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In recent years, the skyrmion lattice phase with a short lattice constant has attracted attention due
to its high skyrmion density, making it a promising option for achieving high-density storage memory
and for observing novel phenomena like the quantized topological Hall effect. Unlike conventional
non-centrosymmetric systems where the Dzyaloshinsky-Moriya interaction plays a crucial role, the
short pitch skyrmion phase requires a quadratic magnetic interaction J(q) with a peak at finite-Q,
and weak easy-axis magnetic anisotropy is also critical. Thus, conducting first-principles evaluations
is essential for understanding the formation mechanism as well as for promoting the discovery of
new skyrmion materials. In this Perspective, we focus on recent developments of the first-principles
evaluations of these properties and apply them to the prototype systems GdT2X2 and EuT2X2,
where T denotes a transition metal and X represents Si or Ge. In particular, based on the spin
density functional theory with the Hubbard correction combined with the Liechtenstein method
in the Wannier tight-binding model formalism, we first show that the Hubbard U and Hund’s
coupling is essential to stabilize a skyrmion lattice state by enhancing the easy-axis anisotropy. We
then discuss mechanisms of finite-Q instability and show that competition among Gd-5d orbitals
determines whether ferromagnetism or a finite-Q structure is favored in GdT2Si2 with T = Fe and
Ru. Our systematic calculations reveal that GdRu2X2, GdOs2X2, and GdRe2X2 are promising,
while GdAg2X2, GdAu2X2, and EuAg2X2 are possible candidates as the skyrmion host materials.
Analysis based on a spin spiral calculation for the candidate materials is also presented.

I. INTRODUCTION

A magnetic skyrmion is a particle-like topological spin
texture realized in condensed matter systems. Its mag-
netization distribution is characterized by vorticity, he-
licity, and a winding number, and the coupling to an
itinerant electron provides a unique platform for explor-
ing the physics under the emergent gauge field [1–3]. The
skyrmion is also considered a candidate element in future
magnetoelectric devices due to its stability against an ex-
ternal perturbation and high controllability by an elec-
tric current [4–8]. Particularly, a racetrack memory [9],
a magnetic random access memory [10, 11], and an ar-
tificial synapse for neuromorphic computing [12, 13] are
promising applications of the topologically stable mag-
netic object.

The magnetic skyrmions form a two-dimensional lat-
tice in a ferromagnetic background. While an array of
magnetic bubbles or skyrmions has been observed in a
magnetic thin film since the 1970s [14, 15], the first obser-
vation in a bulk magnet was accomplished in 2009 by the
neutron scattering measurement for MnSi with B20 crys-
tal structure [16]. In the chiral magnet, an early theory
suggested that a Dzyaloshinsky-Moriya (DM) interaction
is the key to realizing the skyrmion lattice phase [17, 18].
Namely, the competition between ferromagnetic and DM
interaction induces a non-collinear spin spiral structure,
whose modulation pitch is determined by A/D with A be-
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ing magnetic stiffness and D being a DM constant. Once
the spiral state is stabilized, a triple-Q state, which is
identical to the triangular skyrmion lattice, is expected
to appear under a magnetic field due to the momentum
conservation of the quartic term in the Ginzburg-Landau
functional. Today, there are many materials showing the
DM-induced skyrmion phase in bulk, thin film, and het-
erostructures. In these systems, a typical modulation
pitch is around 10-100nm, much larger than the lattice
constant since D ≪ A is satisfied in most cases [19–23].

