff to both the players, and we observe no
payoff variations when switching from classical to quan-
tum strategies. Owing to this, we only consider the (Q
vs D) case for our further work.
For (Q vs D) case, we have the 2 × 2-reduced payoff

matrix for a single player (say, the row player) as,

Λ =

 Q D

Q (B− C) (B sin2 γ − C cos2 γ)
D (B cos2 γ − C sin2 γ) 0

 .

(12)
This Λ, in Eq. (12), will be utilised in our further calcu-
lations in the thermodynamic limit. In the next section,
we will discuss the analytical NEM very briefly, and we
will compare the results from NEM with the results of
numerical ABM.

1. Nash equilibrium mapping (NEM)

In one of our previous works (see, Ref. [13]), we have
discussed the mathematical framework of NEM in great
detail. To summarize for the readers, in NEM, we ana-
lytically map a SD to a spin-1/2 infinitely long 1D-IC
(i.e., the TL) (see, Refs. [7, 11, 13]). Initially, we consider
a 2-strategy; 2-player SD while mapping it to a 2-site IC.
The 2 strategies (say, $1 and $2) have a one-to-one map-
ping to the 2 -spin (say, ±1) 1D-IC and we have the 2-site
(say, A and B) 1D-IC Hamiltonian as [13],

H = −T (σAσB+σBσA)−F(σA+σB) = ∆A+∆B , (13)

where, T is the coupling constant, F is the external field,
σi ∀ i ∈ {A,B}, is the spin (either +1 or −1) at the ith

site, and ∆i denotes the energy of the ith site. Each of
the individual site’s energy is given as,

∆A = −T σAσB −FσA, and ∆B = −T σBσA −FσB .
(14)

Here, the total two-spin IC energy: ∆ = ∆A + ∆B . In
social dilemmas, the maximization of the player’s feasible
payoffs corresponds to finding the Nash equilibrium of
the game. However, when we consider a 1D-IC, we look
to lessen the ∆ in order to reach the energy equilibrium
condition. Hence, in order to establish a link between
the IC’s energy equilibrium configuration and the Nash
equilibrium of a SD, we equate the SD payoff matrix to
the negative of the energy matrix [7]. Each element of ∆
(i.e., ∆i) corresponds to a particular pair of spin values
(σA, σB), i.e., (σA, σB) ∈ {(±1,±1)}, at each 1D-IC site
since game payoff maximization indicates negative energy
minimization. Thus,

−∆ =

[
σB = +1 σB = −1

σA = +1 (T + F), (T + F) (F − T ),−(F + T )
σA = −1 −(F + T ), (F − T ) (T − F), (T − F)

]
.

(15)
For a 2-player; 2-strategy (say, $1 and $2) symmetric SD
game, we have the SD payoff matrix Λ′ as,

Λ′ =

 $1 $2
$1 m,m n,p
$2 p,n q, q

 . (16)

where, (m,n,p, q) are defined as the SD payoffs. Using a
set of linear transformations on Λ′ in Eq. (16), to estab-
lish a one-to-one correspondence between the payoffs in
Eq. (16) and the energy matrix ∆ of the two-spin Ising
chain in Eq. (15), that preserves the Nash equilibrium
(see, Ref. [7] and Appendix of Ref. [6] for detailed cal-
culations),

m → m− p

2
, n → n− q

2
, p → p−m

2
, q → q− n

2
, (17)

we equate Λ′ (see, Eq. (16)) to −∆ (see, Eq. (15)), to
rewrite the Ising parameters (T ,F) in terms of the SD
payoffs as [7, 11, 13],

F =
(m− p) + (n− q)

4
, and T =

(m− p)− (n− q)

4
.

(18)
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In 1D-IC, the parameter β is defined as proportional to
the temperature (T ) inverse, or, β = 1

kBT , where kB is
the Boltzmann constant, and in game theoretic models,
temperature implies uncertainty in player’s strategy se-
lection, and this is termed as noise. Therefore, T → 0
(or, β → ∞) implies zero noise (denoted by Z-N), i.e.,
no change in the players’ strategies, whereas, T → ∞
(or, β → 0) implies infinite noise (denoted by I-N), i.e.,
complete randomness in the player’s strategy selection.
We can also interpret β as the selection intensity (see,
Ref. [14]) where, for β ≪ 1, we observe strategies be-
ing selected at random, whereas, for β ≫ 1, we have a
vanishing randomness in strategy selection.

For the given H (see, Eq. (13)) and Eq. (18), the par-
tition function ΥNEM can be written in terms of the SD
parameters (m,n,p, q) as [13],

ΥIsing =
∑
{σi}

e−βH = e2β(T +F) + e2β(T −F) + 2e−2βT ,

or, ΥNEM = eβ(m−p) + e−β(n+q) + 2e
β
2 (n+p−m−q), (19)

where, β = 1
kBT . For (Q vs D) case of QuPD, from

Eq. (12), we have:

m = (B− C); n = (B sin2 γ − C cos2 γ);

p = (B cos2 γ − C sin2 γ); and q = 0. (20)

Hence, from Eqs. (18, 20), we have (T ,F) in terms of the
SD payoffs (B,C) and entanglement γ as,

T = 0, and F =
(B sin2 γ − C cos2 γ)

2
(21)

The readers can refer to our previous work, involving
NEM; ABM and other analytical methods, in Ref. [13],
where the detailed calculations on deriving the analyti-
cal expressions for the given five indicators of cooperative
behaviour: game magnetization (µNEM ), entanglement
susceptibility (χNEM

γ ), correlation (cNEM
j ), player’s pay-

off average (⟨Λ⟩NEM ) and payoff capacity (℘NEM
C ), with

regards to two different classical SD (Hawk-Dove game
and Public goods game) are shown. The same technique,
as in Ref. [13], is followed here. So, we have the analyti-
cal expressions for the five different indicators for QuPD,
in the thermodynamic (or, infinite players) limit, as,
1. Game magnetization: Using the Λ in Eq. (12) and
ΥNEM (see, Eqs. (19, 21)), we have the QuPD average
game magnetization µNEM in the TL as,

µNEM =
1

β

∂

∂F
lnΥNEM =

sinhβF√
e−4βT + sinh2 βF

,

or, µNEM =

sinh

[
β

2
(B sin2 γ − C cos2 γ)

]
W

, (22)

where, W =
√
sinh2 [β2 (B sin2 γ − C cos2 γ)] + 1, respec-

tively. Here, B is the Cooperation bonus, C is the

cost, and γ denotes the entanglement associated with the
QuPD game.
2. Entanglement susceptibility: To derive the ana-
lytical expression for the QuPD Entanglement suscepti-
bility χNEM

γ , we partially differentiate µNEM with the
entanglement parameter γ and normalize it by β, i.e.,

χNEM
γ =

1

β

∂

∂γ
µNEM , for γ ∈ [0, π],

or, χNEM
γ =

(B+ C)
2

· sin (2γ) cosh (βN )

(1 + sinh2 βN )
3
2

, (23)

where, N = 1
2 (B sin2 γ − C cos2 γ), respectively.

