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The effect of Hubbard and Kondo interactions on the edge states in the half-filled Su-Schrieffer-
Heeger chain of electrons is investigated by studying the behaviour of charge quasiparticles using
Kumar representation and density matrix renormalization group method. For any finite dimerization
of hopping, by increasing the Hubbard interaction, the edge states are found to transmigrate from
the physical charge gap to a high energy gap through an intermediate phase without the edge states.
The extent of this phase with no edge states shrinks smoothly upon increasing the dimerization.
The transmigration of edge states from the charge gap to the high energy gap is also found to occur
with Kondo interaction, but through an intermediate phase which itself changes from having no
edge states for weak dimerization to having the edge states in the physical as well as the high energy
gaps coexisting from moderate to strong dimerization.

I. Introduction

The Su-Schrieffer-Heeger (SSH) model was introduced
historically to study solitons in conjugated polymers [1,
2]. It describes tight-binding electrons in a half-filled one-
dimensional lattice with dimerized hopping due to Peierls
distortion [3]. It is the simplest prototype of a topological
insulator with edge states in the bulk gap [4]. The subject
of topological insulators is fundamentally concerned with
studying band-structure topology and consequent edge
(surface) states with inherently non-interacting models.
An understanding of the effects of electron correlation
on the topological surface states is most desired. Various
studies find the electron-electron interaction to have a
detrimental effect on the topological surface states [5].
Here we look afresh at this problem for the SSH model.
In particular, we study the behaviour of edge states in the
half-filled SSH chain with two basic interactions, namely,
the Hubbard and Kondo interactions. The goal is to find
out how exactly the SSH edge states react to and evolve
with these common electronic interactions.

The half-filled SSH-Hubbard chain with dimerized
hopping and local repulsion presents a minimal setting
for the topological and correlation effects to compete. It
has been studied in a variety of ways [6–13], but a clear
picture of the edge state behaviour in the interaction-
dimerization plane is still found wanting. We relook at
this problem by investigating the properties of the charge
quasiparticles through an approach based on Kumar rep-
resentation [14]. This representation has been used fruit-
fully in studying interacting electron problems [15–22].
Here we use Kumar representation in conjunction with
DMRG (density matrix renormalization group) to work
out an insightful and detailed phase diagram describing
the edge state behaviour of the half-filled SSH-Hubbard
chain. We apply the same approach for the half-filled
SSH-Kondo chain in which the electrons interact with
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the localized quantum spin-1/2’s via antiferromagnetic
Kondo interaction. Incidentally, not much seems to be
known about the edge states in the SSH-Kondo chain
despite an interest in topological Kondo insulators.

We formulate the problem of charge quasiparticles for
the half-filled SSH-Hubbard and SSH-Kondo models in
Sec. II. It is used to study the behaviour of edge states
in the two models. The results of our calculations for
the SSH-Hubbard chain are presented in Sec. III. From
these calculations, we identify three distinct phases in
the interaction-dimerization plane. For a fixed dimer-
ization, the weakly correlated phase has two edge states
in the physical charge gap, but the strongly correlated
phase realizes the edge states in a high energy gap (rel-
evant to quarter or three-quarter filling). In between
these two phases lies an intermediate phase with no edge
states. The extent of this intermediate phase increases
monotonously upon decreasing the degree of dimeriza-
tion. Next, in Sec. IV, we present our findings for the
half-filled SSH-Kondo chain with a richer phase diagram.
Here too, in going from weak to strong interaction, the
edge states transmigrate from the physical to the higher
energy gap. But the intermediate phase in this case turns
out to be more subtle. It supports no edge states only for
weak dimerization. For moderate or strong dimerization,
it realizes the edge states in the charge gap and in the
high energy gap simultaneously. We conclude this work
with a summary in Sec. V.

II. Charge Dynamics of Interacting SSH Models

The model Hamiltonians of the SSH-Hubbard and
SSH-Kondo chains, denoted respectively as Ĥ1 and Ĥ2,
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are given below.

