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Abstract

We propose the regularized recurrent inference machine (rRIM), a novel machine-learning

approach to solve the challenging problem of deriving the pairing glue function from measured

optical spectra. The rRIM incorporates physical principles into both training and inference and

affords noise robustness, flexibility with out-of-distribution data, and reduced data requirements.

It effectively obtains reliable pairing glue functions from experimental optical spectra and yields

promising solutions for similar inverse problems of the Fredholm integral equation of the first kind.

Correspondence to [emails: †jun.park@skku.edu and ∗jungseek@skku.edu].

I. INTRODUCTION

Experimental and theoretical investigations on high-temperature copper-oxide (cuprate)

superconductors, since their discovery over 35 years ago [1, 2], have afforded extensive results

[3]. Despite these efforts, the microscopic electron-electron pairing mechanism for supercon-

ductivity remains elusive. In this regard, researchers have adopted innovative experimental

techniques. Particularly, optical spectroscopy has the potential to elucidate the aforemen-

tioned pairing mechanisms because it is the only spectroscopic experimental method capable

of providing quantitative physical quantities. The absolute pairing glue spectrum measured

via optical spectroscopy may serve as a “smoking gun” evidence to address for this prob-

lem. The measured spectrum entails information concerning the pairing glue responsible

for superconductivity. Extracting this glue function from the measured optical spectra via

the decoding approach, which involves an inverse problem, contributes an essential aspect

to the elucidation of high-temperature superconductivity.

The decoding-related inversion problem concerning physical systems is expressed as fol-

lows:

1

τ op(ω, T )
=

∫ ∞

0

dΩ I2χ(Ω, T )K(ω,Ω, T ), (1)

which is referred to as the generalized Allen formula [4–7]. Here 1/τ op(ω) is the optical

scattering rate,K(ω,Ω) is the kernel, and I2χ(ω) is the pairing glue function, which describes

interacting electrons by exchanging the force-mediating boson. Further, χ(ω) is the boson
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spectrum and I denotes the electron–boson coupling constant. The kernel is given as

K(ω,Ω, T ) =
π

ω

[
2ω coth

(
Ω

2T

)
− (ω + Ω) coth

(
ω + Ω

2T

)
+(ω − Ω) coth

(
ω − Ω

2T

)]
.

(2)

This is referred to as the Shulga kernel [5]. The goal was to infer the glue function from the

optical scattering rate obtained using optical spectroscopy [7]. Eq. (1) can be expressed in

a more general form as follows:

y(t) =

∫ b

a

dτ x(τ) k(t, τ), (3)

which is the Fredholm integral equation of the first kind. Here, k(t, τ) is referred to as the

kernel and determined by the underlying physics of the given problem, and x(τ) and y(t)

are physical quantities related to each other through the integral equation. Such inverse

problems occur in many areas of physics [6, 8, 9] and are known to be ill-posed [10]. The

ill-posed nature arises from the instability of solutions in Eq. (3), where small changes in

y can lead to significant changes in x. Consequently, obtaining a solution to the inverse

problem becomes challenging, particularly when observations are corrupted by noise.

Conventional approaches for solving inverse problems, expressed in the form of Eq. (3)

include singular value decomposition (SVD) [11], least squares fit [12, 13], maximum en-

tropy method (MEM) [6, 7], and Tikhonov regularization [14]. In particular, the MEM can

effectively capture the key features of x, whereas the SVD and least-squares fit approaches,

respectively, yield non-physical outputs and requiring a priori assumptions on the shape or

size of x. At high noise levels, the MEM struggles to determine a unique amplitude [15] or

or capture the peaks of x [16]. Despite its theoretical advantages in terms of convergence

properties and well-defined solutions, Tikhonov regularization poses challenges with regard

to the selection of appropriate regularization parameters [17–19].

In recent years, machine learning approaches have frequently been applied to inverse

problems of the Fredholm integral of the first kind [16, 20, 21]. Early approaches primarily

utilized supervised learning [9, 16, 21] demonstrating that machine learning results were com-

parable or superior to those of the conventional MEM and more robust against observation

noise. Regardless of their successes, they are principally model-agnostic, resembling black

box models wherein the physical model is solely used for generating training data but not
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leveraged during the inference procedure. Consequently, these methods lack explainability

or reliability in their outputs and require substantial training data to achieve competitive

results. This typically does not pose any difficulty in conventional machine learning do-

mains, such as image classification, speech recognition, and text generation, wherein vast

datasets are readily available, and explainability and reliability may be relatively less criti-

cal. In contrast, in scientific domains, a sound theoretical foundation must be provided for

the output of the model, and data acquisition must be cost-effective. This is particularly

crucial, because the data collection often necessitates expensive experiments or extensive

simulations.