3. Correlation: In our previous work in Ref. [13], we
derived the analytical NEM expression for the correla-
tion cNEM

j (= ⟨σiσi+j⟩) between two sites separated by a
distance j, for classical social dilemmas (CSD), as,

cNEM
j

∣∣∣∣
CSD

= cos2 φ+

(
Ω−

Ω+

)j

sin2 φ, (24)

with cos2 φ = sinh2 βF
Y , Ω± = eβT [cosh(βF) ±

√
Y],

where Y = sinh2 βF + e−4βT . In QuPD, the calcula-
tion for correlation is very similar, where we just replace
the (T ,F) given in Eq. (24) with the values given in
Eq. (21) to have the expression for the QuPD correlation
cNEM
j = ⟨σiσi+j⟩ as,

cNEM
j = cos2 Φ+

(
ω−

ω+

)j

sin2 Φ, (25)

where, j is the distance between the two sites and

cos2 Φ =
sinh2 βN

W2
, ω± = [cosh(βN )±W], (26)

with, W =

√
sinh2 [

β

2
(B sin2 γ − C cos2 γ)] + 1,

and N =
1

2
(B sin2 γ − C cos2 γ). (27)

4. Player’s payoff average: The analytical expression
for ⟨Λ⟩NEM in QuPD can be derived using ΥNEM given
in Eq. (19) as,

ΥNEM = eβ(m−p) + e−β(n+q) + 2e
β
2 (n+p−m−q),

or, ΥNEM = eβ(B sin2 γ−C cos2 γ) + eβ(C cos2 γ−B sin2 γ) + 1.

Thus, ⟨Λ⟩NEM = −1

2
⟨E⟩NEM =

1

2

[
1

ΥNEM

∂ΥNEM

∂β

]
,

or, ⟨Λ⟩NEM =
N (e2βN − e−2βN )

(1 + e2βN + e−2βN )
, (28)

where, ⟨E⟩ denotes the average internal energy (NOTE:
we take the −ve of ⟨E⟩ to maximize ⟨Λ⟩) and N =
1
2 (B sin2 γ − C cos2 γ), respectively.
5. Payoff capacity: The analytical expression for
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℘NEM
C in QuPD can also be derived from ΥNEM given

in Eqs. (19, 21, 28) as,

ΥNEM = eβ(B sin2 γ−C cos2 γ) + eβ(C cos2 γ−B sin2 γ) + 1.

Since the payoff capacity ℘C is analogous to the normal-
ized thermodynamic specific heat capacity, at constant
volume, ∁V (see, Ref. [13, 15, 22–24]), we have the ana-
lytical NEM expression for ℘C , normalized by β2, as,

℘NEM
C =

1

2β2

∂

∂β

[
1

ΥNEM

∂ΥNEM

∂β

]
,

or, ℘NEM
C = 2N 2 e

2βN (1 + 4e2βN + e4βN )

(1 + e2βN + e4βN )2
, (29)

where, N = 1
2 (B sin2 γ − C cos2 γ). We will study the

variation of these five indicators with respect to a chang-
ing γ ∈ [0, π] while keeping B = 5.0 and C = 2.0 (i.e.,
constant values). In the next section, we will discuss the
algorithm for Agent-based modelling.

2. Agent-based Modelling (ABM)

ABM [11, 13] is a numerical modelling technique often
used to study classical SD in the TL. However, to the best
of our knowledge, ABM has not been previously imple-
mented to study the emergence of cooperative behaviour
in quantum social dilemmas like QuPD, etc. Hence, the
main attraction of our work is that we numerically ana-
lyze the emergence of cooperation among an infinite num-
ber of players, in the presence of entanglement γ. We
consider a 1000 players, and these players reside on the
1D-IC where each site consists of two entangled play-
ers, playing the two-strategy QuPD, and they interact
with their nearest neighbours only, in the presence of a
periodic boundary condition. The energy matrix ∆ is
just the negative of the QuPD payoff matrix Λ given in
Eq. (12), and this gives the IC’s individual site energy.
At this point, we modify the player’s strategy by iter-
ating through a conditional loop 1,000,000 times, which
amounts to an average of 1000 strategy modifications
per player. While Refs. [11, 13] provide a clear explana-
tion of the algorithm’s basic structure (which is based on
the Metropolis algorithm[22, 23]), we still need to figure
out the game magnetization, entanglement susceptibility,
correlation, player’s payoff average, and payoff capacity
for our particular scenario. So, this is a quick synopsis of
the ABM algorithm:

1. At each site on the 1D-IC, assign a random strategy
to each player: 0 (strategy $1: say defection) or 1
(strategy $2: say quantum).

2. Choose a principal player at random to determine
both its unique strategy as well as the strategy of
its closest neighbour. The energy ∆ of the prin-
cipal player is ascertained based on the strategies
that have been determined. The principal player’s

energy is computed for each of the two scenarios:
either it chose the opposite strategy while preserv-
ing the closest neighbour’s strategy, or it chose the
same strategy as its closest neighbour.

3. For each of the two possible outcomes, the en-
ergy difference (d∆) is determined for the princi-
pal player. The current strategy of the principal
player is flipped based on whether the Fermi func-
tion (1+eβ·d∆)−1 > 0.5; if not, it is not flipped. [22].

4. Now, based on the indicators, five distinct condi-
tions emerge:

• Game magnetization: After each run of the
conditional spin-flipping loop, we calculate the
difference between the number of players play-
ing quantum (or, Q) and the number of play-
ers playing defect (or, D). This gives the to-
tal magnetization µ̃ =

∑
i σi, for σi being the

strategy (0 or 1) of the player at the ith-site,
for each cycle of the conditional loop. Finally,
we take the average of the total magnetization
for all the loops to determine the overall game
magnetization, i.e., µABM = ⟨µ̃⟩.

• Entanglement susceptibility : Following Eqs.
(21,23), the entanglement susceptibility can
be determined from the variance of µABM as,

χABM
γ = (B+C)

2 sin (2γ)[⟨µ̃2⟩ − ⟨µ̃⟩2], where,

µ̃ =
∑

i σi and µABM = ⟨µ̃⟩, respectively.
Hence, following the previous steps for deter-
mining µABM , we compute the µABM vari-
ance and multiply the result by the factor:
1
2 (B+C) sin (2γ), to get the entanglement sus-
ceptibility.