Ĥ1 = Ĥ0 + U

L∑
l=1

(
n̂l,↑ −

1

2

)(
n̂l,↓ −

1

2

)
(1a)

Ĥ2 = Ĥ0 +
J

2

L∑
l=1

S⃗l · τ⃗l (1b)

Here U and J are the Hubbard and Kondo interactions
respectively, whereas

Ĥ0 = −t

L−1∑
l=1

∑
s=↑,↓

[
1 + (−)lδ

] (
ĉ†l,sĉl+1,s + h.c.

)
(2)

is the SSH model with nearest-neighbour hopping on a
dimerized one-dimensional lattice of total L sites, with
0 < δ < 1 as the parameter of Peierls dimerization. The
Pauli operators τ⃗l in Ĥ2 describe the spin-1/2 local mo-

ments interacting on every site l with the electron spin S⃗l

given by Sz
l = (n̂l,↑− n̂l,↓)/2 and S+

l = ĉ†l,↑ĉl,↓. Since Ĥ1

and Ĥ2 are particle-hole symmetric, the zero chemical
potential sets the electron filling to half.

Electrons in Kumar representation [14] are described
canonically by spinless fermions and Pauli operators. On
one-dimensional bipartite lattice, the electron operators

in Kumar representation can be written as: ĉ†l,↑ = [f̂†
l +

(−)lf̂l]σ
+
l and ĉ†l,↓ = 1

2{[f̂
†
l −(−)lf̂l]− [f̂†

l +(−)lf̂l]σ
z
l }, in

terms of the spinless fermions f̂l, and Pauli operators σz
l

and σ±
l . Through the sign factor (−)l, we represent the

electrons on odd and even numbered sites in two different
but equivalent forms. The SSH model in this representa-
tion reads as:

Ĥ0 =− t

2

L−1∑
l=1

[
1 + (−)lδ

] {(
f̂†
l f̂l+1 + h.c.

)
(1 + σ⃗l · σ⃗l+1)

+(−)l
(
f̂†
l f̂

†
l+1 + h.c.

)
(1− σ⃗l · σ⃗l+1)

}
,

(3)

and the SSH-Hubbard and SSH-Kondo models take the
following new forms: Ĥ1 = Ĥ0 − U

2

∑L
l=1 f̂

†
l f̂l +

U
4 L and

Ĥ2 = Ĥ0 + J
4

∑L
l=1 f̂

†
l f̂l (σ⃗l · τ⃗l). In Kumar representa-

tion, they become the models of spinless ‘charge’ coupled
with ‘spins’. Self-consistent treatment of charge and spin
dynamics is one natural way to make progress in this
form, and it is known to work for the half-filled correlated
insulators [16, 19, 22]. Thus, we study the properties of
charge excitations of the SSH-Hubbard and SSH-Kondo
chains by the effective model of spinless fermions given
below; it is obtained by replacing the spin dependent op-
erators in Ĥ1 and Ĥ2 by their bulk expectation values.

Ĥc =− t

2

L−1∑
l=1

[
1 + (−)lδ

] { [
1 + ρ1,(−)l

]
f̂†
l f̂l+1+

(−)l
[
1− ρ1,(−)l

]
f̂†
l f̂

†
l+1 + h.c.

}
+ u

L∑
l=1

f̂†
l f̂l

(4)

Here u = −U/2 for the SSH-Hubbard model and Jρ0/4
for the SSH-Kondo model; ρ0 is the average of ⟨σ⃗l · τ⃗l⟩ in
the bulk. The ρ1,(−)l is called ρ1,− for odd l’s and ρ1,+
for even l’s, which are obtained respectively by averaging
⟨σ⃗l · σ⃗l+1⟩ over the odd or even bonds in the bulk.

