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Abstract

This work presents an algorithm for calculating high temperature series expansions
(HTSE) of Heisenberg spin models with spin S = 1/2 in the thermodynamic limit. This
algorithm accounts for the presence of a magnetic field. The paper begins with a compre-
hensive introduction to HTSE and then focuses on identifying the bottlenecks that limit
the computation of higher order coefficients. HTSE calculations involve two key steps:
graph enumeration on the lattice and trace calculations for each graph. The introduction
of a non-zero magnetic field adds complexity to the expansion because previously irrele-
vant graphs must now be considered: bridged graphs. We present an efficient method to
deduce the contribution of these graphs from the contribution of sub-graphs, that drasti-
cally reduces the time of calculation for the last order coefficient (in practice increasing
by one the order of the series at almost no cost). Previous articles of the authors have
utilized HTSE calculations based on this algorithm, but without providing detailed ex-
planations. The complete algorithm is publicly available, as well as the series on many
lattice and for various interactions.
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1 Introduction

In atomic crystals described by the Hubbard model [1, 2], the Mott insulating phase arises
when strong on-site repulsion (Coulomb interactions) dominates. In this phase, the electronic
degree of freedom is limited to spin, and spin models are an effective description. However,
even for spin interactions as simple as the Heisenberg ones, we still do not get a solvable model
in presence of frustration (competing interactions).

Frustrated spin models are realized in numerous new materials and exhibit various uncon-
ventional phases. Understanding these systems requires increasingly sophisticated methods,
including variational methods, mean-field methods, tensor-product numerical methods, and
renormalization group methods, among others. However, high temperature series expansions
(HTSE) offer distinct advantages. They are insensitive to frustration and directly address the
thermodynamic limit without the need for finite-size scaling.

HTSE provides valuable insights into the high temperature regime, where temperatures
exceed the typical interaction strength. Furthermore, extrapolation techniques have been de-
veloped to extend the analysis to lower temperatures, necessitating the inclusion of the largest
possible number of coefficients in the series.

2



SciPost Physics Submission

This article introduces an algorithm designed to calculate the series efficiently for a Heisen-
berg model with S = 1/2 spins, in the presence of a magnetic field B. Sec. 2 is devoted to an
extensive presentation of the HTSE method, and of the difficulty to get expansion with a mag-
netic field due to the contribution of clusters with bridges. Sec. 3 presents an algorithm to
calculate the contribution of these clusters, which is used in sec. 4 to calculate contribution of
trees. Sec. 5 is the discussion and conclusion. Along this article, some proofs have been kept
for Appendices C and D to lighten the article, together with a recall of some vocabulary on
graphs in A and of cumulant properties in B.

2 High temperature series expansions (HTSE) for Heisenberg S = 1/2
models

We consider a periodic lattice of the spin model whose dimension is free (2 dimensions: square,
triangular, honeycomb, kagome..., 3 dimensions: cubic, face centered cubic, pyrochlore...),
and the interactions are short-range (in practice, first, second, third neighbors). 2-spin or
multispin interactions are possible, even if only Heisenberg interactions are considered in the
following. Any type of spin can be chosen (classical, or any half-integer quantum value [3]),
but we focus on S = 1/2 later on.

For any quantity A(β) = ∑∞k=0 akβ
k , only truncated HTSE are generally accessible, with a

finite number of known coefficients ak≤n (except when the model is analytically solvable, as
for example bidimensional Ising models without magnetic field). Part of the job is to exploit
these coefficients to get the largest amount of information (extrapolation down to the lowest
temperature [4–6], determination of the exponents of phase transitions if applicable [7–9]).
Here, we concentrate on the initial step, consisting in getting the largest possible number
of coefficients, which itself splits in two sub-steps (detailed below): (i) enumerating simple
connected graphs G on the lattice, (ii) calculating their contribution F(G) through operator
traces (averages at infinite temperatures).

The complexity depends on the model: lattice geometry, spin length and interaction type.
The lattice (and the interaction range) determines the evolution of the graph number with the
order, whereas the spin type (quantum, classical) and interactions (Dzyaloshinskii-Moriya,
anisotropic, cyclic... ) are related to the complexity to calculate averages (traces) for a given
graph. A large number of lattices and interactions have been considered( [6, 10–13]), but
the magnetic field B was rarely included, except at first order (where it gives the magnetic
susceptibility at zero field).

Nevertheless, B is an experimentally adjustable parameter that has been known to induce
various unexpected phenomena such as magnetization plateaus and phase transitions. Recent
advances have even allowed the generation of extreme magnetic fields reaching up to 140T
[14], thus expanding the possibilities for material investigation. Furthermore, when fitting the
model parameters, it is common practice to vary the temperature T . However, the constraints
on parameter fitting could be significantly enhanced by considering the (T, B) plane instead.
This highlights the importance of accessing HTSE with non-zero magnetic fields.

The system is submitted to a magnetic field B = Bez along an arbitrary direction z. We
define h̃ = gµBB where g is the g-factor and µB the Bohr magneton. For a Hamiltonian
that preserves the total spin, the number of (connected) graphs contributing to the HTSE
considerably increases when B is switched on, thus reducing the reachable expansion order.
Concretely, graphs with bridges or leaves (see App. A for definitions) are the majority. At
order equal to their number of links, they don’t contribute when h̃ = 0. For h̃ ≠ 0, they do. We
present here an algorithm that reduces the complexity of the trace calculation on these graphs
in the case of a quantum S = 1/2 Heisenberg model, such that it allows the calculation of one
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supplementary order as compared with the naive algorithm (Note that each additional order
needs an order of magnitude more computational time).

In the first subsection (Sec. 2.1), we define the model and explain how to get series expan-
sion on a finite cluster. In the next one (Sec. 2.2), we switch to the thermodynamic limit, using
contributions of finite graphs. Finally, in Sec. 2.4 and 2.5, we discuss the complexity of the
two main steps of the expansion (graph enumeration and trace calculation) and explain why
bridged graphs, and among them, trees, have the largest contribution to the trace calculation
time.

2.1 Definitions

As a first step, we consider a simple connected sub-graph G of the infinite lattice, with Ns sites
and Nl = #G links (denoted as its cardinality, since for us a graph is a set of links) (see App. A
for the definition of simple graphs, multi-graphs, and connected graphs). The Hamiltonian Ĥ
of the Heisenberg model on graph G is:

Ĥ = −∑
l∈G

2 J̃l Ŝl1 ⋅ Ŝl2 − h̃ ∑
i, site of G

Ŝz
i . (1)

The first sum is over links l = l1 ↔ l2 of G, between sites l1 and l2, whereas the second sum
is on sites. J̃l gives the strength of the Heisenberg interaction of link l. Note the conventional
choice of a positive J̃l for ferromagnetic interactions and of a factor 2, whose reason will
become clear very soon. From now on, we only consider quantum S = 1/2 spins, and the
scalar product of the spin operator vectors Ŝli=1,2 can thus be expressed in terms of permutation
operators:

Ŝl1 ⋅ Ŝl2 =
P̂l

2
−

1

4
. (2)

where P̂l exchanges the spin states on the two sites of link l. Up to an unimportant additive
constant J̃l/2 for each link term of Ĥ , the Hamiltonian on G now reads:

−β Ĥ =∑
l

Jl P̂l

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
ĤJ

+ h∑
i

Ŝz
i

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
ĤB

, (3)

with β = 1
kB T , the inverse temperature, kB the Boltzmann constant and

Jl = β J̃l , h = β h̃ = βgµBB. (4)

We are interested in the infinite lattice properties, but as an intermediate step, we calculate
the logarithm of the partition function Z on G, that we first expand here in β (called in the
following the fixed-B expansion):

ln Z(β) = ln (tr e−β Ĥ) = ln
⎛

⎝

tr e−β Ĥ

tr(̂I)
2Ns
⎞

⎠

= ln(2Ns ) + ln(1 +
∞
∑
n=1

⟨(−β Ĥ)n⟩

n!
) (5)

= Ns ln 2 +
∞
∑
n=1

[(−β Ĥ)(n)]

n!
. (6)

The trace, tr, is taken over states of an orthonormal basis B = {∣φi⟩ , i = 1 . . . 2Ns} of the
spin configurations. Î is the identity operator. The averages ⟨.⟩ of Eq. (5) are defined as:

4



SciPost Physics Submission

⟨Â⟩ = trÂ
trÎ
=

1
2Ns ∑

2Ns

i=1 ⟨φi ∣Â∣φi⟩. Cumulant of order n of −β Ĥ is denoted [(−β Ĥ)(n)] or

[−β Ĥ ,−β Ĥ , . . . ,−β Ĥ] to be distinguished from [(−β Ĥ)n] which is a first order cumulant
equal to ⟨(−β Ĥ)n⟩, the moment of order n of −β Ĥ . App. B gives a mathematical definition
and some relations between averages, moments and cumulants. Expanding (−β Ĥ)n using
Eq. (3) gives a sum of terms, each of them corresponding to a list of nl undirected links and
ns sites of G, with nl + ns = n.