• Correlation: We take into account two entan-
gled principal player pairs, thus we slightly
alter the first four steps to incorporate the
needs of determining the correlation (cABM

j )
between the two pairs of entangled players.
Following the individual spin-flipping opera-
tions for the two randomly selected principal
player pairs, the total correlation is increased
by a correlation value of +1 if both players’
strategies are the same and a correlation value
of −1 if they are different.

• Player’s payoff average: Similar to the case of
previous indicators, after all the spin-flipping
operations, we determine the total energy of
each individual Ising site, and the −ve of this
energy gives us the player’s payoff average (or,
⟨Λ⟩ABM ).

• Payoff capacity : Similar to χABM
γ , the ℘ABM

C
can be determined from the variance of av-
erage internal energy ⟨E⟩, or, −⟨Λ⟩ABM (see,
Eqs. (28, 30) and Ref. [13]), and this gives us,

℘ABM
C =

1

2
[⟨E2⟩ − ⟨E⟩2]. (30)
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(a) µABM/NEM vs γ (b) µABM/NEM vs γ in β → ∞ (or, T → 0) limit

FIG. 2: ABM and NEM (in insets): Game magnetization µ vs entanglement γ for reward R = (B− C) = 3.0,
sucker’s payoff S = −C = −2.0, temptation T = B = 5.0, punishment P = 0.0, γA = 0.5639 and γB = 2.5777 in

QuPD.

Hence, following the previous steps for deter-
mining the player’s payoff average, we calcu-
late the variance of the internal energy (or,
player’s payoff average) and multiply it with
the factor 1

2 to get the payoff capacity.

5. Proceed to step 2 and carry out this procedure a
1000 times.

After reviewing the Python codes included in Appen-
dices (A, B), one can have a better understanding of this
algorithm. Given that our primary goal is to maximise
the feasible payoff — which we can only do when our sys-
tem reaches the energy equilibrium or the least energy
configuration — we see that the likelihood of strategy
switching drops as the energy difference d∆ increases.

III. RESULTS AND ANALYSIS

In our version of QuPD, there are effectively 2 game
payoffs: Cooperation bonus (B) and the Cost (C), along
with the measure of Entanglement (γ), with B ≥ C ≥ 0.
We also restrict the value of γ ∈ [0, π], respectively.
When γ = π

2 , we observe maximal entanglement among
the players, and this signifies a Bell state. Here, we
will analyze the variation of all five indicators: Game
magnetization, Entanglement susceptibility, Correlation,
Player’s payoff average and Payoff capacity, with respect
to the Entanglement γ while B = 5.0 and C = 2.0. One
thing to note is that entanglement susceptibility, com-
pared to game magnetization, is a far more accurate tool
for gauging minute alterations in the number of players
playing defect or quantum, owing to a change in entan-
glement γ.

A. Game magnetization (µ)

1. NEM

Using the given values of B = 5.0, C = 2.0 and the
expression of µNEM in Eq. (22), we plot the variation
of game magnetization with regard to changing values of
γ, and they are given in the insets of Figs. 2a, 2b. We
observe a change in the sign of the game magnetization
from negative to positive and vice-versa at two particular
values of γ. These indicate first-order phase transitions
in the strategies adopted by the players, changing from
defect to quantum and vice-versa, respectively. To deter-
mine the two critical values of γ (say, γA and γB) where
these phase transitions occur, we equate µNEM = 0 (see,

Eq. (22)) and this leads to (B sin2 γ−C cos2 γ)
2 = 0, finally

giving us the relation between the critical γ values and
the game payoffs (B,C) as: γA,B = tan−1

√
C/B. For

B = 5.0 and C = 2.0, we have γ = tan−1
√

2/5 =
0.5639 or 2.5777, i.e., γA = 0.5639 and γB = 2.5777,
respectively (see, Figs. 2a, 2b) and they are independent
of the noise β. Thus, the classical defect phase appears in
the regime γ ∈ [0, γA)∪ (γB , π] while the quantum phase
appears in the regime γ ∈ [γA, γB ]. For any general case,

if B ≫ C, then γA,B = tan−1
√

C/B → 0 or π, and this
indicates that the classical defect (D) phase disappears
and the quantum phase is the only phase. By defini-
tion (see, CPD in Sec. IIA), B is always greater than C,
hence, there always exists a quantum phase, otherwise,
if B = C or B < C, then the prisoner’s dilemma disap-
pears. However, when B ∼ C, γA,B = tan−1

√
C/B ≈

tan−1(±1) → π
4 or 3π

4 , indicating that the classical de-

fect phase appears in the region γ ∈ [0, π
4 )∪ ( 3π4 , π] while

the quantum phase appears in the region γ ∈ [π4 ,
3π
4 ].
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In the Z-N limit, i.e., T → 0 (or, β → ∞), if γ lies
between γA and γB , then µNEM → 1, ∀ γA < γ <
γB , indicating that all players play the quantum strategy.
However, when γ is either lower than γA or greater than
γB , i.e., γ ∈ [0, γA) ∪ (γB , π], in the same Z-N limit,
µNEM → −1, ∀ γ ∈ [0, γA) ∪ (γB , π], indicating that
all players play the defect strategy. In the I-N limit,
i.e., T → ∞ (or, β → 0), µNEM → 0, implying that
the players opt for their strategies randomly, resulting in
an equiprobable number selecting defect and quantum,
respectively.

2. ABM

For the given values of T = 0 and F = (B sin2 γ−C cos2 γ)
2

in Eq. (21), we have the Energy matrix ∆ = −Λ (see,
Eq. (12)). Thus,

∆ =

[
−(B− C) −(B sin2 γ − C cos2 γ)

−(B cos2 γ − C sin2 γ) 0

]
.

(31)
Following the algorithm given in Sec. II B 2, for B = 5.0
and C = 2.0, we determine the ABM game magnetiza-
tion (µABM ), and its variation with the entanglement γ
is shown in Figs. 2a, 2b. We observe exactly the same re-
sults obtained via both NEM and ABM in the finite and
limiting values of β. For β > 0, when γ ∈ [0, γA)∪(γB , π],
the majority of players play defect over quantum. How-
ever, for the same β > 0, when γ ∈ [γA, γB ], the quantum
phase appears, and a majority of players play quantum.