This effective model of charge dynamics, Ĥc, needs
ρ1,± and ρ0 as inputs. Here we provide these inputs
not approximately by self-consistency, but accurately by
doing DMRG of the full SSH-Hubbard and SSH-Kondo
chains. This hybrid approach, through Ĥc with accurate
input fields ρ1,± and ρ0, enables us to study the precise
nature of charge quasiparticles as canonical fermions. We
perform DMRG calculations with our own code and also
with ITensor [23].
Energy dispersion of the charge quasiparticles in the

bulk can be calculated analytically for Ĥc by assuming
periodic boundary condition. By doing Fourier transfor-
mation, followed by Bogoliubov transformation, we can
exactly diagonalize Ĥc on a closed chain. The quasipar-
ticle dispersions, thus derived, can be written as:

Ek,± =

√
u2 + |αk|2 + |βk|2 ± 2

√
u2|βk|2 + {Re(α∗

kβk)}2

(5)
where αk = t[(1 + δ)(1 − ρ1+) + (1 − δ)(1 − ρ1−)e

i2k]/2
and βk = t[(1 + δ)(1 + ρ1+) + (1− δ)(1 + ρ1−)e

i2k]/2 for
k ∈ [−π

2 ,
π
2 ]. From this we get the bulk charge gap.

The edge state behaviour of the SSH-Hubbard and
SSH-Kondo chains is investigated by solving Eq. (4) for
the quasiparticle energies and wavefunctions by doing
Bogoliubov diagonalization numerically on open chain.
The findings from all these calculations are presented for
the half-filled SSH-Hubbard chain in Sec. III, and for the
half-filled SSH-Kondo chain in Sec. IV.

III. Edge States in SSH-Hubbard Chain

We investigate the behaviour of charge quasiparti-
cles of the half-filled SSH-Hubbard chain for different
strengths of dimerization, 0 < δ < 1, and Hubbard re-
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FIG. 1. Charge gap, ∆c, vs. Hubbard repulsion, U , for the
half-filled SSH-Hubbard chain with different dimerization, δ.
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FIG. 2. Evolution of the quasiparticle dispersions, Ek,± vs. k,
with interaction for a given δ in the half-filled SSH-Hubbard
chain. Note the transmigration of edge states (black dots) in
the charge gap for small U (first plot) to the high energy gap
for large U (third plot) through a stage with no edge states
(second plot) for intermediate U .

pulsion, U > 0. We put t = 1 in our calculations. For
different values of δ and U , we first calculate the param-
eters ρ1,± for the SSH-Hubbard chain by DMRG. We get
0 < ρ1,± < −3; for strong values of δ and U , ρ1,+ is
found to be closer to -3, and ρ1,− closer to 0. By putting

the ρ1,± obtained from DMRG into Ĥc, we calculate the
quasiparticle spectrum. It gives the charge gap, ∆c, pre-
sented in Fig. 1. In the limit of small Hubbard repul-
sion, ∆c correctly tends to 2tδ, the exact value for the
non-interacting SSH chain at half-filling; see the inset of
Fig. 1. On the other hand, for large U , the charge gap
tends to grow linearly with U , as expected. Clearly, this
effective model of charge quasiparticles works for the en-
tire range of U and δ.

Let us look at the quasiparticle dispersions in more
detail. See Fig. 2, where the bulk dispersions, Ek,± given
in Eq. 5, are plotted in the Brillouin zone, k ∈ [−π

2 ,
π
2 ],

for three different values of U for a fixed δ. The minimum
value of the lower energy dispersion Ek,− is the physical
charge gap, ∆c, presented in Fig. 1. On open chain, for
small U , we also get two edge states in the charge gap
for any finite δ. In the plot for U = 1.0 and δ = 0.3 in
Fig. 2, the two black dots at k = ±π

2 mark these edge
states. Notably, the edge states in the charge gap have
a non-zero energy, ε1, that increases monotonously with
U . Hence, upon increasing U , the edge states eventually
overcome the charge gap at a critical interaction Uc,1, and
are lost in the bulk; see Fig. 3. For a given δ, we get a
proportionately large Uc,1. However, this is not it. Upon
increasing U further, a second critical interaction Uc,2 is
encountered beyond which the edge states reappear but
in the high energy gap between Ek,− and Ek,+, and not
in the charge gap. In Fig. 2 for δ = 0.3, the plot for U = 9
shows the edge states in the high energy gap, whereas in
the plot for U = 4, the edges states are absent.