Various approaches have been explored to incorporate physics in the machine learning

process. Projection is applied to the outcomes of supervised learning; this imposes physical

constraints on x such as normality, positivity, and compliance with the first and second

moments [20]. In a prior study [22], the forward model (Eq. (1)) is added to the loss

term for the training and serves as a regularizer. By utilizing the incorporated physics,

these approaches can yield comparable results with significantly smaller training datasets

as compared to conventional approaches. However, in these approaches, the application of

physical constraints occurs at the last stage of the learning process. Consequently, they may

not be sufficiently flexible to handle situations wherein the input significantly deviates from

the training data. Adaptability to unseen data is crucial because the generated training

data may not encompass all possible solutions, potentially leading to a bias in the output

toward the training data.

To address this issue, we adopted a recurrent inference machine (RIM) [23]. Compared

to other supervised approaches, RIM exhibits exceptional capability to incorporate physi-

cal constraints throughout both the learning and inference processes through an iterative

process. This implies that physical principles are not applied solely at the last stage of

the learning process but are integrated throughout the learning and inference stages; thus,

RIM has remarkable flexibility for solving complex inverse problems. Additionally, the RIM

framework automates many hand-tuned optimization operations, streamlining the training

procedure and achieving improved results [23, 24]. The RIM framework has been applied to

various types of image reconstruction ranging from tomographic projections [25] to astro-

physics [26]. However, conventional RIM requires modification to achieve competitive results

in case of ill-posed inverse problems such as the Fredholm integral equation of the first kind.
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Accordingly, we developed the regularized RIM (rRIM). Furthermore, we demonstrated that

the rRIM framework is equivalent to iterative Tikhonov regularization [27–29].

The proposed physics-guided approach significantly reduces the amount of training data

required, typically by several orders of magnitude. To illustrate this aspect, we quantita-

tively compared the average test error losses of the rRIM with those of two widely used

supervised learning approaches––a fully connected network (FCN) and convolutional neural

network (CNN). Owing to the sound theoretical basis of the rRIM, it can adequately ex-

plain its outputs; this is a crucial feature in scientific applications and in contrast with purely

data-driven black box models. We demonstrated the robustness of the rRIM in handling

noisy data by comparing its performance with those of the FCN and CNN models which are

well-known for their strong noise robustness compared to MEM, especially under high ob-

servational noise conditions [9, 16]. The rRIM exhibited much better robustness than FCN

and CNN for a wide range of noise levels. The rRIM exhibits superior flexibility in handling

out-of-distribution (OOD) data than do the FCN and CNN approaches. The OOD data

refers to data that significantly differs in characteristics, such as shape and distribution,

from any of the training data. Finally, we applied the rRIM to the experimental optical

spectra of optimally and overdoped Bi2Sr2CaCu2O8+δ (Bi-2122) samples. The results were

shown to be comparable with those obtained using the widely employed MEM. As a result,

rRIM can be a suggestive inversion method to analyze data with significant noise.

II. METHODS

The generalized Allen formula, Eq. (1), can be written as

1/τ op(ω, T ) = F (I2χ(ω, T )),

where F (·) represents an integral (forward) operator. Because of the linearity of an integral

operator, this equation can be discretized into the following matrix equation:

y = Ax. (4)

For notational simplicity, we represent the glue function and optical scattering rate as x ∈ Rn

and y ∈ Rm, respectively. A is an m×n matrix containing the kernel information in Eq. (2).

Considering the noise in the experiment, Eq. (4) can be written as

y = Ax+ η, (5)
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where η follows a normal distribution with zero mean and σ2 variance, that is, η ∼ N(0, σ2I).

As the matrix A ∈ Rm×n is often under-determined (m < n) and/or ill-conditioned (i.e.,

many of its singular values are close to 0), inferring x from y requires additional assumption

on the structure of x. On this basis, the goal of the inverse problem is formulated as follows:

x̂ = argmin
x∈X

||y − Ax||2. (6)

Notably, the solution to Eq. (6) must satisfy two constraints: it minimizes the norm || · ||

and belongs to the data space X , which represents the space of proper glue functions. The

norm can be chosen based on the context of the problem; in this study, we selected l2 norm.