In the Z-N limit, i.e., T → 0 (or, β → ∞), µABM →
1, ∀ γ ∈ [γA, γB ], indicating that all players play the
quantum strategy. However, when γ ∈ [0, γA)∪(γB , π], in
the same Z-N limit, µABM → −1, ∀ γ ∈ [0, γA)∪ (γB , π],
indicating that all players play the defect strategy. In
the I-N limit, i.e., T → ∞ (or, β → 0), µABM → 0, im-
plying that the players oft for their strategies randomly,
resulting in an equiprobable number selecting defect and
quantum, respectively.

3. Analysis of game magnetization

The analysis of game magnetization: µNEM as well
as µABM , will be done in this subsection. We observe
in Fig. 2 that when γ → π

2 , i.e., maximal entanglement,

µABM = µNEM → 1, indicating that all players play the
quantum strategy. However, when γ → 0 or π, i.e., zero
entanglement, a large fraction of players play the classi-
cal defect strategy. For both finite and limiting β values,
we observe first-order phase transitions at the two crit-
ical values of γ (i.e., at γA and γB) and the values of
γA,B depends on the payoffs B and C via the relation:

γA,B = tan−1
√
C/B (see, Sec. III A 2). For fixed values

of γ (say, γ = π
6 ) and C (say, C = 2.0), if we vary B from

B ∼ C to B ≫ C, while satisfying the criterion: B > C,

FIG. 3: ABM and NEM (in insets): µABM/NEM vs
changing cooperation bonus B for fixed cost C = 2.0

and entanglement γ = π
6 in QuPD.

we observe a phase transition from defect to quantum as
the cooperation bonus, i.e., B increases, and the phase
transition (PT ) occurs at: BPT = C cot2 γ (see, Fig. 3).
Similarly, for fixed γ and B, if we vary C from C ≪ B
to C ∼ B, while satisfying the criterion: C < B, we ob-
serve a phase transition from quantum to defect as the
cost associated with the game, i.e., C increases, and the
phase transition occurs at: CPT = B tan2 γ. Hence, the
game payoffs, i.e., (B,C) can also induce phase transition
as seen from Fig. 3. Thus, we can have the phase tran-
sition(s) occurring in QuPD via both game payoffs and
entanglement.

B. Entanglement susceptibility (χγ)

1. NEM

Using the given values of B = 5.0, C = 2.0 and the
expression of χNEM

γ in Eq. (23), we plot the variation
of entanglement susceptibility with regard to changing
values of γ and they are shown in the insets of Figs. 4a,
4b. Here, in the β → ∞ (i.e., Z-N) limit, we observe
two sharp discontinuous peaks at two values of γ. To
determine these critical γ values where χNEM

γ → ∞, in

the β → ∞ limit, we equate 1
χNEM
γ

→ 0 (see, Eq. (23))

and we get the condition: N = 1
2 (B sin2 γ − C cos2 γ) =

0, and this gives us the same expression for the critical
γ’s as in the case of game magnetization, i.e., γA,B =

tan−1
√
C/B. For B = 5.0 and C = 2.0, we have γ =

tan−1
√
2/5 = 0.5639 or 2.5777. Therefore, we have γA =

0.5639 and γB = 2.5777, for the given values of B = 5.0
and C = 2.0 (see, Figs. 4a, 4b) and they are independent
of the noise β.
When β is finite, as γ ∈ [0, γA] gradually increases,

we note that the strategy switching rate from defect to



9

(a) χ
ABM/NEM
γ vs γ (b) χ

ABM/NEM
γ vs γ in β → ∞ (or, T → 0) limit

FIG. 4: ABM and NEM (in insets): Entanglement susceptibility χγ vs entanglement γ for reward
R = (B− C) = 3.0, sucker’s payoff S = −C = −2.0, temptation T = B = 5.0, punishment P = 0.0, γA = 0.5639

and γB = 2.5777 in QuPD.

quantum also increases, and this rate peaks at γ = γA.
Then, as we increase the value of γ from γA to γ = π

2 , the
switching rate decreases, even though quantum strategy
still remains the dominant strategy. At maximal entan-
glement, i.e., γ = π

2 , the entanglement susceptibility van-
ishes since all the players play quantum, and they do not
shift to defect on minute changes in γ. However, as we
further increase the γ value from π

2 to γB , the strategy
switching rate from quantum to defect increases, peaking
at γB , and we observe that defect gradually becomes the
dominant strategy of most players. For γ = 0 or π, a
large fraction of players play defect. In the Z-N limit,
i.e., T → 0 (or, β → ∞), χNEM

γ → 0, ∀ γ ̸= {γA, γB}
and here we observe the two sharp discontinuous peaks
at γ = γA and γ = γB as discussed before. They indi-
cate two first-order phase transitions at γA and γB since
the game magnetization plot shows a discontinuity at
γA and γB in the Z-N limit (see, Fig. 2b). The first-
order phase transition is also a characteristic of Type-
I superconductors (below a certain critical temperature
and in the absence of an external field), and this shows
that entanglement plays an important role in exhibit-
ing phase transitions in quantum games like QuPD. In
Z-N limit, for γ ̸= {γA, γB}, the µNEM → ±1 and
hence they do not change with a changing γ, resulting
in χNEM

γ → 0, ∀ γ ̸= {γA, γB}.

In the I-N limit, i.e., T → ∞ (or, β → 0), χNEM
γ →

(B+C)
2 sin (2γ), ∀ γ, implying that the players opt for

their strategies randomly. The interesting part to dis-
cuss here is the unique expression of limβ→0 χ

NEM
γ →

(B+C)
2 sin (2γ), ∀ γ in the I-N limit. In the I-N limit,

Taylor expanding the expression of µNEM , in Eq. (22),
around β, makes this very easily verifiable, where the
1st-order correction (say, µ(1)) of µNEM , is given as,

µ(1) = −β(B+C)
4 cos (2γ), leading to the 0th-order χNEM

γ

correction as,

lim
β→0

χ(0)
γ = lim

β→0

1

β

∂

∂γ
µ(1) =

(B+ C)
2

sin (2γ). (32)

The higher order expansion terms of χNEM
γ about β, in

the I-N limit, vanishes. This explains why we get a non-
zero expression for χγ in the I-N limit.

2. ABM

For the given values of T = 0 and F = (B sin2 γ−C cos2 γ)
2

in Eq. (21), we have ∆ = −Λ (see, Eq. (12)). Thus,

∆ =

[
−(B− C) −(B sin2 γ − C cos2 γ)

−(B cos2 γ − C sin2 γ) 0

]
.