The wavefunctions of the edge states obtained on open
chain by numerical Bogoliubov diagonalization of Ĥc are
found to be clearly localized at the opposite ends of the
chain as shown in Fig. 4. A quasiparticle operator, η̂,

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.30 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.3

0.6

0.9

U /t

δ =0.1

0 1 2 3

U /t

δ =0.30 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t
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gap vs. U for the half-filled SSH-Hubbard chain. The point
where ε1 equals ∆c marks the critical point Uc,1 beyond which
the edge states in the charge gap cease to exist.0 10 20 30
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FIG. 4. The wavefunctions of the edge states for the half-
filled SSH-Hubbard chain for δ = 0.3 for a small and a large
value of U . In both cases, the wavefunctions decay with site
label, l, but with an oscillatory modulation corresponding to
wave-vector k = π

2
for small U (i.e. for the edge state in the

charge gap) and k = 0, π for large U (i.e. for the edge state
in the high energy gap).

relates to the spinless fermions, f̂l, via Bogoliubov trans-

formation: η̂ =
∑L

l=1(vlf̂l + wlf̂
†
l ), where the vectors v

and w, with respective components vl and wl, and nor-
malization |v|2+ |w|2 = 1, carry the spatial profile of the
quasiparticle. In Fig. 4, we plot the ‘wavefunctions’ v
and w of the edge states localized at the l = 1 end of the
chain for one small and one large value of U . Notably,
the spatial modulations present in these localized wave-
functions correspond to the wave-vector k = π

2 for the
edge state in the charge gap (small U case), and k = 0, π
for the edge states the high energy gap (large U case).
This is why we have marked the two kinds of edge states
in Fig. 2 at ±π

2 and 0, respectively.

Absence or presence of the localized states in the quasi-
particle spectrum can also be tracked by inverse partic-
ipation ratio (IPR), without having to look explicitly at
the spatial profile of every wavefunction. The IPR is
known to be zero for extended states, and non-zero for lo-
calized states. For a quasiparticle state given by vectors v

and w, it can be defined as: IPR =
∑L

l=1

(
|vl|4 + |wl|4

)
.

We calculate the IPR as a function of U/t for all the

eigenstates of Ĥc for a fixed δ on open chain. The
data of such a calculation for δ = 0.3 is presented in
Fig. 5. We find that, in the weakly as well as strongly
correlated regimes of U , only two eigenstates of Ĥc have
non-zero IPR indicating clearly the presence of two edge
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states. However, in the intermediate range of interaction,
Uc,1 < U < Uc,2, the IPR is found to be zero for all the
eigenstates implying no localized edge states.

These findings on the edge state behaviour of the half-
filled SSH-Hubbard chain can be neatly summarized in
the form of a phase diagram, Fig. 6, in the interaction-
dimerization plane. It has three phases, separated by two
boundaries given by Uc,1 and Uc,2. The weakly correlated
phase for U < Uc,1 realizes the edge states in the charge
gap at k = π

2 . There are no edge states in the interme-
diate phase given by Uc,1 < U < Uc,2. In the strongly
correlated phase for U > Uc,2, the edge states reappear,
but in the high energy gap at k = 0, and not in the
charge gap. Thus, for any given δ, by increasing U , the
edge states transmigrate from the physical charge gap to
the high energy gap via a phase with no edge states.