The aforementioned expansion suffers from the drawback of combining both links and
sites, as both Jl and h are proportional to β . To overcome this issue and obtain an expansion
solely involving clusters of links, we perform an exact evaluation of the contribution of ĤB and
exclusively expand in powers of ĤJ .

From a thermodynamic standpoint, this corresponds to a transformation of the ensemble
(β , B) to (β , x = βB), where x is a new thermodynamic variable fixed in the β -expansion
[15]. We denote Ŝz = ∑i Ŝz

i the total magnetization along the z direction. Additionally, we
define several variables associated to h for future use:

Y = e
h
2 + e−

h
2 = 2 cosh

h

2
, θ = tanh

h

2
, (7)

θ+ =
1 + θ

2
=

eh/2

Y
, θ− =

1 − θ

2
=

e−h/2

Y
(8)

Averages and cumulants are now taken with respect to a different measure (proportional to
ehŜz for each element of a basis of Ŝz-eigenvectors). This alternative expansion of ln Z(β) in
powers of β will be referred to as the fixed-θ expansion:

ln Z(β) = ln (tr e−β Ĥ) = ln
⎛
⎜
⎝

tr (eĤJ ehŜz
)

tr(ehŜz
)

Y Ns
⎞
⎟
⎠

= ln (Y Ns ) + ln
⎛

⎝
1 +

∞
∑
n=1

⟪Ĥn
J ⟫

n!

⎞

⎠
(9)

= Ns ln Y +
∞
∑
n=1

JĤ(n)J K

n!
. (10)

where tr(ehŜz
) = Y Ns . The obtained formulae are similar to those of the uniform mea-

sure, (5) and (6). With this non-uniform measure, the average of an operator Â is denoted:

⟪Â⟫ = tr(ÂehŜz )
tr(ehŜz )

. The moment and cumulant of a multiset (or list) B̂ of operators commuting

with Ŝz are denoted ⟪B̂⟫ and JB̂K. Only lists of n links now appear in the term of order n
of the β -expansion (such expansions were previously derived in [16] and discussed, but not
used, in [17]).

We define:

g(G) =
tr (eĤJ ehŜz

)

Y Ns
=
∞
∑
n=0

⟪Ĥn
J ⟫

n!
= ∑

U∈NG

JU

U!
⟪U⟫ (11)

g(G) = ln g(G) =
∞
∑
n=1

JĤ(n)J K

n!
= ∑

U∈NG

JU

U!
JUK (12)

U ∈ NG is a mapping of G into N. Hence U is also a multigraph whose support is a part of G
(or a multiset of elements of G) in which a link l has a multiplicity U(l). Numerator JU is

∏l∈G JU(l)
l

. Denominator U! is ∏l∈G U(l)!. Moment ⟪U⟫ and cumulant JUK are defined and
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behave as described in App. B as long as U is a multiset of operators commuting with Ŝz (in
⟪U⟫ and JUK a link l ∈ U is identified to P̂l). Note that ⟪∅⟫=1 and J∅K=0, and for a single
link l:

⟪l⟫ = JlK =
tr(P̂lehŜz)

Y2
= θ 2
+ + θ

2
− =

1 + θ 2

2
. (13)

More generally, for any multigraph U , moment ⟪U⟫ and cumulant JUK are even polynomials
in θ with d○

θ
⟪U⟫ ≤ Ns(U) and d○

θ
JUK ≤ 2#U , see App. D.1. The average of the product of

independent variables is the product of their averages. Hence for a not connected multigraph
U with connected components labelled U1, U2..., we have ⟪U⟫ = ∏i⟪Ui⟫ and JUK = 0, see
App. B.5.
⟪U⟫ and JUK are in fact independent of the graph G for any multi-graph U of the infinite

lattice: they are the same for two different simple graphs G1 and G2 including the support
of U . Thus they are well defined in the thermodynamic limit, and can be evaluated on the
smallest possible graph G: the support of U .

2.2 From a finite graph to the infinite lattice

We now discuss the thermodynamic limit, by first taking a finite periodic lattice L of Nuc unit
cells, each containing one or several sites. Series expansions of the previous subsection are
valid on L, and each term of order n of Eq. (10) is a sum over connected multi-graph U of L
with n links. A multi-graph U without topologically non trivial loops is by definition equivalent
to Nuc graphs up to a translation on L. If nm is the minimal number of links of a topologically
non trivial loop on L, we can group multi-graphs into equivalence classes of Nuc elements
up to order nm − 1. The HTSE of ln Z(β)/Nuc truncated at some order n thus does no more
depend on the lattice size when L is large enough: it possesses a well defined HTSE in the
thermodynamic limit.

To determine this expansion, we list translation-equivalent-classes of connected simple
graphs G on the infinite lattice. For a representative of each class, we then determine the
contribution F(G), sum of the contributions of all multi-graphs U whose support is exactly G:

F(G) = ∑
U∈NG

>0

JUJUK
U!

(14)

The classes of translation-equivalent graphs can still be regrouped in larger classes of topo-
logically equivalent (isomorphic) graphs G, carefully keeping track of the weak embedding
constant of each class w(G) (in other words, the occurence number per unit cell).

For models with several types of links, graph isomorphisms must preserve Jl (type of link)
in order to ensure that JU and F(G) are defined. In other words, several G differing only by

their Jl may coexist. But then JG1K/JG1 = JG2K/JG2 . Hence F(G2) = JG2 F(G1)/JG1 + o(βn)

if Nl = n.
To simplify the notations in this presentation, only one type of J is used in the following.

Anyway we need w(G) and F(G) for each class G, that we inject in the so-called linked-cluster
expansion of g(L) in the thermodynamic limit:

g∞ =∑
G

w(G)F(G). (15)

F(G) can be deduced from the inclusion-exclusion formula, valid in any linked cluster expan-
sion (deduced from Eqs. (12) and (14)):

F(G) = g(G) − ∑
G′⊊G

F(G′). (16)

6
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Such linked cluster expansions are used in various contexts, for example, in the Numerical
Linked Cluster Expansions [18–20], where the F(G) are calculated exactly for all G-classes up
to some cluster size and the free energy is calculated via a truncation in the cluster size. In
HTSE, the F(G)-HTSE is truncated at order n in β .

Note that F(G) only contributes at orders n ≥ #G. Thus, to get the HTSE up to some order
n, we need to enumerate all simple connected graphs G with #G ≤ n (Sec. 2.4), and for each
of them, calculate F(G) up to order n (Sec. 2.5), trying in each step to identify the most time
consuming step and to optimize it.

2.3 Integerness during calculation and storage of results

The coefficients of the polynomials in {J}’s appearing in g , g and F(G) are themselves poly-
nomials in θ 2 with rational number coefficients. We discuss here how they are defined and
can be stored using only integers.

Eq. (D.1) shows that for any simple graph G and any U ∈ NG , the coefficient of JU in
⟪Ĥ#U⟫ is a linear combination with integer coefficients of θm′

+ θ
m′′
− , m′, m′′ ∈ Z. In other

words, it belongs to the set of polynomials Z[θ+,θ−]. But it is symmetric in θ+ and θ− and
hence belongs to Z[θ+ + θ−,θ+θ−] = Z[1,θ+θ−] = Z[θ+θ−]. Furthermore its degree in θ is not
greater than 2#U or than Ns , thus it belongs to Zmin(#U,⌊Ns /2⌋)[θ+θ−]. Hence according to
Eq. (B.15) coefficient of JU within JĤ#U

J K belongs to Z#U[θ+θ−], as well as coefficients within
(#U)!F(G) and even within (#U)!(1 − g(G))i/i, despite division by i, because it is the sum
of all products of i moments in Eq. (B.15). This means that if we multiply any term of order
k by k!, its coefficient will belong to Zk[θ+θ−], and calculations will involve only integers.