(33)
Following the algorithm given in Sec. II B 2, for B = 5.0
and C = 2.0, we determine the ABM entanglement sus-
ceptibility (χABM

γ ), and its variation with the entangle-
ment γ is shown in Figs. 4a, 4b. Here also, we observe ex-
actly the same results as obtained for entanglement sus-
ceptibility, via NEM, in the finite and limiting values of β.
For finite β and increasing values of γ ∈ [0, γA], we note
that the strategy switching rate from defect to quantum
also increases, reaching the peak value at γ = γA. On
further increase of γ value, from γA to γ = π

2 , the switch-
ing rate decreases, even though quantum still remains the
dominant strategy. In the case of maximal entanglement,
i.e., γ = π

2 , χ
ABM
γ vanishes since all the players play the

quantum strategy, and they do not change their strategies
on minute changes in γ. On further increase of γ value,
from π

2 to γB , the strategy switching rate from quantum
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(a) c
ABM/NEM
j vs γ (b) c

ABM/NEM
j vs γ in β → ∞ (or, T → 0) limit

FIG. 5: ABM and NEM (in insets): Correlation cj vs γ for distance j = 11, reward R = (B− C) = 3.0, sucker’s
payoff S = −C = −2.0, temptation T = B = 5.0, punishment P = 0.0, γA = 0.5639 and γB = 2.5777 in QuPD.

to defect increases, peaking at γB , and we observe that
defect gradually becomes the dominant strategy of most
players. For γ = 0 or π, a large fraction of players play
defect.

In the Z-N limit, i.e., T → 0 (or, β → ∞), χABM
γ →

0, ∀ γ ̸= {γA, γB}. Here also, we observe two sharp
discontinuous peaks, at γ = γA and γ = γB , indicating
the two first-order phase transitions at γA and γB . As
seen in Fig. 2b, the game magnetization plot shows a
discontinuity at γA and γB in the Z-N limit. In Z-N
limit, for γ ̸= {γA, γB}, the µABM → ±1 and hence they
do not change with a changing γ, resulting in χABM

γ →
0, ∀ γ ̸= {γA, γB}. In the I-N limit, i.e., T → ∞ (or,

β → 0), χABM
γ → (B+C)

2 sin (2γ), ∀ γ, implying that
the players opt for their strategies randomly. In the I-N
limit, even though ⟨µABM ⟩ → 0 due to strategy selection
randomization, ⟨(µABM )2⟩ → 1 and this gives us the

value of χABM
γ = (B+C)

2 sin (2γ) (see, Eq. (23)) in the
β → 0 (or, I-N) limit.

3. Analysis of entanglement susceptibility

The analysis of entanglement susceptibility: χNEM
γ as

well as χABM
γ , will be done in this subsection. From

Fig. 4, we observe that for all γ → {0, π
2 , π}, i.e., for both

minimal (i.e., γ → 0 or π) and maximal entanglement
(i.e., γ → π

2 ), χABM
γ = χNEM

γ → 0, indicating that
there is no phase transition among the players. This can
also be verified from the game magnetization result (see,
Fig. 2) where we observe that for finite as well as limiting
values of β, when γ → {0, π

2 , π}, a large fraction of
players play either defect (for γ → 0 or π) or quantum (for
γ → π

2 ), and this leads to a vanishing χγ . Interestingly,
in the Z-N (or, β → ∞) limit, we observe two first-order

phase transitions, as shown in Fig. 4b, at the two critical
values of γ (i.e., at γA and γB). The values of γA,B ,
where we observe the phase transitions, depend on the
payoffs B and C via the relation: γA,B = tan−1

√
C/B

(see, Sec. IIIA 2). The two first-order phase transition
points, i.e., γA and γB , depend on both game payoffs
(i.e., B, C), indicating that the game payoffs can also
induce phase transition as seen in the case of µ.

C. Correlation (cj)

1. NEM

Using the given values of B = 5.0, C = 2.0 and the
expression of cNEM

j in Eqs. (25, 26, 27), we plot the
variation of correlation with regard to changing values
of γ and they are shown in the insets of Figs. 5a, 5b.
In both Figs. 5a and 5b, we observe a vanishing corre-
lation at two particular values of γ, and this signifies
a first-order phase transition. For cNEM

j → 0, using

Eqs. (25, 26, 27), we get the condition: sinh2 βN = 0,
i.e., N = 1

2 (B sin2 γ − C cos2 γ) = 0, and this gives us
the same expression for the critical γ’s as before, i.e.,
γA,B = tan−1

√
C/B. For B = 5.0 and C = 2.0, we have

γ = tan−1
√

2/5 = 0.5639 or 2.5777. Therefore, we have
γA = 0.5639 and γB = 2.5777 for the given values of
B = 5.0 and C = 2.0 (see, Figs. 5a, 5b) and they are
independent of the noise β.
When β is finite, as γ ∈ [0, γA] gradually increases,

we find an initial drop in the strategy correlation, reach-
ing a minimum at γ = γA. This is mainly attributed
to the fact that while γ → γ1, the players tend to shift
from classical defect to quantum, resulting in a lowering
of correlation among the players. Then, as we increase
the value of γ from γA to γ = π

2 , the correlation increases
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since most of the players now play quantum as γ → π
2 .

At maximal entanglement, i.e., γ = π
2 , the correlation is

maximum since, in this case, all the players play quan-
tum, and they do not shift to defect on minute changes
in γ. However, as we further increase the γ value from
π
2 to γB , the strategy correlation again decreases due
to a strategy shift from quantum to defect among the
players, reaching a minimum at γB . When γ > γB , the
majority of players switch to defect, thus increasing the
correlation. When γ = 0 or π, a large fraction of players
play defect. In the Z-N limit, i.e., T → 0 (or, β → ∞),
cNEM
j → 1, ∀ γ ̸= {γA, γB}. Here, we also observe two
sharp discontinuous phase transition peaks, at γA and
γB (see, Fig. 5b), when all players shift from defect to
quantum (at γ = γA) and back to defect (at γ = γB) as
the γ value increases from 0 to π. In the I-N limit, i.e.,
T → ∞ (or, β → 0), cNEM

j → 0, ∀ γ, implying that
the players opt for their strategies randomly, resulting in
vanishing correlation.

2. ABM

For the given values of T = 0 and F = (B sin2 γ−C cos2 γ)
2

in Eq. (21), we have the Energy matrix ∆ = −Λ (see,
Eq. (12)). Thus,

∆ =

[
−(B− C) −(B sin2 γ − C cos2 γ)

−(B cos2 γ − C sin2 γ) 0

]
.