The edge states in the high energy gap are not relevant
to the half-filled case as they do not lie in the charge gap.
But they would be relevant for quarter or three-quarter
fillings, for which this high energy gap would assume
the role of physical charge gap. The dimerized Hubbard
chain at quarter filling has been studied in the past [24],
but with no concerns for the edge states, except in one re-
cent study [12]. Our study of the half-filled case finds the
edge states relevant for quarter or three-quarter filling as
the high energy edge states for strong correlations.

In the absence of dimerization, i.e. δ = 0, the inter-
mediate phase without edge states is of course the only
phase for all values of the Hubbard interaction. For the
extremely dimerized case of δ = 1, there is no interme-
diate phase, but only the two phases with edge states,
which meet at U/t = 6 exactly. In between these ex-
tremes, the width of the intermediate phase diminishes
monotonously with increasing dimerization. Overall, this
study presents a clear and interesting microscopic under-
standing of the edge states in the SSH-Hubbard chain.
Next we investigate the SSH-Kondo chain for the effect
of Kondo interaction on the edge states.

Uc,1 Uc,2

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

U /t

IP
R

δ =0.3

FIG. 5. Inverse participation ratio calculated as a function of
U/t for the eigenstates of Ĥc on open chain. Non-zero IPR
for small or large values of U indicates the presence of edge
states. Zero IPR in the middle for Uc,1 < U < Uc,2 implies
an absence of the edge states in the quasiparticle spectrum.

0 1 2 3 4 5 6 7 8
0.0
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0.4
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(k = ± π/2)
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in the high 
energy gap

FIG. 6. The phase diagram of the half-filled SSH-Hubbard
chain based on the edge state behaviour of the charge quasi-
particles. It has three phases demarcated by two boundaries,
Uc,1 and Uc,2. In the weakly correlated phase for U < Uc,1,
there exist two edge states in the charge gap at k = ±π/2. In
the intermediate phase for Uc,1 < U < Uc,2, the edge states
do not exist. In the strongly correlated phase for U > Uc,2,
the edge states exist in the high energy gap at k = 0.

IV. Edge States in SSH-Kondo Chain

Here too we first do the DMRG calculation of ρ1,± and

ρ0 [defined below Eq. (4)] for Ĥ2 with different values of
J > 0 and δ for t = 1, and then use them as input pa-
rameters in Ĥc to study the edge state behaviour of the
charge quasiparticles of the half-filled SSH-Kondo chain.
The charge gap, ∆c, obtained from this calculation is pre-
sented in Fig. 7. For vanishingly small J , the charge gap
correctly saturates to the value 2tδ of the non-interacting
SSH chain. For large J , it grows linearly with J . A kink
in the charge gap at an intermediate J signals a change
to the Kondo singlet dominated regime for large J .
By computing the quasiparticle spectrum of Ĥc on

open chain, we get the edge states in the charge gap for
small values of J . Upon increasing the Kondo interac-
tion, these edge states also transmigrate from the charge

δ=0.8
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0
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J /t
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FIG. 7. Charge gap, ∆c, vs. Kondo interaction, J , for the
half-filled SSH-Kondo chain with dimerization, δ.
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FIG. 8. Transmigration of the edge states with J in the half-filled SSH-Hubbard chain for δ = 0.05. At small J the edge states
(black dots) occur in the charge gap at k = π/2. By increasing J , these edge states first disappear, then reappear and also shift
gradually from π/2 towards 0 due to quasiparticle band inversion. By increasing J beyond the inversion point (Ji = 3.11), the
edge states again disappear, but then reappear in the high energy gap. Insets zoom in the details near the edge states.
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FIG. 9. Transmigration of the edge states with J in the half-filled SSH-Hubbard chain for δ = 0.3. Here in a small range of
intermediate J beyond the inversion point, the edge states in the charge and the high energy gaps coexist; see the plot for
J = 3.35. Outside this range, the edge states exist only in the charge gap for small J or in the high energy gap for large J .

gap to the high energy gap, but in a more complicated
manner than what we saw for the SSH-Hubbard chain.
Let us look closely at Figs. 8, 9 and 10 for the evolution
of the quasiparticle spectrum with J for three representa-
tive values of dimerization, δ = 0.05, 0.3 and 0.5, for the
different manners in which this transmigration happens.