If all Jl are different then coefficient of JU within ⟪Ĥ#U
J ⟫ is ⟪U⟫(#U)!/U! ∈ Z#U[θ+θ−].

This proves that ⟪U⟫ is in Z#U[θ+θ−]U!/(#U)! as well as JUK.
We can also choose to calculate expansions of g , g and F(G)with polynomials of θ 2, since

θ+θ− = (1−θ 2)/4 and Zk[θ+θ−] ⊂ Zk[θ
2]/4k . Then coefficients will somewhat be higher, with

bigger denominators 4k k! instead of k!. But more of them will be zeros when for instance JGK
is expected to be divisible by θ l because G has l leaves. Note

(J i a

i!4i
)(J j b

j!4 j
) = J i+ j(

i + j

i
)

ab

(i + j)!4i+ j
.

So multiplication of the two rational numbers a/i!4i and b/ j!4 j is replaced by a multiplication
of three integers a, b and (i+ j

i ). If all Jl are not equal, denominator of coefficient of JU can
be U!4#U rather than (#U)!4#U .

To store in a uniform way the series, we define the coefficients of a HTSE by:

ln Z(β ,θ )

Ns
= ln Y +

1

nuc

n

∑
k=1

dk(θ )β
k + O(βn+1), (17)

with nuc the number of sites in a unit cell, and coefficients dk that are even polynomials of θ :

dk(θ ) =
k

∑
r=0

Dk,r

2k k!
θ 2r , (18)

where Dn,k are themselves integer coefficients polynomials of the Hamiltonian parameters
(J̃1, J̃2... appearing in Eq. 1). In practice, the files generated by our code [21], and publicly
available [22], store the Dk,r coefficients.
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Figure 1: Enumeration of graphs on a lattice: example of the square lattice. We
depart from each link in the unit cell. In the red-circled graphs, the newly added link
(in cyan) has not the smallest possible label. Such a graph has no children and only
its double with the smallest label, child of another parent, is allowed to breed. The
green circle highlights a graph, which is kept, although the label of its new link is 2
instead of 1. But the link of label 1 is a bridge, which cannot have been added to a
parent (an orphan link). On the right are recapitulated the topological graphs and
their occurence numbers.

2.4 Enumeration of simple connected graphs on a periodic lattice

This part of the calculation consists in finding all relevant simple connected graphs G (those
appearing on the considered lattice) and calculating their weight w(G). This is not the main
subject of this article, but for completeness, we present here an algorithm that do the job and
has the advantage of being parallelizable, as well as two ways of sparing time in some specific
situations. It is mathematically described in [23]. A directed tree is constructed, whose vertices
are graphs on the lattice (in fact, classes of translation-equivalent graphs). Graphs of the n’th
generation have n links, and each branch of the tree can be explored independently, as we are
able to decide if we keep or not a vertex without exploring the tree (see Fig. 1). The root of
the tree is the empty graph. The first generation vertices are all the one-link graphs contained
in a unit cell (translationally inequivalent). The next generations are constructed as follows:

• For a graph G with n−1 links embedded on the lattice, we consider all the simple graphs
with n links obtained by adding an adjacent link to G.

• We want to keep only one among all identical (up to a translation) graphs obtained from
all G’s. For this, the n links of each child G′ are labelled in a way that only depends on
G′ and not of its parent (ordering the coordinates of its sites for example). Thus, for
each copy, the label of the new link is different. Note that bridges of G′ are orphan links,
meaning that they and they alone cannot be new links. We keep G′ only if the new link
has the smallest label among the non-orphan links.

• For each graph G (each vertex of the tree), a canonical label G is calculated, such that
two isomorphic graphs (identical up to a vertex renumbering) have the same canonical
label. It uses the McKay’s algorithm [24,25]. All graph isomorphism classes are collected
and their occurrence number w(G) (also called the lattice constant, or weak embedding
constant) is counted.

8
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Note that different methods, said more efficient but not implemented in our code, are de-
scribed in the literature [13,26]. They consist roughly in first generating all topological classes
of graphs (this step itself can be realized in different ways), and secondly in counting their em-
bedding number on the lattice. It avoids the costly step of the canonical label calculation, that
is however reduced in our algorithm using the two following tricks.

2.4.1 Avoid the canonical labelling of graphs with leaves

The calculation of canonical labels in the last step of the graph enumeration is expensive.
When all sites of the lattice have the same number of neighbors z, we can spare time by
avoiding to calculate it for graphs with leaves (see App. A for the definition of a leaf), as
the multiplicity of their topological graph can be deduced as follows. Let G be a topological
connected simple graph containing a leaf l = v ↔ w with d○v > d○w = 1. Let na(G) be the
number of automorphisms of G, i.e. the number of permutations of sites of G, which map links
on links. This number is a by-product of McKay’s algorithm. Let ne(G) = na(G)w(G). This
is the number of embeddings (injective mappings of sites and links) of G into the lattice (per
unit cell). In other words w(G) counts subgraphs of lattice isomorphic to G, whereas ne(G)
counts isomorphisms between G and subgraphs of the lattice. w(G) is deduced from:

ne(G) = (z − d○v + 1)ne(G ∖ l) − ∑

s site of G
s≠v, v↔s ∉G

ne(G ∪ {v ↔ s} ∖ l), (19)

requiring only the calculation of na for the graphs appearing in the formula. Needed w are
known if we calculate w(G) in ascending order of Ns(G).

Example: We apply formula (19) to calculate w( • • • • ) on a triangular lattice. We know
na( • • • ) = na( • • • • ) = 2, na(

•
• • ) = 6, w( • • • ) = 3+6+6 = 15 (for links respectively

at 0, 60 and at 120 degrees on the lattice) and w( •
• • ) = 2.

ne( • • • • ) = (6 − 2 + 1)ne( • • • ) − ne(
•

• • )

⇒w( • • • • ) = 69.

Remark: The time saved this way is important, as graphs with leaves are the majority when
the number of links and the lattice dimensionality increases. In the case of a d−dimensional
hypercubic lattice [27], w(G) = O((2d − 1)Nl) for a tree of Nl bonds in the limit of large d,
whereas a topological graph with a loop of 2s sites has w(G) = O((2d − 1)Nl−s).

When adding a link to a connected graph, no more than two leaves may disappear. Hence
we can prune a graph G with more than 2(n −#G) leaves.

2.4.2 Expansion in the magnetic field B: non-contributing graphs

We have seen in Sec. 2.1 an elegant way to get HTSEs which include all orders in the magnetic
field B, through expansion coefficients that are even polynomials in θ (fixed-θ expansion).
However, most physical studies are performed at fixed B, requiring either to expand the fixed-θ
expansion coefficients of Eq. (10) in powers ofβ , or to directly work with the fixed-B expansion
of Eq. (6). Final coefficients are of course the same in both cases, and coefficients in β l are
even polynomials in B of maximal order l.

To get the fixed-B expansion of F(G) for a graph G up to order βn from the fixed-θ expan-
sion, the polynomial coefficient Pl(θ ) of the β l term of the latter can be truncated at order
k = n − l in θ , but it generally does not bring a lot, except in some cases where Pl(θ ) is di-
visible by θ k+1. Then, the graph G can simply be discarded. Here are some simple situations
where it occurs:

9
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1. For B = 0, a graph G with k links that are either bridges or leaves can be discarded if
#G + k > n.

2. A graph G with k big leaves (see App. A) does not contribute to the fixed-B expansion
at order n if #G + k > n.

The proofs are in App. C (they use some formulae derived in the following sections), together
with other, better criteria.

2.5 Complexity and bottleneck of HTSE

We now evaluate the complexity of calculating F(G) up to order n. In the sequel Jl ’s may all
have the same value, or several values (for example first and second neighbor interactions).
But for simplicity, time complexity estimates will all assume Jls are all equal. For instance a
polynomial of degree n in θ , J1, J2, . . . , Jk has O(n1+k) coefficients. Multiplication of two
such polynomials takes time O(n2+2k). In the sequel, this estimate will always be O(n4).
The calculation of F(G) divides in three successive steps, whose complexity is given here and
proved in App. D:

• Get the averages ⟪Ĥk
J ⟫ for k ≤ n, in a time O(4Ns nNl/

√
Ns). According to Eq. (11) we

have g(G) at order n.

• Calculate g(G) as ln g(G) at order n in a time O(n4Ns),

• From g(G) and F(G′) for G′ ⊊ G, calculate F(G) using Eq. (16) in a time O(2Nl n2), or
better in a time O(N2

l n2) as explained in App. D.1.