(34)
Following the algorithm given in Sec. II B 2, for B = 5.0
and C = 2.0, we determine the ABM correlation (cABM

j ),
and its variation with the entanglement γ is shown in
Figs. 5a, 5b. We again observe exactly the same results
as obtained for correlation, via NEM, in the finite and
limiting values of β. When β is finite, as γ ∈ [0, γA]
gradually increases, we find an initial drop in the strat-
egy correlation, reaching a minimum at γ = γA. Then,
as we increase the value of γ from γA to γ = π

2 , the corre-
lation increases. At maximal entanglement, i.e., γ = π

2 ,
the correlation is maximum. As we further increase the
γ value from π

2 to γB , the correlation again decreases,
reaching a minimum at γB .
In the Z-N limit, i.e., T → 0 (or, β → ∞), cABM

j →
1, ∀ γ ̸= {γA, γB}. As shown in Fig. 5b, we observe
two sharp phase transition peaks, at γA and γB , when
all players shift from defect to quantum (at γ = γA) and
back to defect (at γ = γB) as the γ value increases from
0 to π. In the I-N limit, i.e., T → ∞ (or, β → 0),
cABM
j → 0, ∀ γ, implying that the players opt for their
strategies randomly, resulting in vanishing correlation.

3. Analysis of correlation

The analysis of correlation: cNEM
j as well as cABM

j ,
will be done in this subsection. From Fig. 5 we observe

that for increasing values of β, for both minimal (i.e.,
γ → 0 or π) and maximal entanglement (i.e., γ → π

2 ),

cABM
j = cNEM

j → 1, indicating maximum correlation
among the strategies adopted by the players. In both
γ → 0 and γ → π limits, for increasing β, a large fraction
of players play the defect strategy, leading to maximum
correlation. Similarly, in the γ → π

2 limit, almost all
players adopt the quantum strategy, and this also leads
to a maximum correlation. In the Z-N (or, β → ∞)
limit, we observe two first-order phase transition peaks,
as shown in Fig. 5b, at the two critical values of γ (i.e.,
at γA and γB). The values of γA,B , where we observe
the phase transitions, depend on the payoffs B and C via
the relation: γA,B = tan−1

√
C/B, and both B as well as

C can also induce phase transition(s) in a similar way to
what we discussed in the case of game magnetization µ.

D. Player’s payoff average (⟨Λ⟩)

1. NEM

Using the given values of B = 5.0, C = 2.0 and the ex-
pression of ⟨Λ⟩NEM in Eq. (28), we plot the variation of
⟨Λ⟩NEM with regard to changing values of γ and they are
given in the insets of Figs. 6a, 6b. In both Figs. 6a and
6b, we observe a vanishing payoff average at two partic-
ular values of γ, signifying a first-order phase transition.
For ⟨Λ⟩NEM → 0, using Eq. (28), we get the condition:
N = 1

2 (B sin2 γ−C cos2 γ) = 0, and this gives us the same
expression for the critical γ’s as seen for the previous in-
dicators, i.e., γA,B = tan−1

√
C/B. For B = 5.0 and

C = 2.0, we have γ = tan−1
√
2/5 = 0.5639 or 2.5777.

Therefore, we have γA = 0.5639 and γB = 2.5777 for
given values of B = 5.0 and C = 2.0 (see, Figs. 6a, 6b)
and they are independent of the noise β.

When β is finite, as γ ∈ [0, γA] gradually increases, we
find an initial drop in the ⟨Λ⟩NEM value, reaching a min-
imum at γ = γA. This is mainly attributed to the fact
that while γ approaches γ1, the players tend to switch
from classical defect to quantum, resulting in a lowering
of feasible payoffs accessible to all players, see the payoff
matrix given in Eq. (12) for the payoffs associated with
[Q,D] or [D,Q] case. Then, as we increase the value of
γ from γA to γ = π

2 , ⟨Λ⟩
NEM increases since most of the

players have switched to quantum as γ approaches π
2 ,

resulting in a comparatively better average payoff than
the classical strategy (defect) payoffs (see, [Q,Q]-payoff
in Eq. (12)). At maximal entanglement, i.e., γ = π

2 ,

⟨Λ⟩NEM is maximum since, in this case, all the players
play quantum and they do not shift to defect on minute
changes in γ, resulting in the best possible payoff avail-
able to each player. However, as we further increase the
γ value from π

2 to γB , ⟨Λ⟩NEM again decreases due to a
switch from quantum to defect among the players, reach-
ing a minimum at γB . When γ > γB , the majority of
players switch over to defect, thus increasing the classical
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(a) ⟨Λ⟩ABM/NEM vs γ (b) ⟨Λ⟩ABM/NEM vs γ in β → ∞ (or, T → 0) limit

FIG. 6: ABM and NEM (in insets): Player’s payoff average ⟨Λ⟩ vs γ for reward R = (B− C) = 3.0, sucker’s
payoff S = −C = −2.0, temptation T = B = 5.0, punishment P = 0.0, γA = 0.5639 and γB = 2.5777 in QuPD.

average payoff associated with the defect strategy. When
γ = 0 or π, a large fraction of players play defect.
In the Z-N limit, i.e., T → 0 (or, β → ∞), ⟨Λ⟩NEM →

|B sin2 γ−C cos2 γ|
2 , ∀ γ. This shows that the player’s payoff

average depends on the entanglement γ and always sat-
isfies ⟨Λ⟩NEM ≥ 0, irrespective of the payoffs. In the I-N
limit, i.e., T → ∞ (or, β → 0), ⟨Λ⟩NEM → 0, ∀ γ, im-
plying that the players opt for their strategies randomly,
leading to payoff randomization. By summing up the
four payoffs (or, the matrix elements) given in the en-
ergy (or, −ve payoff) matrix in Eq. (36), we indeed get
a vanishing average payoff per player.

2. ABM

To determine the individual player’s payoff average,
we start with the given values of T = 0 and F =
(B sin2 γ−C cos2 γ)

2 in Eq. (21), respectively. The Energy
matrix ∆ = −Λ (see, Eq. (12)) is again given as,

∆ =

[
−(B− C) −(B sin2 γ − C cos2 γ)

−(B cos2 γ − C sin2 γ) 0

]
.

(35)
However, this time, instead of considering the ∆ in
Eq. (35), we consider a modified ∆ (say, ∆′)[13] whose
elements are the linear transformations of the original
energy matrix elements given in Eq. (35) (see, the set
of linear transformations given in Eq. (17)). Both these
matrices have a one-to-one correspondence, and hence,
the Nash equilibrium is preserved. So, we redefine the
energy matrix as,

∆′ =

[
− (B sin2 γ−C cos2 γ)

2 − (B sin2 γ−C cos2 γ)
2

(B sin2 γ−C cos2 γ)
2

(B sin2 γ−C cos2 γ)
2

]
. (36)

Both ∆ in Eq. (35) and ∆′ in Eq. (36) are equivalent
to each other. Now, by following the algorithm given in
Sec. II B 2, for B = 5.0 and C = 2.0, we determine the
ABM player’s payoff average (⟨Λ⟩ABM ), and its variation
with the entanglement γ is shown in Figs. 6a, 6b. We
again observe exactly the same results as obtained for
⟨Λ⟩, via NEM, in the finite and limiting values of β.