The inverse problem expressed by Eq. (6), with the prior information on x, can be con-

sidered a maximum a posteriori (MAP) estimation [30],

x̂ = argmax
x

{log p(y|x) + log p(x)} .

The first term on the right-hand side represents the likelihood of the observation y given

x, which is determined using the noisy forward model (Eq. (5)). Further, the second term

represents prior information regarding the solution space X .

The solution of the MAP estimation can be obtained using a gradient based recursive

algorithm expressed as follows:

xt+1 = xt + γt∇ l(xt), (7)

where l(x) := log p(y|x) + log p(x) and γt is a learning rate. Determining the appropriate

learning rate is challenging. In contrast, the RIM formulates Eq. (7) as

xt+1 = xt + gt(∇ l(xt);ϕ), (8)

where gt is a deep neural network with learnable parameters ϕ. More explicitly, RIM utilizes

a recurrent neural network (RNN) structure as follows (Fig. 1)

xt+1 = xt + gt, gt

st+1

 = mϕ(∇t, st).
(9)

Given the observation y, the inference begins with a random initial value of x0. At each

time step t, the gradient information ∇t := ∇x log p(y|x)|x=xt is introduced into the update
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network mϕ along with a latent memory variable st. The network’s output gt is combined

with the current prediction to yield the next prediction xt+1. The memory variable st+1,

another output of mϕ, acts as a channel for the model to retain long term information,

facilitating effective learning and inference during the iterative process [31].

In the training process, the loss is calculated by comparing the training data x (shown

in blue in Fig. 1) with the model prediction xt at each time step. The accumulated loss is

calculated formulas follows:

L(ϕ) =
Nt∑
t=1

wt(xt(ϕ)− x)2. (10)

Here, wt represents a positive number (in this study, we set wt = 1). The parameters

ϕ indicate that xt is obtained from the neural network mϕ and are updated using the

backpropagation through time (BPTT) technique [32]. The solid edges in Fig. 1 illustrates

the pathways for the propagation of the gradient ∂L/∂ϕ to update ϕ, whereas the dashed

edges indicate the absence of gradient propagation. The trained model can perform an

inference to estimate xt given the input y without referencing the training data x.

In the conventional RIM, the gradient of the log-likelihood is given as

∇t =
1

σ2
AT (y − Axt),

where, AT is the transpose of matrix A (see the Supplemental Material for its derivation.)

Owing to the inherent ill-posed nature of the aforementioned equation, it does not yield com-

petitive results as compared to other machine learning approaches. To address this issue, we

utilized the equivalence between the RIM framework and iterative Tikhonov regularization,

as detailed in the Supplemental Material. Specifically, we utilized the following gradient

derived from the preconditioned Landweber iteration [29] to formulate the rRIM algorithm:

∇t = (ATA+ h2I)−1AT (y − Axt) (11)

Here, h is a regularization parameter. Notably, the rRIM demonstrates unique flexibility in

determining the appropriate regularization parameter, a task that is typically challenging.

A few important aspects are noteworthy. First, the noisy forward model in Eq. (5) plays

a guiding role in both learning and inference throughout the iterative process, as shown

in Eqs. (11), which provides key physical insight into the model. Second, the gradient of

log-prior information in Eq. (7) is implicitly acquired through the gradient of loss, ∂L/∂ϕ,
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which incorporates iterative comparisons between xt and the training data x. Third, the

learned optimizer (Eq. (8)) yields significantly improved results compared to the vanilla

gradient algorithm, Eq. (7) [24]. Finally, the total number of time steps, Nt, serves as

another regularization parameter that influences overfitting and underfitting. In the case of

the rRIM, the output was robust to variations in this parameter.

The iterative Tikhonov regularization algorithm functions as an optimization scheme,

while the rRIM effectively addresses optimization problems using a recurrent neural net-

work model. Specifically, rRIM optimizes the iterative Tikhonov regularization algorithm

by replacing hand-designed update rules with learned ones, offering flexibility in selecting

regularization parameters for iterative Tikhonov regularization. This enables automatic or

lenient choices. As a result, the rRIM optimizes the iterative Tikhonov regularization and

serves as an efficient and effective implementation of this method. As a result, the rRIM

optimizes the iterative Tikhonov regularization and serves as an efficient and effective im-

plementation of this method.