On the other hand, the magnetic skyrmion observed
in the centrosymmetric crystals has recently attracted
much attention, where the DM interaction should not
play any role. The first observation was reported in
Gd2PdSi3 with Gd forming a two-dimensional triangular
lattice network [24, 25], followed by Gd3Ru4Al12 with a
Kagome lattice [26], GdRu2Si2 [27], EuAl4 [28–31], and
EuGa4 [30, 32] with a square lattice network. A remark-
able feature of the skyrmion lattice in centrosymmetric
systems is its relatively shorter modulation pitch, typi-
cally given by a few nanometers. Since this does not orig-
inate from the DM interaction, its formation mechanism
has been intensively studied recently. In terms of the
shortness of the modulation pitch, the skyrmion lattices
observed in EuPtSi [33, 34] and Mn1−xFexGe [35, 36]
might be classified into the same category as the cen-
trosymmetric systems even though their crystal struc-
tures do not have the space inversion symmetry. Since
a short-pitch skyrmion lattice is favorable for realizing
high-density memory bits in a storage device, revealing
the key quantity to determine the modulation pitch will
promote further materials design and engineering of the
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skyrmion phase. Furthermore, the high skyrmion den-
sity of the short-pitch skyrmion is of great theoretical
importance, as it provides a unique platform to observe
fascinating phenomena, such as a quantized topological
Hall effect [37] and a crossover behavior of the topologi-
cal Hall effect where both the real-space and momentum-
space Berry curvature play a crucial role [38].

To date, there have been a lot of theoretical works on
the formation of a short-pitch skyrmion lattice. They
include calculations based on a classical spin model,
an itinerant electron model, and an effective Ginzburg-
Landau functional. These theories enable us to grasp
a physical insight into the skyrmion lattice formation
and, indeed, the importance of the magnetic frustra-
tions [39, 40], compass anisotropy of the magnetic inter-
actions [41, 42], higher-order spin interactions [43, 44],
and Fermi surface nesting [45, 46] have been recognized
as an essential property to stabilize the skyrmion lat-
tice phase (for more details, see Ref. [47]). However,
these model calculations are usually performed with a
given modulation vector and include adjustable param-
eters. Thus, they have no predictive power for the
modulation pitch itself in real materials. On the other
hand, in spite of the expensive numerical cost, one can
investigate the stability of finite-Q spin spiral struc-
tures from first-principles, which is helpful to see the
origin of the modulation pitch and its material depen-
dence. Indeed, the calculations for GdRu2Si2 [48, 49],
Gd2PdSi3 [48, 49], and MnGe [50, 51] have success-
fully unveiled microscopic mechanisms in stabilizing their
short-pitch skyrmion phase. Thus, broadening the target
compounds along this line is of great importance, helping
us understand the material dependence more deeply and
promoting the discovery of new skyrmion materials.

Based on the theory for short-pitch skrymion phase, a
promising system for observing skyrmion phases should
possess weak easy-axis anisotropy and spin-spin interac-
tions favoring finite-Q modulations [47]. Since these ef-
fects on skyrmion formation are well-established, in this
Perspective, we aim to highlight recent progress in first-
principles evaluations of these properties and offer predic-
tive insights to guide experimental efforts in discovering
new skyrmion materials. To achieve this, based on spin
density functional theory (SDFT) and SDFT with the
Hubbard correction U (SDFT+U), we perform system-
atic first-principles calculations for GdT2X2 and EuT2X2
with T being a transition metal element and X being Si
or Ge. Since the largest number of skyrmion compounds
have been found in this ThCr2Si2-type crystal structure,
these compounds would be ideal target materials. First,
we show that the inclusion of U and Hund’s coupling J
is essential to obtain easy-axis anisotropy, which is nec-
essary for stabilizing a skyrmion lattice than a spin spi-
ral state. Then, we evaluate magnetic interactions J(q)
based on the so-called Liechtenstein method with the
Wannier tight-binding model formalism. The calculated
J(q) is in good agreement with E(q) directly evaluated
by the spin spiral calculations within SDFT+U , support-

ing the validity of the present Liechtenstein calculations.
Based on the results, we argue that the finite-Q structure
is determined not only by the shape of the Fermi surface
but also by the details of the electronic structure. Es-
pecially, we show that competition among the Gd-5d or-
bital contributions determines whether a ferromagnetism
or finite-Q structure is favored in GdT2Si2 with T =
Fe and Ru. According to our systematic calculations,
GdRu2X2, GdOs2X2, GdW2X2, GdRe2X2, GdAg2X2,
GdAu2X2, EuCo2X2, and EuAg2X2 with X = Si and Ge
are possible candidates for showing the skyrmion phase.
The present study provides a firm ground to discover
and design the short-pitch skyrmion phase from system-
atic calculations, and the extension to the other crystal
structures will be a promising future development.