When β is finite, as γ ∈ [0, γA] gradually increases, we
find an initial drop in the ⟨Λ⟩ABM value, reaching a mini-
mum at γ = γA. Then, as we increase the value of γ from
γA to γ = π

2 , ⟨Λ⟩
ABM increases since most of the play-

ers switch to quantum as γ approaches π
2 . At maximal

entanglement, i.e., γ = π
2 , ⟨Λ⟩

ABM is maximum since, in
this case, all the players play quantum, and they do not
shift to defect on minute changes in γ. However, as we
further increase the γ value from π

2 to γB , ⟨Λ⟩ABM again
decreases due to a strategy shift from quantum to defect
among the players, reaching a minimum at γB . When
γ > γB , the majority of players choose to switch over
to defect. In the Z-N limit, i.e., T → 0 (or, β → ∞),

⟨Λ⟩ABM → |B sin2 γ−C cos2 γ|
2 , ∀ γ. This shows that the

player’s payoff average, similar to what we observed in
ABM, depends on the entanglement γ and always satis-
fies ⟨Λ⟩ABM ≥ 0, irrespective of the payoffs. In the I-N
limit, i.e., T → ∞ (or, β → 0), ⟨Λ⟩ABM → 0, ∀ γ, im-
plying that the players opt for their strategies randomly,
leading to payoff randomization.

3. Analysis of Player’s payoff average

The analysis of the Player’s payoff average: ⟨Λ⟩NEM

as well as ⟨Λ⟩ABM , will be done in this subsection. From
Fig. 6, we observe that for increasing values of β, in
minimal entanglement (i.e., γ → 0 or π), ⟨Λ⟩ABM =



13

(a) ℘
ABM/NEM
C vs γ (b) ℘

ABM/NEM
C vs γ in β → ∞ (or, T → 0) limit

FIG. 7: ABM and NEM (in insets): Payoff capacity ℘C vs entanglement γ for reward R = 3.0, sucker’s
payoff S = 0.0, temptation T = 5.0, punishment P = 1.0, γA = 0.5639 and γB = 2.5777 in QuPD.

⟨Λ⟩NEM → C
2 = 1, for given C = 2.0, indicating the av-

erage payoff associated with the classical defect (D) strat-
egy, which in fact is the dominant strategy in this case.
Meanwhile, inmaximal entanglement (i.e., γ → π

2 ), when

all players play quantum, ⟨Λ⟩ABM = ⟨Λ⟩NEM → B
2 = 5

2 ,
for given B = 5.0, indicating the average payoff associ-
ated with the quantum (Q) strategy. For any (B,C) that
satisfies the criteria: B > C > 0, the average payoff asso-
ciated with the quantum strategy always exceeds the av-
erage payoff associated with the defect strategy and this
results in a large fraction of players switching their strate-
gies from D → Q when the entanglement γ ∈ [γA, γB ].
For finite as well as limiting values of β, we observe a
vanishing average payoff at both the critical γ points,
i.e., γA and γB , and this signifies the change in phases
from defect to quantum and vice-versa at γA and γB ,
respectively. Here too, the values of γA,B , where we ob-
serve the phase transitions, depend on the payoffs B and
C via the relation: γA,B = tan−1

√
C/B, and both B as

well as C can induce phase transition(s).

E. Payoff capacity (℘C)

1. NEM

Using the given values of B = 5.0, C = 2.0 and
the expression of ℘NEM

C in Eq. (29), we plot the vari-
ation of ℘NEM

C with regard to changing values of γ and
they are shown in the insets of Figs. 7a, 7b. In the
β → ∞ (i.e., Z-N) limit, we observe two sharp dis-
continuous peaks at two values of ℘NEM

C , indicating
first-order phase transitions. To determine these criti-
cal γ values where ℘NEM

C → ∞, in the β → ∞ limit,
we equate 1

℘NEM
C

→ 0 (see, Eq. (29)) and we again

get the condition: 1
2 (B sin2 γ − C cos2 γ) = 0, and this

gives us the same expression for the critical γ’s, i.e.,
γA,B = tan−1

√
C/B. For B = 5.0 and C = 2.0, we

have γ = tan−1
√
2/5 = 0.5639 or 2.5777. Therefore, we

have γA = 0.5639 and γB = 2.5777 for the given values
of B = 5.0, C = 2.0 (see, Figs. 7a, 7b) and they are
independent of the noise β.

When β is finite, as γ ∈ [0, γA] gradually increases,
we find an initial drop in the ℘NEM

C value, reaching a
minimum at γ = γA. This is mainly attributed to the fact
that while γ approaches γ1, the players tend to switch
from defect to quantum, resulting in a lowering of the
average feasible payoffs accessible to the players, which
further leads to a minimal change in the average payoff
when there is a unit change in the noise. Then, as we
increase the value of γ from γA to γ = π

2 , ℘
NEM
C first

increases and then again it decreases since within this
range of γ, the players update their strategies from defect
to quantum, and hence we initially observe a significant
alteration in the payoff owing to a unit change in the
noise. However, when all players play quantum, then the
payoffs do not change significantly with regards to a unit
change in noise, resulting in a decrease of ℘NEM

C as γ
approaches π

2 . However, as we further increase the γ

value from π
2 to γB , ℘

NEM
C value again initially increases

and then decreases due to the same logic as mentioned
before, but now the strategy shift gets reversed, and the
players tend to shift from quantum to defect. When γ =
0 or π, a large fraction of players play defect.