Finally, the bottleneck to get F(G) at order n among the three steps listed above is the
calculation of averages in O(4Ns nNl/

√
Ns). Then, at fixed n, the most greedy graphs are

those with the largest Ns . As the considered graphs are connected, Ns ≤ 1 + Nl ≤ n + 1. For
n fixed, the way to maximize Ns is to choose Nl = n and to forbid loops (Ns = 1 + Nl), which
results in graphs that are trees with n links.

The next section describes a way to calculate F(G) in a considerably faster time O(n2), for
bridged graphs with Nl = n links (which include all trees except the star graph Tn of Fig. 2),
assuming that we know F(G′) for any simple graph G′ ⊊ G.

3 O(n2
) complexity for n links bridged graphs and order n expan-

sion

Let G be a simple connected graph with Nl = #G links. According to Eq. (14), F(G) = JGJGK+o(JG)

and cumulant JGK is derived from moments of subgraphs of G by

JGK = ∑
q∈Q(G)

g0(#q) ∏
G′∈q
⟪G′⟫, (20)

g0(i) = (−1)
i−1(i − 1)! = (−1)(−2)⋯(1 − i), (21)

where Q(G) is the set of partitions of G and #q is the cardinal of the partition q . This equation
is proved in appendix (B) as Eq. (B.13).

In this section, we demonstrate that if G is a bridged graph (an undirected graph that can
be split in two connected components by removing a single link), F(G) can be calculated at
order n = #G in J , in time O(n2), if we know F(G′) for any connected subgraph G′ ⊊ G.

We choose a bridge of G that we denote u ↔ v . Let U and V be the two connected
components of G ∖ {u ↔ v}. We assume that u is a site of U and v is a site of V .

10
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We now prove the first main result of this article:

JGK = JU, u ↔ v, VK =
2

θ 2
JU, u ↔ vKJu ↔ v, VK, (22)

But we will first prove forecoming Eq. (26). Operator P̂u↔v exchanges spins of sites u and v
of link u ↔ v . So

P̂u↔v = p̂++u p̂++v + p̂+−u p̂−+v + p̂−+u p̂+−v + p̂−−u p̂−−v , (23)

where operator p̂εε
′

s transforms state ε of spin Sz
s into state ε′. We define

JUK+u = JU, p̂++u K, JUK−u = JU, p̂−−u K (24)

The trace of an operator which decreases total spin Sz on the sites of U , is zero. Hence
⟪G′, p̂+−u p̂−+v ⟫ = 0 for any subgraph G′ ⊂ U ∪ V . Hence JU, p̂+−u p̂−+v , VK = 0. When com-
puting moment or cumulant of a graph G with a leaf (U or V being empty) or bridge u ↔ v
we can replace P̂u↔v by p̂++u p̂++v + p̂−−u p̂−−v . Sum of both projections on the possible states of
a spin is identity, which is independent with any operator. Hence if U is a non-empty graph:
JUK+u + JUK−u = JU, p̂++u K + JU, p̂−−u K = JU, p̂++u + p̂−−u K = JU, ÎK = 0. For an empty graph:
J∅K+u = Jp̂++u K = ⟪p̂++u ⟫ = θ+ i.e. probability for a isolated spin to be in + state.

U ≠ ∅⇒ JUK−u = −JUK+u , J∅K+u = θ+, J∅K−u = θ−. (25)

Links in U and p̂εεu operate on spins of sites of U . These operators commute with those of V .
With equation Eq. (B.19) and linearity of cumulants we have

JU, u ↔ v, VK = JU, ∑
ε∈{+,−}

p̂εεu p̂εεv , VK

= ∑
ε∈{+,−}

JU, p̂εεu KJp̂εεv , VK

= JUK+u JVK+v + JUK−u JVK−v . (26)

With an empty V , this equation becomes

JU, u ↔ vK = JUK+u θ+ + JUK−u θ− = JUK+u (θ+ − θ−) = JUK+u θ . (27)

Similarly with an empty U it becomes Ju ↔ v, VK = JVK+v θ . Otherwise it becomes

JGK = JUK+u JVK+v − JUK+u (−JVK+v ) = 2JUK+u JVK+v . (28)

Elimination of JUK+u and JVK+v between these three equations gives Eq. (22).
Search for bridge u ↔ v and subgraphs U and V in graph G takes time O(n). Re-

trieval of JU, u ↔ vK as coefficient of JU Ju↔v in F(U ∪ {u ↔ v}) takes time O(n), since
JU, u ↔ vK ∈ Q1+Nl(U)[θ

2]. Multiplication of polynomials JU, u ↔ vK and Ju ↔ v, VK/θ 2

takes time O(n2). So overall time to compute JGK is O(n2).

4 Trees with n links

We show in this section the second main result of this article: for a tree T with Nl ≥ 2:

JTK =
1

2
∏

s ∈ sites of T
2Cd○s , (29)

11
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Figure 2: Left: star graph Tk . Right: graph A used in Sec.4, where the Ai subgraphs
are non-empty.

where d○s is the number of links departing from site s , and Ck is recursively defined by:

C1 =
θ

2
, Ck+1 =

dCk

dh
=

1 − θ 2

2

dCk

dθ
. (30)

Value of C1 is given by equations (22) and (29): When joining trees U and V to build tree
G, one tree and two leaves disappear. Hence 1

2(2C1)
2 =

JUKJVK
JGK =

θ 2

2 . We get values of Ck for
k > 1 by applying Eq. (29) to a star graph Tk = {0↔ 1, 0↔ 2, . . . , 0↔ k} (Fig. 2, left).

JTkK = Ckθ
k . (31)

It remains to prove Eq. (30). For this we consider a graph A that possesses k links originating
from a site 0, namely 0↔ a1, 0↔ a2, . . . , 0↔ ak . These links may be either bridges or leaves.
We denote A1, A2, . . . Ak the k components of A containing sites a1, a2,. . . ak , obtained by
cutting these links (see Fig. 2, right). If in JAK we replace every P̂0↔ai by p̂++0 p̂++ai

+ p̂−−0 p̂−−ai

and use multilinearity of cumulant and Eq. (B.19) as we did to get Eq. (26), we get:

JAK = ∑
ϵ∈{+,−}k

Jp̂ϵ1ϵ10 , . . . , p̂ϵkϵk0 K
k

∏
i=1

JAiK
ϵi
ai

(32)

There we replace every p̂−−0 = Î − p̂++0 by −p̂++0 and get:

JAK = Jp̂++0
(k)K

k

∏
i=1
(JAiK+ai

− JAiK−ai
). (33)

If all Ai ’s are empty we get JTkK = J(p̂++0 )
(k)Kθ k . Hence Ck = J(p̂++0 )

(k)K. But

⟪eλp̂++0 ⟫ = ⟪eλ p̂++0 + p̂−−0 ⟫ =
eλ+h/2 + e−h/2

Y
,

and Eq. (B.4) give (for k > 1):

Ck = Jp̂++0
(k)K =

∂ k

∂ λk
ln

eλ+
h
2 + e−

h
2

Y
∣
λ=0

(34a)

=
∂ k

∂ λk
ln cosh

λ + h

2
∣
λ=0
=

dk

dhk
ln cosh

h

2

=
1

2

dk−1

dhk−1 tanh
h

2
=

dk−1

dhk−1
θ

2
(34b)

Eq. (34b) for all k ≥ 1 is equivalent to whole Eq. (30). But Eq. (34a) holds only for k > 1. For
k = 1 it gives the wrong value C1 = θ+.

Formulae (29) and (30) allow for a calculation in O(n2) of F(T) for any tree T with n
links, to be compared with the O(4nn3/2) of the usual method.

12
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5 Discussion and conclusion

We have reviewed the two steps involved in the exact calculation of HTSE coefficients for
Heisenberg S = 1/2 spin lattices, in the presence of a magnetic field (i) the graph enumeration
and (i i) the trace calculation. We gave evidence that the trace calculations on bridged graphs
(and particularly on trees) with n links are the most time consuming steps, with a complexity
in O(n3/22n), and derived formulae that drastically decrease it to O(n2).

An optimized and parallelized code using this optimization is available as Supp. Mat [21].
The time required by this code for the two main steps (graph enumeration and trace calcu-
lations) are recapitulated in App. D.4 for some number of CPUs and for some simple mod-
els. This code was used and perfected in articles on the kagome anti-ferromagnet by the
authors [5, 6] in the presence of a magnetic field, but also on many other models without
magnetic field [7, 8, 11]. Actually, the code allows also to calculate HTSE for models with
anisotropic interactions and Dzyaloshinskii-Moriya interactions.