For δ = 0.05, the edge states for weak Kondo inter-
action lie in the charge gap. With an increase in J ,
these edge states disappear over a small range of J , and
reappear again in the same charge gap. See the edge
state energy ε1 for J = 0.05 in Fig. 11; after entering
the bulk, it exits briefly and then reenters into the bulk.
This behaviour is also clear from the data in Fig. 13,
where the IPR for δ = 0.05 vanishes twice by increas-
ing J . By increasing J , the dispersion Ek− also under-
goes inversion by gradually shifting the charge gap from
k = π/2 to 0 [16, 22]. Beyond the inversion point, i.e.
for J > Ji = 3.11, Ek− is always minimum at k = 0, and
the edge states in the charge gap disappear again. But
for strong enough J , the edge states reappear in the high
energy gap. The plots in Fig. 8 present for δ = 0.05 this
sequence of changes in the quasiparticle spectrum.

For δ = 0.3, the edge states exhibit a transmigration
from the charge gap at small J to the high energy gap
for large J , but without ever completely disappearing in
between. Instead, we find that for a small range of J ≳ Ji
(for δ = 0.3, Ji = 3.11), the edge states in the charge gap
coexist with the edge states in the high energy gap. See
the plot for J = 3.35 in Fig. 9. Also see the plot for

δ = 0.3 in Fig. 13 wherein the IPR data from lower and
higher J sides overlap in small range of intermediate J .

The edge state behaviour of SSH-Kondo chain further
changes as we increase the degree of dimerization. From
the data for δ = 0.5 presented in Figs. 10 and 13, it is
clear that the edge states in the charge gap and in the
high energy gap coexist in two small regions, one on both
sides of the inversion point, Ji = 3.16. But there are two
notable differences. Firstly, the high energy edge states
below Ji are found to peak at the second (or second-last)
site, and not at the first (or the last) site. See in Fig. 12
the wavefunctions for different values of J in the charge
and high energy gaps. Secondly, the coexistence region
below Ji is surrounded on both sides by a phase with edge
states only in the charge gap. Whereas the coexistence
region for J > Ji is a region of overlap between two
phases, one of which for lower values of J has the edge
states only in the charge gap, while the other for larger
J ’s realizes the edge states only in the high energy gap.

The phase diagram in Fig. 14 sums up our findings
on the edge state behaviour of the SSH-Kondo chain.
It has four phases denoted by different background fill-
ings. The white region for small δ is the phase without
any edge states. The light gray region (extending from
small to intermediate J) to enclosed by the solid line is
the phase with two edge states in the charge gap. The
gray region (extending from intermediate to large J) to
bounded by the dashed line is the phase with two edge
states in the high energy gap. The line of black circles
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FIG. 10. Transmigration of the edge states with J in the half-filled SSH-Kondo chain for δ = 0.5. Here the edge states in the
charge gap and in the high energy gap coexist (as for J = 2.4 and 3.57) in small intervals of J on both sides of the inversion
point (Ji = 3.16). Otherwise, the edge states occur only in the charge gap for small J , or in the high energy gap for large J .

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3
0

0.2

0.4

0.6

0.8

1.