In the Z-N limit, i.e., T → 0 (or, β → ∞), ℘NEM
C →

0, ∀ γ ̸= {γA, γB}, indicating two phase transition peaks
at γA and γB . In the Z-N limit, we see no variation
in a player’s payoff (i.e., the payoff becomes constant),
which leads to a vanishing payoff capacity except at the
two critical values of γA and γB , where we get vanishing
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For QuPD game ABM NEM

µ
β → 0 0, ∀ γ 0, ∀ γ

β → ∞
+1, ∀ γA < γ < γB

−1, ∀ γ < γA or γ > γB

+1, ∀ γA < γ < γB

−1, ∀ γ < γA or γ > γB

χγ
β → 0 (B+C)

2
sin (2γ), ∀ γ (B+C)

2
sin (2γ), ∀ γ

β → ∞ 0, ∀ γ ̸= {γA, γB} 0, ∀ γ ̸= {γA, γB}

cj
β → 0 0, ∀ γ 0, ∀ γ

β → ∞ 1, ∀ γ ̸= {γA, γB} 1, ∀ γ ̸= {γA, γB}

Λ
β → 0 0, ∀ γ 0, ∀ γ

β → ∞ |B sin2 γ−C cos2 γ|
2

, ∀ γ |B sin2 γ−C cos2 γ|
2

, ∀ γ

℘c
β → 0 (B sin2 γ−C cos2 γ)2

3
, ∀ γ (B sin2 γ−C cos2 γ)2

3
, ∀ γ

β → ∞ 0, ∀ γ ̸= {γA, γB} 0, ∀ γ ̸= {γA, γB}

TABLE I: QuPD game with reward R = (B− C) = 3.0, sucker’s payoff S = −C = −2.0, temptation
T = B = 5.0, punishment P = 0.0, inter-site distance j, γA = 0.5639, γB = 2.5777 and measure of noise β.

payoffs (see, Sec. IIID 3) and this indicates the change
in phases, i.e., from D → Q and vice-versa, resulting in
a small yet noticeable peak in the payoff capacity plot
(see, Fig. 7b). In the I-N limit, i.e., T → ∞ (or, β →
0), ℘NEM

C → (B sin2 γ−C cos2 γ)2

3 , ∀ γ, implying that the
players opt for their strategies randomly. For finite non-
zero β, ℘NEM

C is always +ve, indicating that ⟨Λ⟩NEM

changes at a faster rate with increasing noise.

2. ABM

Similar to ⟨Λ⟩ABM , to determine the payoff capacity
℘ABM
C , we start with the given values of T = 0 and

F = (B sin2 γ−C cos2 γ)
2 in Eq. (21), respectively. Similar

to the previous case, here also, we consider the modi-
fied energy matrix whose elements are the linear trans-
formations of the original energy matrix elements given
in Eq. (35) (see, the set of linear transformations given in
Eq. (17)). Both these matrices have a one-to-one corre-
spondence, and hence, the Nash equilibrium is preserved.
So, we have the modified energy matrix as,

∆′ =

[
− (B sin2 γ−C cos2 γ)

2 − (B sin2 γ−C cos2 γ)
2

(B sin2 γ−C cos2 γ)
2

(B sin2 γ−C cos2 γ)
2

]
. (37)

Both ∆ in Eq. (35) and ∆′ in Eq. (37) are equivalent
to each other. Now, by following the algorithm given
in Sec. II B 2, for B = 5.0 and C = 2.0, we determine
the ABM payoff capacity (℘ABM

C ), and its variation with
the entanglement γ is shown in Figs. 7a, 7b. We again
observe exactly the same results obtained for ℘ABM

C and
℘NEM
C in the finite and limiting values of β.

3. Analysis for payoff capacity

The analysis of the payoff capacity: ℘NEM
C as well as

℘ABM
C , will be done in this subsection. From Fig. 7,

for increasing values of β, we observe that for all γ →
{0, π

2 , π}, i.e., for both minimal (i.e., γ → 0 or π) and

maximal entanglement (i.e., γ → π
2 ), ℘

ABM
C = ℘NEM

C →
0, indicating no phase transition among the players for
a unit change in noise. This can also be verified from
the player’s payoff average result (see, Fig. 6) where we
see that for finite as well as limiting values of β, when
γ → {0, π

2 , π}, a large fraction of players choose either
defect (for γ → 0 or π) or quantum (for γ → π

2 ), and this
leads to a vanishing ℘C . Interestingly, in the Z-N (or,
β → ∞) limit, we observe two first-order phase transition
peaks, as shown in Fig. 7b, at the two critical values of
γ (i.e., at γA and γB) and this signifies the change in
phases from defect to quantum and vice-versa at γA and
γB , respectively. The values of γA,B , where we observe
the phase transitions, depend on the payoffs B and C via
the relation: γA,B = tan−1

√
C/B, and both B as well as

C can induce phase transition(s).

IV. CONCLUSION

In this paper, we sought to understand the emer-
gence of cooperative behaviour among an infinite num-
ber of players playing the quantum Prisoner’s dilemma
(QuPD) game by comparing a numerical technique, i.e.,
Agent-based modelling (ABM), with the analytical NEM
method. In the TL of the one-shot game setup, we
studied five different indicators, i.e., game magnetization
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(µ), entanglement susceptibility (χγ), correlation (cj),
player’s payoff average (⟨Λ⟩) and payoff capacity (℘C),
to understand the phase transitions occurring in QuPD.
Table-I summarises the outcomes for each of the five in-
dicators in the limiting β cases. For all the five indicators
in question, we observed that quantum (Q) remains the
dominant strategy for a large fraction of players within
a particular entanglement (γ) range (i.e., γ ∈ [γA, γB ]).
Within this γ-range, Q becomes the Nash equilibrium
strategy as well as the Pareto optimal strategy for the
players. For the payoff values B = 5.0 and C = 2.0, we
found critical γ values: γA = 0.5639 and γB = 2.5777,
within which all players play Q. For other values of γ,
i.e., γ ∈ [0, γA) ∪ (γB , π], a large fraction of players play
the classical defect (D). For the maximally entangled
case, i.e., γ = π/2, we observed that the player’s payoff
average (corresponding to all players playing Q) reached
its maximum value.

For all five indicators, i.e., µ, χγ , cj , ⟨Λ⟩ and ℘C , in the
TL, we observed an interesting phenomenon of two first-
order phase transitions, namely, the change of phases (or,
strategies) from D → Q (at entanglement value γA) and
Q → D (at entanglement value γB). This result is very
similar to the ones observed in Type-I superconductors,
at a certain critical temperature and in the absence of
an external field (see, Refs. [3, 21]). This also showcases
the fact that for QuPD, at finite entanglement γ and
zero noise, we observe a change in the Nash equilibrium
condition from All-D to All-Q and this is marked by a
first-order phase transition in all the five indicators. To
conclude, this paper is primarily focused on mapping a
one-shot QuPD game to the 1D-Ising chain and then
numerically studying the emergence of cooperative be-
haviour among an infinite number of players by involv-

ing five different indicators, all of which have a thermo-
dynamic analogue. This work can be further extended
to repeated QuPD games, involving unitary actions/op-

erators like Hadamard (Ĥ), etc. or other non-Unitary
operators (by using modified EWL protocol) [9, 26].
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Appendix A: Python code for determining
Entanglement susceptibility via ABM

Following the publication of this work, the code to de-
termine QuPD’s Entanglement susceptibility via ABM
will be made available.

Appendix B: Python code for determining
Correlation via ABM

Following the publication of this work, the code to
determine Correlation in QuPD via ABM will be made
available.
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