III. RESULTS AND DISCUSSIONS

We generated a set of training data {xn, yn}Nn=1, where x and y represent I2χ and 1/τ op,

respectively. Generating a robust training dataset that accurately represents the data space

is challenging, especially in the context of inverse problems where the true characteris-

tics of solutions are not readily available. In our study, based on existing experimental

data, a parametric modele mploying Gaussian mixtures with up to 4 Gaussians was used

to create diverse x values to simulate experimental results. Substituting the generated x

values into Eq. (4) yields the corresponding y values. The temperature was set at 100 K.

Datasets of varying sizes, N ∈ {100, 1000, 10000, 100000} were generated and split into train-

ing, validation, and test data sets with 0.8, 0.1, and 0.1 ratios, respectively. Additionally,

noisy samples were created by adding Gaussian noise with different standard deviations,

σ ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1}. The noise amplitude added to each sample y was

determined by multiplying σ with the maximum value of that sample. To ensure training

stability, we scaled the data by dividing the y values by 300 (see the Supplemental Material

for a more detailed description). It is worth noting that, depending on the characteristics of

both the data and the model, a more diverse dataset could potentially span a broader range
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of the data space and uncover additional solutions.

We trained three models - FCN, CNN, and rRIM - on each dataset; the model architec-

tures are presented in the Supplemental Material. All models were trained using the Adam

optimizer [33]. As regards the evaluation metrics, the mean-squared error (MSE) loss,

MSE =
1

N

N∑
n=1

(
xtraining data
n − xmodel output

n

)2
,

was used for the FCN and CNN, and the accumulated error loss (Eq. (10)) for the rRIM.

Hyperparameter tuning was performed by using a validation set to obtain an optimal set of

parameters for each model. Additionally, early stopping, as described in [32], was applied to

mitigate overfitting. For comparison, we calculated the same MSE loss using test datasets

for all three models. Kernel smoothing was applied to reduce noise in the inference results.

In the rRIM, we set Nt = 15 and h = 0.01. For reference, we initially trained the FCN,

CNN, and rRIM by using a noiseless dataset.

We conducted ten independent training runs for each model, each with different batch

setups, and calculated the average test losses. Fig. 2(a) illustrates the trend of the average

test losses for various training set sizes N . Across all three models, we observed a consistent

pattern wherein the losses decreased as N increased. Notably, the rRIM outperformed

both the FCN and CNN across the entire range of N in terms of error size and reliability.

Additionally, our findings demonstrate that the CNN yields superior results compared to

the FCN, as previously shown in [9].

Figs. 2(c) and (d) illustrate the inference process in the rRIM for the test data following

training with the noiseless dataset when N = 1000. At each time step, the updated gradient

information obtained from Eq. (11) is used to generate a new prediction. Fig. 2(c) shows

the inference steps for t = 1, 2, 3, and 15 (= Nt). The corresponding y values are shown in

Fig. 2(d); the intermediate results are omitted because of the absence of significant changes

beyond a few initial time steps.

We evaluated the performance of the rRIM with noisy data by following a procedure

similar to that employed for the noiseless case. For each of the three models, we conducted

10 independent trials with varying noise levels. The average test losses for the N = 1000 data

set are shown in Fig. 2(b). Notably, the rRIM exhibits significantly lower test losses than

do the other models up to a certain noise threshold, beyond which its performance begins

to deteriorate. This behavior can be attributed to the inherently ill-posed nature of the

9



problem. In contrast to the model-agnostic nature of the FCN and CNN, the rRIM adopts

an iterative approach that involves repeated application of the forward model. This iterative

process can lead to error accumulation, influenced by factors such as the total number of

time steps (Nt), the norm of A, and the noise intensity [34]. When the noise intensity is low,

these factors may have a minimal impact on the overall error. However, as the noise intensity

increases, their influence becomes more pronounced, potentially resulting in significant error

accumulation. Similar patterns are observed for different training set sizes, as detailed in

the Supplemental Material. Although it does not accommodate extremely high noise levels,

the rRIM is suitable for a wide range of practical applications with moderate noise levels.

It is worth noting that the superiority of FCN and CNN in noise robustness over MEM, as

demonstrated in previous studies [9, 16], was observed at much lower noise levels than in

the present study.

We compared the inference results of the rRIM with those of the FCN and CNN in

Figs. 3(a), (b), and (c) by using the N = 1000 with σ = 10−3 dataset. Inferences were

made on the test data samples that were not part of the training process. Evidently, the

rRIM accurately captures the true data height, whereas the FCN and CNN models tend to

overshoot (a) and undershoot (c) it. Only the rRIM accurately replicated the shape of the

peak (Fig. 3(b)).