Further studies could extend this work to optimize HTSE calculation on a larger class of
models (different spin values, classical models) in the presence of a magnetic field. Moreover,
some of the authors are presently working on various ways to exploit the knowledge of the
field dependent HTSE coefficients, by considering other thermodynamic ensemble than the
more usually used (T, B), as evoked in Sec. 2.1.

Funding information This work was supported by the French Agence Nationale de la Recherche
under Grant No. ANR-18-CE30-0022-04 LINK and the projet Emergence, of the Paris city.

A Vocabulary on graphs

All the definitions below are illustrated on Fig. 3.
Graphs where each link appears only once are called simple graphs, and graphs where

multiple links are allowed are called multi-graphs.
A graph is connected when a path exists between any two of its sites (it has only one

connected component).
The degree d○s of a site s is the number of links emanating from it.
A leaf is a link with a site of degree one.
A bridge is a link that is not a leaf and belongs to no simple loop. So it connects two

otherwise not connected components. A graph with a bridge is said bridged.
A big leaf is a generalization of a leaf. If not a leaf it is a bridge in company of one of the

two components it separates, provided this component is free of leaves or bridges. So no big
leaf can include another one. That is why all big leaves are disjoint, except when there is only
one bridge and no leaf. Then there are two big leaves sharing the only bridge and we must
pretend there is only one big leaf. This way big leaves are always disjoint as needed. Let Nbl

be the total number of bridges and leaves. Let NL be the (pretended) number of big leaves.
Then min(Nbl , 2) ≤ NL ≤ Nbl .

An islet of a graph G is a connected component of the graph obtained after cutting every
bridge of G and replacing it by two leaves.

13



SciPost Physics Submission

•

•
•

Simple graph

̸=
•

•
•

•

•
•

Multi-graph

•

•
•

•
•

•
•

Connected graph

̸= •
•

•

••
•

•

Non connected graph

•
1

•
2•

2•
3

•1 •

4 2
•

•1

Site degrees, leaves (in red)

•
•

•

•

•
•

••
•

•

Bridges

•
•

•
•

•

•
•

•

Big leaves

•
•

•
•

•

•
•

•

Islets (half cut bridges are their leaves)

Figure 3: Some definitions on graphs

B Averages, moments and cumulants

The moment and cumulant of a multiset or list of operators x̂1, . . . , x̂k are:

⟨x̂1, . . . , x̂k⟩ =
∂

∂ λ1
⋯
∂

∂ λk
⟨e∑

k
i=1 λi x̂i ⟩ ∣

λ=0
(B.1)

=
1

k!
∑
σ∈Sk

⟨
k

∏
i=1

x̂σ(i)⟩ , (B.2)

[x̂1, . . . , x̂k] =
∂

∂ λi
⋯
∂

∂ λk
ln ⟨e∑i λi x̂i ⟩ ∣

λ=0
. (B.3)

For a single operator x̂1, moment ⟨x̂1⟩, cumulant [x̂1] and average ⟨x̂1⟩ are equal. So we can
use notation ⟨.⟩ for both average and moment. Furthermore ⟨x̂ (k)⟩ = ⟨x̂ k⟩ = [x̂ k] ≠ [x̂ (k)] for
k > 1 if x̂ (k) denotes k occurences x̂ , . . . , x̂ of a same operator.

If x̂i = x̂ j in definitions B.1 and B.3 we can state µ = λi +λ j . Then ∂ µ/∂ λi = ∂ µ/∂ λ j = 1.
Hence we can replace λi x̂i + λ j x̂ j by µx̂i and both ∂ λi and ∂ λ j by ∂ µ. More simply we can
remove term λ j x̂ j in sum and replace ∂ λ j by ∂ λi . In this way we have for instance:

[x̂ (3)1 , x̂2, x̂ (4)3 ] =
∂ 3

∂ λ3
1

∂

∂ λ2

∂ 4

∂ λ4
3

ln⟨e∑
3
i=1 λi x̂i ⟩∣

λ=0
. (B.4)

We now consider that x̂ is an operator corresponding to a link x of a graph. Note that we use
from now on the vocabulary of graphs using this operator-link correspondance, but that what
follows is valid for any set or multiset of operators. Hence if G is a simple graph, i.e. a set of
distinct links, we have Maclaurin expansion

ln⟨exp∑
x∈G
λx x̂ ⟩ = ∑

U∈NG

[x̂ (U(x)), x ∈ G]

∏x∈G U(x)!
∏
x∈G
λ

U(x)
x . (B.5)
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Here U ∈ NG is a mapping from G to N. For each link x ∈ G, integer U(x) is its multiplicity in
the multiset {{x (U(x)), x ∈ G}}. So U is any multigraph whose support is a part of G. We will
simplify notations in this last equation and rewrite it:

ln⟨expλG⟩ = ∑
U∈NG

[U]

U!
λU =

∞
∑
k=1
∑

V∈Gk

[V]

k!
λV . (B.6)

Instead of summing over multisets of links, we may sum over tuples of links. But a multiset
U ∈ NG of k = #U = ∑x∈G U(x) links appears k!/U! times among tuples V ∈ Gk of k links.
Similarly we have also

⟨expλG⟩ = ∑
U∈NG

⟨U⟩

U!
λU = 1 +

∞
∑
k=1
∑

V∈Gk

⟨V⟩

k!
λV . (B.7)

The constant coefficients of these series in powers of λ are ⟨∅⟩ = ⟨e0⟩ = 1 and [∅] = ln 1 = 0.
So coefficients of either of these two formal series can be computed from the coefficients of
the other one by

∑
U∈NG

⟨U⟩

U!
λU = 1 +

∞
∑
n=1

⎛

⎝
∑

U∈NG

[U]

U!
λU⎞

⎠

n

/n!, (B.8)

∑
U∈NG

[U]

U!
λU = −

∞
∑
n=1

⎛

⎝
1 − ∑

U∈NG

⟨U⟩

U!
λU⎞

⎠

n

/n. (B.9)

B.1 Moments expressed as polynomials of cumulants

For a simple graph U = {x1, . . . , xk} the coefficient of λU in Eq. (B.8) is

⟨U⟩ = ∑
p∈Q(U)

∏
G∈p
[G], (B.10)

where Q(U) is the set of partitions of U . Divisions by U! = 1 and G! = 1 disappear, since graph
U and its part G are simple. Furthermore division by n! disappears also because the product
of the cumulants of the n parts of a partition p appears n! times with reordered factors within
(⋯)

n
.

To generalize this formula to multigraphs, we no more use partitions of sets of links, but
partitions of set {1, . . . , n} so that links xi no longer need be different:

⟨x̂1, . . . , x̂n⟩ = ∑
p∈Q(n)

∏
q∈p
[x̂r , r ∈ q]. (B.11)

Q(n) is the set of partitions of set {1, . . . , n}.
Example:

⟨x̂1, x̂2, x̂3⟩ = [x̂1, x̂2, x̂3] + [x̂1, x̂2][x̂3] + [x̂1, x̂3][x̂2] + [x̂1][x̂2, x̂3] + [x̂1][x̂2][x̂3].

B.2 Cumulants expressed as polynomials of moments

For a simple graph U = {x1, . . . , xk} the coefficient of λU in Eq (B.9) is

[U] = ∑
p∈Q(U)

g0(#p)∏
G∈p
⟨G⟩. (B.12)
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When going from Eq. (B.8) to Eq. (B.10), coefficient 1/n! disappears when multiplied by n!.
Here (−1)n−1/n multiplied by n! becomes g0(n) = (−1)n−1(n −1)!. For multigraphs we have:

[x̂1, . . . , x̂n] = ∑
p∈Q(n)

g0(#p)∏
q∈p
⟨x̂r , r ∈ q⟩. (B.13)

Example:

[x̂1, x̂2] =⟨x̂1, x̂2⟩ − ⟨x̂1⟩⟨x̂2⟩ = ⟨x̂1 x̂2⟩ − ⟨x̂1⟩⟨x̂2⟩

[x̂1, x̂2, x̂3] =⟨x̂1, x̂2, x̂3⟩ − ⟨x̂1, x̂2⟩⟨x̂3⟩ − ⟨x̂1, x̂3⟩⟨x̂2⟩ − ⟨x̂1⟩⟨x̂2, x̂3⟩ + 2⟨x̂1⟩⟨x̂2⟩⟨x̂3⟩.