U /t

δ =0.1

Δc

ε1

0 1 2 3

U /t

δ =0.3

0 1 2 3 4
0

1

2

3

J /t

1.639 1.642
0.731

0.734

δ =0.05

0 1 2 3 4

J /t

δ =0.3

0 1 2 3 4

J /t

δ =0.5

0 1 2 3 4
0

1

2

3

J /t

1.639 1.642
0.731

0.734

δ =0.05

0 1 2 3 4

J /t

δ =0.3

0 1 2 3 4

J /t

δ =0.5

0 1 2 3 4
0

1

2

3

J /t

δ =0.05

0 1 2 3 4

J /t

δ =0.3

0 1 2 3 4

J /t

δ =0.5

0 1 2 3 4
0

1

2

3

J /t

δ =0.05

0 1 2 3 4

J /t

δ =0.3

0 1 2 3 4

J /t

δ =0.5

0 1 2 3 4
0

1

2

3

J /t

δ =0.05

0 1 2 3 4

J /t

δ =0.3

0 1 2 3 4

J /t

δ =0.5

0 1 2 3 4
0

1

2

3

J /t

δ =0.05

0 1 2 3 4

J /t

δ =0.3

0 1 2 3 4

J /t

δ =0.5

Δc

ε1

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Δc

ε1

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

FIG. 11. The edge state energy, ε1, and charge gap ∆c vs. J
for the half-filled SSH-Kondo chain.
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FIG. 12. Edge state wavefunctions for δ = 0.5 for a few
different strengths of the Kondo interaction.

mark the inversion transition. The hatched region to the
left of the inversion line denotes a phase with two edge
states in the charge gap and two in the high energy gap.
The dark gray region to right of the inversion transition
line denotes another phase with edge states coexisting in
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FIG. 13. Inverse participation ratio vs. J for the eigenstates
of Ĥc on open chain for the half-filled SSH-Kondo model.
Each data point represents two edges states. For δ = 0.05,
the IPR is zero in two intervals of J implying no edge states
therein. For δ = 0.3, the IPR is always non-zero implying
two edge states for small or large J , but four edge states in a
small region of intermediate J . It is likewise for δ = 0.5, but
with two such intermediate regions having four edge states.
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FIG. 14. The phase diagram of the half-filled SSH-Kondo
chain based on the edge state behaviour of the charge quasi-
particles. It has five phases, as labelled. The line of black
circles marks the inversion transition.

the charge gap and the high energy gap; it is sort of an
intersection of the phases on itself left and right.

The edge state behaviour of the SSH-Kondo chain can
be grouped into three qualitative cases with respect to
the degree of dimerization. For 0 < δ ≲ 0.1, i.e. the
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weakly dimerized case, the edge states in the charge gap
for small J transmigrate to the high energy gap for large
J , through an intermediate phase with no edge states.
This case is somewhat like the SSH-Hubbard chain. For
0.1 ≲ δ ≲ 0.36, i.e. the moderately dimerized case, the
edge states in the charge gap transmigrate to the high
energy gap with increasing J , but through an interme-
diate phase in which the edge states in both the gaps
coexist. In the strongly dimerized case for 0.36 ≲ δ < 1,
the transmigration of the edge states from the charge gap
to the high energy gap happens through two such inter-
mediate phases with edge states in both the energy gaps.
Clearly the SSH-Kondo chain exhibits a rich edge state
behaviour in the interaction-dimerization plane.

V. Summary

This study of the half-filled SSH-Hubbard and SSH-
Kondo chains presents an insightful understanding of the
behaviour of the edge states with respect to interaction
and dimerization. Its key finding is that the edge states

which for weak correlations exist in the physical charge
gap invariably transmigrate to the high energy gap for
strong correlations. For the SSH-Hubbard chain, this
transmigration of edges states with interaction happens
through a simple intermediate phase with no edge states,
in the same qualitative manner for different degrees of
dimerization. For the SSH-Kondo chain, however, the
intermediate phase changes with dimerization from hav-
ing no edge states for weakly dimerized cases to realizing
the edge states simultaneously in the physical as well as
the high energy gap for moderate to strong dimeriza-
tion. It would be interesting to explore this interaction
driven transmigration of edge states in the wider con-
text of topological insulators beyond the interacting SSH
model.
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