II. METHODS

In this section, we summarize the methods used in
this Perspective. First, we explain the evaluation of
J(q) based on the Liechtenstein method. Although this
method was first formulated in the multiple scattering
theory with the Green’s function techniques, it has been
applied to the SDFT Hamiltonian with various spatially
localized bases, including the Wannier functions [52, 53].
Here, we show the formulation following Ref. [53]. We
begin with the following tight-binding Hamiltonian,

H =
∑
12

(t12 + v12)c†
1c2, (1)

where indices 1 and 2 run over all degrees of freedom that
specify the Wannier functions, including atomic sites i,
orbitals ℓ, and spins σ. c†

1 (c1) represents an electron
creation (annihilation) operator in this basis. t12 and v12
denote spin-independent and spin-dependent hopping in-
tegral matrices, respectively. These parameters are ex-
tracted from the SDFT/SDFT+U calculation with ferro-
magnetic reference states through the Wannier construc-
tion process [54, 55].

Based on the Hamiltonian (1), we can evaluate the
magnetic interaction Jij in the classical Heisenberg model
as follows,

Jij = −1
2Trnℓσ[Gij(ωn)ΣiGji(iωn)Σj ]. (2)

Here, Trnℓσ = T
∑

n Trℓσ, where Trℓσ denotes the trace
over the orbital and spin spaces. ωn = πT (2n+1) denotes
the Matsubara frequency, and T is the temperature. The
Green’s function G(ωn) and the magnetic perturbation
matrix at i site Σi are defined by,

[G(ωn)]−1
12 = iωnδ12 − t12 − v12 (3)

Σi
12 = ṽiℓ1,iℓ2σx

σ1σ2
(4)

where we approximate Σi
12 as a local quantity. σµ

(µ = x, y, z) is the Pauli matrix, and ṽi1ℓ1,i2ℓ2 is de-
fined by vi1ℓ1σ1,i2ℓ2σ2 = ṽi1ℓ1,i2ℓi

σz
σ1σ2

. Then, Gij(ωn)
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is defined as a sub-matrix of G12(ωn) having (i, j) sites
component. The evaluation of the Matsubara summation
in Eq. (2) is performed by the sparse sampling technique
with the intermediate representation [56, 57]. More de-
tails about the implementation are found in Ref. [53].
Based on Jij evaluated by Eq. (2), its Fourier transform
J(q) is obtained as follows:

J(q) = 1
N

∑
ij

e−iq·(Ri−Rj)Jij − J0, (5)

where Ri denotes the real space coordinate of the site i
including the relative coordinate of the sublattice. Here,
we have introduced J0, the on-site magnetic interaction,
to guarantee the absence of the self-interaction term in
the Heisenberg model. Note that, although Jij evaluated
by Eq. (2) will be finite for non-magnetic sites such as
a transition metal T and X = Si, Ge in GdT2X2 and
EuT2X2, the i, j summation in Eq. (5) should be taken
only for the magnetic site, namely, Gd or Eu site in our
cases. Indeed, Jij connecting non-magnetic elements can
take a large value when both the density of states (DOS)
and exchange splitting near the Fermi level are finite,
although the mapping into the classical spin model for
these orbitals is totally inadequate. This procedure can
remove this artificial contribution in the evaluation of
J(q), which is essential for the SDFT+U calculations.
Based on the obtained J(q), we can see whether the sys-
tem favors the finite-Q modulation.