=
⟨x̂1 x̂2 x̂3⟩ + ⟨x̂1 x̂3 x̂2⟩

2
− ⟨x̂1 x̂2⟩⟨x̂3⟩ − ⟨x̂1 x̂3⟩⟨x̂2⟩ − ⟨x̂1⟩⟨x̂2 x̂3⟩ + 2⟨x̂1⟩⟨x̂2⟩⟨x̂3⟩.

B.3 Moment and cumulants of a single operator

When x̂1 = x̂2 =⋯ = x̂n = Ĥ equations (B.11) and (B.13) become

⟨Ĥn⟩ = ∑
n1,...,nn∈N,
∑i ini=n

n!∏
i

[Ĥ(i)]ni

(i!)ni ni !
, (B.14)

[Ĥ(n)] = ∑
n1,...,nn∈N,
∑i ini=n

g0(∑
i

ni)n!∏
i

⟨Ĥ i⟩ni

(i!)ni ni !
. (B.15)

Examples:

[Ĥ] =⟨Ĥ⟩

[Ĥ(2)] =⟨Ĥ2⟩ − ⟨Ĥ⟩2

[Ĥ(3)] =⟨Ĥ3⟩ − 3⟨Ĥ2⟩⟨Ĥ⟩ + 2⟨Ĥ⟩3

[Ĥ(4)] =⟨Ĥ4⟩ − 3⟨Ĥ2⟩2 − 4⟨Ĥ3⟩⟨Ĥ⟩ + 12⟨Ĥ2⟩⟨Ĥ⟩2 − 6⟨Ĥ⟩4

[Ĥ(5)] =⟨Ĥ5⟩ − 5⟨Ĥ⟩⟨Ĥ4⟩ − 10⟨Ĥ2⟩⟨Ĥ3⟩ + 20⟨Ĥ3⟩⟨Ĥ⟩2 + 30⟨Ĥ⟩⟨Ĥ2⟩2 − 60⟨Ĥ2⟩⟨Ĥ⟩3 + 24⟨Ĥ⟩5

⟨Ĥ⟩ =[Ĥ]

⟨Ĥ2⟩ =[Ĥ(2)] + [Ĥ]2

⟨Ĥ3⟩ =[Ĥ(3)] + 3[Ĥ(2)][Ĥ] + [Ĥ]3

⟨Ĥ4⟩ =[Ĥ(4)] + 3[Ĥ(2)]2 + 4[Ĥ(3)][Ĥ] + 6[Ĥ(2)][Ĥ]2 + [Ĥ]4

⟨Ĥ5⟩ =[Ĥ(5)] + 15[Ĥ][Ĥ(2)]2 + 10[Ĥ(2)][Ĥ]3 + [Ĥ]5 + 5[Ĥ][Ĥ(4)] + 10[Ĥ(2)][Ĥ(3)]

+ 10[Ĥ(3)][Ĥ]2

B.4 Expression of cumulants versus moments and lesser order cumulants

From Eq. (B.10) we can easily derive, if x̂1 ∈ X :

⟨X⟩ = ∑
X ′⊂X∖x̂1

[X ∖ X ′]⟨X ′⟩ (B.16)

Hence
[x̂1, . . . , x̂n] = ⟨x̂1, . . . , x̂n⟩ − ∑

p∈P′′
2
(n)
[x̂r , r ∈ p1]⟨x̂r , r ∈ p2⟩ (B.17)

where P ′′2 (n) is the set of partitions of n elements in 2 non-empty sets, with the conditions
that 1 is in the first set.
Example:

[x̂1, x̂2, x̂3] = ⟨x̂1, x̂2, x̂3⟩ − [x̂1, x̂2]⟨x̂3⟩ − [x̂1, x̂3]⟨x̂2⟩ − [x̂1]⟨x̂2, x̂3⟩
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B.5 Nullity of cumulant of a not connected graph

Let C be a not connected graph, without isolated site. Let A be one of its connected compo-
nent. Let B = C ∖ A. Then A and B are two non-empty graphs sharing no sites. So operators
λA = ∑x∈A λx x̂ and λB are independent. Their exponentials too. The average of their product
is the product of their averages. ButλC = λA+λB. Hence ln⟨expλC⟩ = ln⟨expλA⟩+ln⟨expλB⟩.
So

∑
U∈NC

[U]

U!
λU = ∑

U∈NB

[U]

U!
λU + ∑

U∈NA

[U]

U!
λU (B.18)

If U is a multigraph of support C , term [U]λU/U! appears only once in Eq. (B.18) in its left
hand side. No other term has same λU . Hence [U] = 0. This proves that the cumulant of a
not connected multigraph is zero.

B.6 Multilinearity of moments and cumulants

With Eq. (B.2) we see that moment is a linear function of any of its arguments. Then with
Eq. (B.13) we see that cumulant too.

B.7 Product of cumulants of independent sets of operators

(∀X ′ ⊂ X , ∀Y ′ ⊂ Y, ⟨X ′, Y ′⟩ = ⟨X ′⟩⟨Y ′⟩)

⇒ [X][Y] = [x̂1 ŷ1, X ∖ x̂1, Y ∖ ŷ1] (B.19)

We will prove this by induction on #X +#Y . We denote X1 = X ∖ x̂1 and Y1 = Y ∖ ŷ1. We have
⟨X⟩⟨Y⟩ = ⟨X , Y⟩ = ⟨x1y1, X1, Y1⟩. Hence using three times Eq. (B.16):

⎛

⎝
∑

X ′⊂X1

[X ∖ X ′]⟨X ′⟩
⎞

⎠

⎛

⎝
∑

Y ′⊂Y1

[Y ∖ Y ′]⟨Y ′⟩
⎞

⎠
= ∑

W ′⊂X1∪Y1

[x̂1 ŷ1, X1 ∪ Y1 ∖W ′]⟨W ′⟩

∑
X′⊂X1
Y ′⊂Y1

[X ∖ X ′][Y ∖ Y ′]⟨X ′⟩⟨Y ′⟩ = ∑
X′⊂X1
Y ′⊂Y1

[x̂1 ŷ1, X1 ∖ X ′, Y1 ∖ Y ′]⟨X ′⟩⟨Y ′⟩.

According to induction hypothesis, all terms for X ′ ≠ ∅ or Y ′ ≠ ∅ cancel. Only remains what
we want to prove.

C Proof of the non contribution of some graphs in the fixed-B ex-
pansion

If U is a connected multigraph with NL big leaves:

θ NL(U) divides JUK (C.1)

We assume a multiple link cannot be a leaf or a bridge. Let k = NL. Let A1, . . . , Ak be the
parts of U which are disconnected when removing the leaves or bridges of the big leaves. Let
B = U ∖A1 ∖A2 ∖⋯∖Ak . A big leaf is Ai ∪{ai ↔ bi} with ai in Ai and bi in B. Then, the very
same proof of Eq. (33) gives:

JUK = JB, p̂++b1
, . . . , p̂++bk

K
k

∏
i=1
(JAiK+ai

− JAiK−ai
). (C.2)

Replacing θ by −θ in JAiK+ai
gives JAiK−ai

. Hence JAiK+ai
− JAiK−ai

is an odd polynomial in θ
and it is divisible by θ . This proves Eq. (C.1).
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C.1 Graphs with n < Nl + Nbl for B = 0

We prove here the first item of Sec. 2.4.2: for B = 0, a graph G with k = Nbl links that are
either bridges or leaves can be discarded if #G + k > n, because F(G) = o(βn). Let U be
a multi-graph U of support G. If #U ≥ #G + k, then #U > n and JU = o(βn). Otherwise
#U < #G + k. Doubling #U −#G links will disable at most as many bridges or leaves. But at
least one will remain. Hence U has a big leaf, and JUK is divisible by θ , meaning since θ = 0
that JUK = 0.