The ability of an algorithm to handle OOD data is crucial for its credibility, particularly

in real-world scenarios where the solutions often lie beyond the scope of the dataset. To

demonstrate the flexibility of the rRIM, we generated three sample datasets that differed

significantly from the training datasets. The first dataset is a simple Gaussian distribution

with a large variance, whereas the other two are square waves with different heights and

widths (solid lines in Figs. 3(d), (e), and (f)). We inferred these data by using the rRIM,

FCN, and CNN (the results are shown using dashed lines). These models were trained using

a noiseless dataset of size N = 100000. A Comparison of the results with the FCN and

CNN models clearly indicates that the rRIM effectively captures the location, height, and

width of the peaks in the provided data. Similar patterns are observed for trapezoidal and

triangular waves, with detailed results provided in the Supplemental Material.

Finally, we applied the rRIM to real experimental data consisting of optically measured

spectra, 1/τ op(ω) from one optimally doped sample (Tc = 96 K) and two overdoped samples

(Tc = 82 and 60 K) of Bi-2212, denoted as OPT96, OD82, and OD60, respectively (indicated
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using different colors in Fig. 4). Here Tc is the superconducting critical temperature. These

measurements were performed at T = 100 K [7]. These experimental spectra were fed into

the rRIM for inference. Fig. 4(a) presents a comparison of the results of the rRIM (dashed

line) with previously reported MEM results (dotted line) [7]. Fig. 4(b) shows a comparison

of the reconstructions of the optical spectra from the results of the rRIM (dashed line) and

MEM (dotted line) by using Eq. (4) with the experimental results (solid line). The rRIM

results were competable to those of MEM.

IV. CONCLUSIONS

In this study, we devised the rRIM framework and demonstrated its efficacy in solv-

ing inverse problems involving the Fredholm integral of the first kind. By leveraging the

forward model, we achieved superior results compared to pure supervised learning with

significantly smaller training dataset sizes and reasonable noise levels. The rRIM shows

impressive flexibility when handling OOD data. Additionally, we showed that the rRIM

results were comparable to those obtained using MEM. Remarkably, we established that the

rRIM can be interpreted as an iterative Tikhonov regularization procedure known as the

preconditioned Landweber method [27, 28]. This characteristic indicates that the rRIM is

an interpretable and reliable approach, making it suitable for addressing scientific problems.

Although our approach outperforms other supervised learning-based methods in many

respects, it has certain limitations that warrant further investigation. First, we fixed the

temperature in the kernel, limiting the applicability of our approach to experimental results

at the same temperature. Extending this method for applicability in a wide range of tem-

peratures would require a suitable training set. Another challenge concerns the generation

of a robust training dataset that accurately reflects the data space required for a specific

problem. This challenge is common to any machine learning approach to inverse problems

that entails training data generation using the given forward model. Although the rRIM can

partially address this issue by incorporating prior information through iterative comparison

with the training data, more robust and innovative solutions are required. Accordingly, we

posit that deep generative models [35, 36] must be explored in this regard. While we have

shown rRIM’s ability to handle OOD data, a comprehensive quantification of this capabil-

ity has not been included in the current study. Acknowledging the significance of rRIM’s
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ability to manage OOD data, we intend to delve deeper into this aspect in future research

endeavors. Finally, uncertainty evaluation must be considered for assessing the reliability of

the output; this aspect was not addressed in the proposed approach.
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Figure 1. (Color online) Schematic model of rRIM. Shown in blue is only used for training.

Further details concerning the update network is provided in the Supplemental Material (adopted

and modified from [23]).
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Figure 2. (Color online) Comparison of average test losses for rRIM, FCN, and CNN (a) for

different training set sizes N and (b) for different noise levels for N = 1000. (c) Inference steps of

rRIM for noiseless data for a selection of initial and final predictions (dotted lines) alongside with

the true values of x (solid line) and (d) their corresponding y values, which are scaled down by

300.
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Figure 3. (Color online) Comparison of prediction capabilities of rRIM, FCN, and CNN; for noisy

test data samples: (a), (b), and (c); for OOD data samples: (d), (e), and (f).
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Figure 4. (Color online) (a) Inference results of rRIM (dashed) with those of MEM (dotted)

for experimental data. (b) Experimentally measured data (solid) with rRIM (dashed) and MEM

(dotted) reconstruction. Samples (OD60, D82, and OPT96) are differentiated using the same color

code in both figures.
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