On the other hand, we can evaluate the energy of the
spin spiral states with the modulation vector Q, denoted
by E(q), within SDFT and SDFT+U . The calculation
is based on the generalized Bloch theorem, in which the
energy of the spin spiral state is evaluated with specific
twisted boundary conditions for the Bloch spinors [58].
A clear advantage of this method is that the calculated
E(q) is exact within the SDFT/SDFT+U level, and no
assumption of the mapping to the classical spin model
is introduced. Moreover, it is not necessary to expand
the unit cell even when calculating the finite-Q struc-
ture, which makes the calculation with small Q tractable.
However, despite these advantages, it requires a calcula-
tion for every Q, and thus, is much more expensive than
the Liechtenstein method if one wants to see the detailed
structures of E(q). Thus, we use these two methods in a
complementary manner.

III. CALCULATION DETAILS

For the evaluations of J(q) and E(q), we use Vi-
enna ab initio simulation package (VASP) [59] for the
electronic structure calculations. Here, the exchange-
correlation functional proposed by Perdew, Burke, and
Ernzerhof [60], and pseudopotentials with the projector
augmented wave (PAW) basis [61, 62] are used. The spin
orbit interaction is neglected except for the magnetocrys-
talline anisotropy calculations.

−2

0

2

4

without U J=0.0eV J=0.7eV J=1.4eV

∆
E

[m
eV

/f
.u
.]

GdRu2Si2
GdRu2Ge2

FIG. 1. Magnetocrystalline anisotropy of GdRu2Si2 and
GdRu2Ge2. The label “without U” stands for the result of
the standard SDFT calculation. The others correspond to
SDFT+U calculations with U = 6.7 eV.

The structure optimization is performed for all
GdT2X2 and EuT2X2 compounds by the SDFT+U
method assuming ferromagnetic states. The convergence
criteria of the structure optimization is set to 10−5 eV
and the corresponding electronic self-consistent loop is
10−6 eV with the accurate precision mode. Here, we use
a 16 × 16 × 16 Monkhorst-Pack k-mesh, and a cutoff of
the plane wave basis set is set to be twice the recom-
mended maximum value of the cutoff. For the magne-
tocrystalline anisotropy calculations, we employ 10−8 eV
as the convergence criteria for electronic calculations and
21 × 21 × 21 Monkhorst-Pack k-mesh. The cutoff is set
to be twice the recommended value. For the energy cal-
culations of the spin spiral states, we employ 10−8 eV
as the convergence criteria for electronic calculations,
16 × 16 × 16 Monkhorst-Pack k-mesh, and the cutoff is
2.5 times as large as the recommended values.

For constructing the Wannier tight-binding model, we
use 156 Bloch states evaluated on 10×10×10 uniform k-
grid in the disentanglement procedure. The trial orbitals
are set to the Gd/Eu-d and f orbitals, transition metal
T -s, p, and d orbitals, and X = Si/Ge-s and p orbitals.
The outer window is set as it includes all 156 Bloch states,
and the inner window is set as it covers from the bottom
of the bands to the bands at 4 eV above the Fermi level.
The obtained tight-binding model consists of 38 orbitals
per spin. Based on the obtained tight-binding model, Jij

and J(q) are evaluated by Eqs. (2) and (5), respectively.
Here, we set the temperature T = 58 K and employ 48 ×
48 × 48 uniform k-grid.

IV. RESULTS AND DISCUSSION

A. Magnetocrystalline anisotropy

According to the theory of skyrmion lattice forma-
tion [47], the system should possess two properties to
realize a skyrmion lattice phase in a broad region of pa-
rameter space. Namely, it is necessary that the spin in-
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teraction is compatible with a finite-Q modulation, and
the magnetocrystalline anisotropy is the easy axis type
as well as sufficiently weak. It should be noted that, with
the exception of Gd3+ and Eu2+, rare earth elements pos-
sess a finite orbital moment with strong spin-orbit cou-
pling, leading to strong magnetocrystalline anisotropy in
most cases. As a result, compounds containing these
elements are unlikely to exhibit the weak magnetocrys-
talline anisotropy required for the formation of skyrmion
lattice phases. Therefore, in this Perspective, we only
consider Gd3+- and Eu2+-based compounds, where the
orbital angular momentum of their 4f -orbitals are almost
quenched in the ionic ground states. On the other hand,
there is no general trend for these elements, whether the
anisotropy is the easy axis or easy plane type. Thus, it is
crucial to see whether the system shows the correct mag-
netic anisotropy before discussing the modulation vectors
based on the electronic structure.