C.2 Graphs with n < Nl + NL in fixed-B expansion

Now we count only leaves and bridges inside big leaves to prove the second item of Sec. 2.4.2:
A graph G with NL big leaves does not contribute to the fixed-B expansion at order n if
#G + NL > n. Let U be a multi-graph of support G. Then θ NL(U) divides JUK. Hence

orderβ
JUJUK

U!
≥ #U + NL(U) ≥ #G + NL(G) > n

C.3 Better criteria in fixed-B expansion

We now explain a better criterium (C.5), and give an algorithm to compute it.
For this, we define odd islets and count them with big leaves. In a connected graph G

with Nb bridges, we can replace every bridge l = l1 ↔ l2 by two leaves l1 ↔ l4 and l3 ↔ l2
where l3 and l4 are 2Nb new sites. We get Nb + 1 connected components, that we call islets
(see App. A). An islet will be said odd if it has an odd number of leaves. We denote No(G)
the number of odd islets of G. We denote U0, U1 . . . UNb the islets of G. We denote N f (G)
the number of leaves of G. Eq. (C.1) tells us that θ N f (G) divides JGK and θ N f (Ui) divides JUiK.
This is coherent with N f (G) = ∑

Nb
i=0

N f (Ui) − 2Nb and JGK = (2/θ 2)Nb∏iJUiK. But JUiK is an

even polynomial of θ . So when Ui is an odd islet, θ N f (Ui)+1 divides JUiK. This proves that

θ N f o(G) def
= θ N f (G)+No(G) divides JGK (C.3)

This is an improvement over Eq. (C.1), since big leaves are leaves and islets with one leaf and

N f o
def
= N f + No ≥ NL.

In Eq. (C.3) we can replace simple graph G by a multigragh of support G. However when
doubling a bridge between two odd islets, they are disabled and replaced by a single even islet.
And doubling a leaf of an odd islet disables the leaf and the odd islet. So N f o may decrease
by two when doubling a link. This is why we have only F(G) = O(βNl+(N f o)/2) and we can
discard a graph G when n < Nl +

N f o

2 , or better when combined with Sec. C.2:

n < Nl +max(NL,
N f o

2
). (C.4)

But the best simple criterion to discard it, is

n < min
U∈{1,2}G

(#U + N f o(U)) . (C.5)

Multigraph U is graph G where some links are doubled. Minimal U is easy to find in time
O(n2): Starting from U = G, we apply as many times as possible the two following rules: We
double a leaf of an odd islet. We double a bridge between two odd islets, if one of them has
no leaf and no other bridge to an odd islet. (Remember that a doubled leaf or bridge is no
longer a leaf or bridge) Condition “if one of them . . . to an odd islet” is important, if we want
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to reach a global minimum. Without it we might be stuck in a local minimum. For instance,
starting from a ↔ b

↕
u

↔ c
↕
v

↔ d we might be stuck in a ↔ b
↕
u

⇔ c
↕
v

↔ d whereas mimimum is

a⇔ b
↕
u

↔ c
↕
v

⇔ d, (a, u, v and d are big leaves, b and c are islets of G).

C.4 Criteria for F(G) = o(Jn
) + o(θ ν)

We may want to compute g∞ + o(Jn) + o(θ ν) instead of g∞ + o(βn). Then criteria (C.4) and
(C.5) to discard G become

n < Nl ∨ n + ν < Nl +max(NL,
N f o

2
), (C.6)

n < Nl ∨ ν < min
U∈{1,2}G

#U≤n

N f o(U). (C.7)

Then minimal U is harder to find. We first transform graph G into a rooted tree, by keeping
only bridges and leaves and replacing every islet with a single site and chosing a root. From
now one, an islet will mean either an islet or a leaf.

We define the potential of a rooted tree T with k links, as

pot(T) = (u, v) = ((u0, u1, . . . , uk), (v0, v1, . . . , vk)),

where ui (resp. vi) denotes minimum of N f o(U) for U ∈ {1, 2}T with #U = k + i, root
of T being in an even (resp. odd) islet (or site) of U . For instance uk = 0, vk = ∞ and
{u0, v0} = {N f o(T),∞}, where∞ stands for the minimum of an empty set.

So if the only common site of trees T and T ′ is their root and pot(T) = (u, v) and
pot(T ′) = (u ′, v ′) then pot(T ∪ T ′) = (min(u ⊕ u ′, v ⊕ v ′ − 2), min(u ⊕ v ′, v ⊕ u ′)), where
(a ⊕ b)i =mini=i′+i′′ai′ + bi′′ .

Furthemore if T ′ = T∪a↔ a′ and a, resp a′, is the root of T , resp. T ′, and pot(T) = (u, v)
then pot(T ′) = (∞⌢u, min(∞⌢v, 1+u⌢∞, 1+v⌢∞))where∞⌢(u0, u1, u2) = (∞, u0, u1, u2).
Using these two operations and starting from pot(∅) = ((0), (∞)) or pot(a↔ b) = ((∞, 0), (1,∞)),
we can build any rooted tree and its potential in time O(N3

l ). If pot(T) = (u, v) Eq. (C.7)
reads n < Nl ∨ ν <min(un−Nl , vn−Nl).

D Proof of some complexities

In the three following subsection, the complexity of the three successive steps listed in Sec. 2.5
are detailed.

D.1 Moments

A simple (not so naive) way to calculate the moments ⟪Ĥk
J ⟫ for all k ≤ n on a graph G is to

work in the basis of up and down spin in the z direction, of size 2Ns . It sub-divides into sectors
of fixed magnetization m = Sz , from −Ns/2 to Ns/2 by integer steps (see Algorithm 1). The
basis vectors are denoted ∣vi,m⟩ or simply ∣vi⟩ when m depends on i. The traces are calculated
separately in each subsector: trmĤk

J = ∑i ⟨vi,m ∣Ĥk
J ∣vi,m⟩. We get ⟪Ĥn

J ⟫ by summing them
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with the appropriate weight:

⟪Ĥk
J ⟫ =

Ns /2
∑

m=−Ns /2

ehm

Y Ns
trmĤk

J

=
Ns

∑
m′=0

θm′
+ θ

Ns−m′
− trm′− Ns

2
Ĥk

J . (D.1)

The partial traces trmĤk
J for any k ≤ n are obtained by first calculating ∣v(1)

i,m
⟩ = ĤJ ∣vi,m⟩, then

∣v(2)
i,m
⟩ = ĤJ ∣v

(1)
i,m
⟩ and so on up to ∣v(n)

i,m
⟩. Then, we get trmĤk

J = ∑i ⟨v
(k)
i,m
∣vi,m⟩ for k ≤ n. We

may also compute trmĤk
J = ∑i ⟨v

(⌈k/2⌉)
i,m

∣v(⌊k/2⌋)
i,m

⟩ for k ≤ n, where ⌈.⌉ and ⌊.⌋ are the ceiling

and floor functions. So we need ∣v(k)
i,m
⟩ only up to k = ⌈n/2⌉ and computation is twice as

fast and involves smaller intermediate numbers. The complexity of the naive calculation of
all ⟪Ĥk

J ⟫, k ≤ n is O(4Ns nNl), as we have to calculate the 2Ns coefficients of the image of
2Ns basis vectors, n/2 times (for each power of ĤJ), with an extra factor Nl , because ĤJ is a
sum of Nl simple operators. The result is an even polynomial in θ = tanh h

2 of maximal order
Ns : we group terms with opposite magnetization m and −m, to get a weight proportional to
cosh mh

Y Ns , which is an even polynomial in θ of degree Ns (when all J ’s are identical and ĤJ is
divided by J , the coefficients of this polynomial are simple numbers, and not polynomials in
Jl ’s, which would increase the complexity). The degree in θ of ⟪Ĥk

J ⟫ is in fact min(Ns , 2k),
as a term of Hk

J corresponds to a set of k links. Whatever the set, a maximum number of 2k
sites appear. The other sites are free and do not influence the average for this term.

Algorithm 1: Calculation of g(G) and g(G)

1

for k from 1 to n, m′ from 0 to Ns(G) do
t [k, m′] = 0

end for
for i in {+,−}Ns(G) do

m′ = number of + in i
∣v⟩ = ∣vi⟩ // of magnetization m = m′ − Ns

2
for k from 1 to n do
∣w ⟩ = 0
for l in G do
∣w ⟩ += P̂l ∣v⟩ // O(2Ns(G)) or O((Ns

m′))

end for
∣v⟩ = ∣w ⟩
t [k, m′] += ⟨vi ∣v⟩ // O(1)

end for
end for
g = 1 +∑m′ θ

m′
+ θ

Ns−m′
−

n
∑

k=1

Jk

k! t [k, m′] // O(nN2
s )

g = −∑n
i=1
(1−g)i

i // O(n4Ns)

In algorithm 1 we may skip iterations of loop for i . . . when m < 0 and supply missing
values in array t by t [k, m′] = t [k, Ns −m′] for m′ < Ns/2. This saves half the computation
time.

If we store ⟨v j ∣v⟩ for all j ∈ {+,−}Ns in an array of 2Ns integers, it is easy to perform
∣w ⟩+=P̂l ∣v⟩ in time O(2Ns ). But most of these integers are zeros. Handling only the rel-
evant components, those for which j has same magnetization as i, is tricky but reduces
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time to O((Ns

m′)). So in the overall estimated time of algorithm 1, factor 4Ns is replaced by

∑
Ns
m′=0
(

Ns

m′)
2
= (

2Ns

Ns
) ∼

4Ns
√

Nsπ
. Time is divided by

√
Nsπ and becomes O(4Ns nNl/

√
Ns). In C

language a simple trick could be to replace loop for(j=0;j<1«Ns;j++) by
for(j=(1«__builtin_popcount(i))-1;
j<1«Ns; j+=a=j&-j, j+=((j&-j)»__builtin_ctz(a+a))-1)
where j jumps efficiently to the next integer value with the same number of ones in binary as
i.

But there is simpler way which divides time by only
√

Nsπ/2. Instead of computing

∣v(k)
i,m
⟩ = Ĥk

J ∣vi,m⟩, we will compute ∣V(k)
i
⟩ = Ĥk

J ∣Vi⟩ with ∣Vi⟩ = ∑m ∣vi,m⟩. Of course
∣vi,m⟩ = 0 if i is too big. Then components of various magnetizations do not mix, and we

get ⟨v(k)
i,m
∣vi,m⟩ = ⟨V

(k)
i
∣vi,m⟩. This way instead of computing ∣v(k)

i
⟩ for 2Ns values of i, we

compute ∣V(k)
i
⟩ for ( Ns

⌊Ns /2⌋) values of i.
We can still save half computational time thanks to spin reversal. Assuming reversing spins

in ∣vi,m⟩ gives ∣vAm−i,−m⟩, we have ⟨v(k)
i,m
∣vi,m⟩ = ⟨V

(k)
Am−i
∣vAm−i,−m⟩, where Am = (

Ns

m+Ns /2) + 1.

So we need ∣V(k)
i
⟩ for only half as many values of i.

Furthermore we can save about half computation time in Algorithm 1 if we replace ∣w ⟩=0
by ∣w ⟩=Nl ∣v⟩ and ∣w ⟩+=P̂l ∣v⟩ by ∣w ⟩+=(P̂l − Î) ∣v⟩, since

P̂l − Î = (∣Sz
l+−⟩ − ∣S

z
l−+⟩) (⟨S

z
l−+∣ − ⟨S

z
l+−∣) (D.2)

P̂l = ∣S
z
l++⟩ ⟨S

z
l++∣ + ∣S

z
l−−⟩ ⟨S

z
l−−∣ + ∣S

z
l+−⟩ ⟨S

z
l−+∣ + ∣S

z
l−+⟩ ⟨S

z
l+−∣

where ⟨Sz
lεε′ ∣ = ⟨S

z
l1
= ε, Sz

l2
= ε′∣.

D.2 Logarithm expansion

Going from the series of moments g(G) of Eq. (11) to the series of cumulants g(G) of Eq. (12)
requires the expansion of the logarithm up to order n in J . In the calculation g = −∑n

i=1(1−g)
i/i,

all the powers of 1 − g and the result g are polynomials of degree n in J where coefficient of
Jk is an even polynomial of maximal degree 2k in θ . They have ∼ n2/2 integer coefficients
(of Jkθ 2i/(k!4k) for i ≤ k ≤ n) see 2.3. Complexity of this step with n multiplications of such
polynomials is O(n(n2)2) = O(n5), or better O(n4Ns) since first multiplicand is allways 1−g
with only O(nNs) non zero coefficients, since d○

θ
g ≤ Ns . Moreover d○

θ
(1 − g)i ≤ 2i⌊Ns/2⌋

and coefficient of Jk in (1 − g)i is a polynomial in θ 2 of degree min(k, i⌊Ns/2⌋).
Before this calculation we must transform g which is implicitly contained in matrix of

integers t (defined in Algorithm 1) into an explicit polynomial in J and θ . Computation of its
coefficients costs a time in O(nN2

s ).

D.3 Calculation of F(G)

For the last step, we suppose that we know all the F(G′) for G′ smaller than G. In a naive
evaluation of eq.(16), the connectivity of each G′ among the 2Nl subsets of G is checked in time
O(Nl) and if needed we add polynomial F(G′) of degree n in J and θ 2 in time O(n2). The
complexity of this step is O(n22Nl), that we reduce to O(n2N2

l ) as explained now. To avoid
the graph enumeration, we are tempted to replace the sum of Eq. (16) by a sum over graphs
G′ obtained from G by removing a single link. We face the problem that graphs included in
G ∖{l, l ′} are at least in both G ∖{l} and G ∖{l ′}, and must not be counted several times. We
group the F(G′) having graphs with the same number of links i into F̆i(G):

F̆i(G) = ∑
G′⊂G,

Nl(G′)=i

F(G′) (D.3)
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Now F̆i(G) and F̆i(G ∖ {l}) are related through:

(Nl − i)F̆i(G) =∑
l∈G

F̆i(G ∖ {l}), (D.4)

which gives F̆i(G) for i < Nl . Then F(G) is given by:

F(G) = F̆Nl(G) = g(G) −
Nl−1
∑
i=1

F̆i(G) (D.5)

If we know F̆i(G′) for all connected sub-graph G′ ⊊ G, we get F(G) (and all the F̆i(G)’s) in a
time O(n2N2

l ): Eq. (D.4) needs calculating Nl sums of Nl polynomials with ∼ n2/2 coefficients
(of Jkθ 2 j for j ≤ k ≤ n). However, we have to consider that F̆i(G ∖ {l}) is not directly known
when G ∖ {l} is not connected. Then, it contains 2 connected components G1 and G2, and
we get from Eq. (D.3) that F̆i(G) = F̆i(G1) + F̆i(G2), which does not change the previously
calculated complexity (see Alg. 2).

Algorithm 2: Calculation of F(G)

1

for i from 0 to #G do
F̆i(G) = 0

end for
for l ∈ G do

for G′ connected component of G ∖ {l} do
for i from 1 to #G′ do

F̆i(G) += F̆i(G′) // O(n2)

end for
end for

end for
for i from 1 to #G − 1 do

F̆i(G) /= #G − i
end for
F(G) = F̆#G(G) = g(G) −∑#G−1

i=1 F̆i(G)

D.4 Computation times

Benchmarks have been realized on AMD CPU’s, whose times are recapitulated in Tab. 1. The
order of the series in β : nβ , in Z: nZ are varied for several lattices, the number of CPUs used is
indicated, and the calculation time of the graph enumeration and of the trace calculation are
given in seconds. The number of graph classes with nβ links and requiring a trace calculation
is indicated. Note the variation depending on the graph coordinence z: this number is similar
at order 16 on the kagome and square lattice with z = 4 , but much larger on the triangular
one (z = 6).
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Lattice nβ nZ nCPU t (graphs) t (traces) #G(n)

Square 16 0 1 58 464 184
16 0 2 45 233 184
16 0 4 32 117 184
16 0 8 22 59 184
16 0 16 15 35 184
16 0 32 13 26 184
16 0 64 12 27 184
16 1 16 14 1521 7067
16 1 32 13 758 7067
16 1 64 12 650 7067
16 16 16 14 28750 (8h) 168119
16 16 32 13 15246 (4h) 168119
16 16 64 12 18994 (5h) 168119

Triangle 14 0 16 305 8 3390
14 0 32 261 4 3390
14 0 64 271 3.4 3390
14 1 16 291 146 50849
14 1 32 261 79 50849
14 1 64 270 62 50849
14 14 16 294 977 242352
14 14 32 262 527 242352
14 14 64 271 403 242352

Kagome 16 0 16 29 43 240
16 0 32 26 25 240
16 0 64 24 28 240
16 1 16 29 2012 10278
16 1 32 26 1002 10278
16 1 64 23 863 10278
16 16 16 29 27645 (7.7h) 198609
16 16 32 26 14435 (4h) 198609
16 16 64 23 17215 (5h) 198609

Table 1: Comparison of computation time for some HTSE calculations, depending on
the CPU number. Durations t are in seconds. The last columns indicates the number
of contributing graph classes at last order, whose trace has to be calculated.
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