As an example, let us first see in Fig. 1 the calculated
magnetocrystalline anisotropy,

∆E := E(m//x) − E(m//z) (6)

for the skyrmion compound GdRu2Si2 and a reference
compound GdRu2Ge2 [63]. We can see that the energy
scale of the magnetic anisotropy is quite small, |∆E| < 5
meV per formula unit, as expected. However, the sign
of ∆E is negative in the SDFT results, indicating that
a helical magnetic structure is expected to have a lower
energy than the skyrmion state. This situation drasti-
cally changes by including the Hubbard correction U . In
the case of Gd3+, since U enhances the energy differ-
ence between the lowest energy state with L = 0 and
the first excited state with L ̸= 0, we can expect that
the magnetocrystalline anisotropy decreases by increas-
ing the value of U , which is consistent with the results
in Fig. 1. Notably, ∆E becomes small but positive with
U = 6.7 eV even without Hund’s coupling correction J .
In addition, we can also see that the anisotropy becomes
larger positive with increasing the strength of J , which
is compatible with the observed skyrmion lattice phases.
This result clearly indicates that the inclusion of U and
J is essential to obtain the correct magnetocrystalline
anisotropy in the Gd and Eu-based skyrmion materials.

Figures 2(a-d) summarize the results of ∆E in all Gd
and Eu-based 122 compounds that we discuss for this
Perspective. We can see that, for most transition metal
T except for Ta, the SDFT+U results show the same or
lower |∆E| than SDFT, which is similar to the cases of
GdRu2Si2 and GdRu2Ge2. Although the values of ∆E
highly depend on the host f -element and Eu-based com-
pounds tend to have considerable negative ∆E in SDFT,
these trends are strongly suppressed in SDFT+U . In
SDFT+U , ∆E is no longer sensitive to the transition
metal T and the group 14 element X = Si and Ge. Also,
the amplitude |∆E| is sufficiently small and |∆E| < 3
meV/f.u. is satisfied in all compounds. It is worth noting
that only one (seven) in GdT2X2 (EuT2X2) among all 48
compounds considered show negative ∆E, implying that

the weak easy-axis anisotropy is an intrinsic property in-
herent in this ThCr2Si2-type crystal structure.

B. Fermi surface and magnetic instability

Next, let us move on to the modulation vector of
GdT2X2 and EuT2X2. According to the previous dis-
cussion, it is essential to include the local Coulomb re-
pulsion U and Hund’s coupling J to reproduce the cor-
rect magnetocrystalline anisotropy observed in the ex-
periments. Thus, in the present study, we discuss the
modulation vector Q based on the electronic structures
in the SDFT+U calculations. Apparently, the effect of U
and J on Q should not be significant if Q is determined
only by the shape of the Fermi surface, which is often
supposed in the RKKY scenario for the skyrmion lattice
formation. Indeed, since the magnetic moments of Gd3+

and Eu2+ are fully polarized even in the absence of U
and J , the Fermi surface is expected to be insensitive
to the values of U and J . We can directly confirm that
magnetic moments are fully polarized in the ferromag-
netic states in most compounds except for EuMn2Si2,
EuZr2Si2, EuZr2Ge2, EuTc2Si2, EuTc2Ge2, EuHf2Ge2,
EuTa2Si2 and EuRe2Ge2. Thus, although the electronic
structure above the Fermi energy should be modified to
some extent because of the change of the exchange split-
ting, this will not affect the modulation vector Q in the
skyrmion phase.

The insensitivity of the Fermi surface against U and J
can be seen directly by the band structure calculations.
For example, we show the band structures near the Fermi
levels of GdRu2Si2 and GdFe2Si2 in Figs. 3(a-d). Here,
the majority and minority bands calculated with SDFT
and SDFT+U are plotted, respectively. We can see from
the figures that, although they differ in detail especially
above the Fermi levels, U and J do not change the Fermi
surface, which means that SDFT and SDFT+U results
share the same Fermi surface instability. Note that this
trend is valid for all compounds when SDFT correctly
captures the ionic state of Gd3+ and Eu2+.

In the continuum model, it is well-known that the
Lindhard function describes the Fermi surface instability.
In a real material with many bands, the nesting function,

χnn′(q) = − 1
N

∑
k

f(εnk+q) − f(εn′k)
εnk+q − εn′k

, (7)

plays the same role. Here, n and k denote the band
index and crystal momentum, respectively. εnk is the
eigenvalues of the Bloch states having n and k, and f(ε)
is the Fermi distribution function. The nesting func-
tion is sometimes considered to describe not only the
Fermi surface instability but also the spin instability,
such as spin-density-wave and helical Q magnetic struc-
tures. However, as is known in the fluctuation theory for
multi-orbital systems, the orbital character of the bands
is essential to describe the fluctuation. In this case, it is
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FIG. 2. Magnetocrystalline anisotropy of (a) GdT2Si2, (b) GdT2Ge2, (c) EuT2Si2 and (d) EuT2Ge2. The SDFT+U results
stand for the calculations with U = 6.7 eV and J = 0.7 eV. Note that the data for EuMn2Si2, EuZr2Si2, EuZr2Ge2, EuTc2Si2,
EuTc2Ge2, EuHf2Ge2, EuTa2Si2 and EuRe2Ge2 in SDFT, and GdCr2Ge2 in SDFT+U are not shown. This is because the fully
polarized ferromagnetic solutions along the x and/or z axis are unstable for these materials.
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(a)
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[e
V
]

SDFT
SDFT+U

−1

0

1
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(b)
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(c)

ε k
[e
V
]

−1

0

1

Γ XY Σ Γ Z Σ1N PY1 Z

(d)

FIG. 3. Band structures of (a) majority spin of GdRu2Si2,
(b) minority spin of GdRu2Si2, (c) majority spin of GdFe2Si2
and (d) minority spin of GdFe2Si2. Solid lines correspond to
SDFT and dashed lines correspond to SDFT+U results with
U = 6.7 eV and J = 0.7 eV.

necessary to consider the (zeroth-order) spin correlation
function χµν(q) defined as follows,

χµν(q) = 1
N

∑
R

∑
1234

eiϕq
13(R)sµ

13sν
24χ13,24(R), (8)

χ13,24(R) = −T
∑
ωn

G12(iωn, R)G43(iωn, −R). (9)

Here, the phase ϕq
12(R) is defined by ϕq

12(R) = q · (Ri3 −
Ri1), and ωn and ωq denote the Fermionic and Bosonic
Matsubara frequency, respectively. Since Eq. (9) leads
to the nesting function with a modification due to the
transformation from local orbital to band basis, the q-
dependence of χµν(q) is mainly determined by Eq. (7).
However, it should be noted that the basis transforma-
tion gives an additional source of the q-dependence, and
χµν(q) is sensitive not only to the shape of the Fermi
surface but also to its orbital character. Moreover, in the
strongly correlated electron systems, Eqs. (8) and (9) are
not sufficient to describe the correct spin fluctuation. In
this case, the effect of U must be taken more accurately
using a diagrammatic technique, which is practically im-
possible in most cases. In that sense, the Liechtenstein
method presented provides a simple but reliable approx-
imation in taking the correlation effects. Indeed, it is
known that this method successfully reproduces the re-
sult of t/U expansion in the strong correlation limit and
reproduces Eqs. (8) and (9) in the weak correlation limit.
It is worth noting that in the intermediate and strong U
regime, not only the Fermi surface but also the electronic
structure far from the Fermi level can affect the spin in-
stability.

C. J(q) in GdRu2Si2 and GdFe2Si2 evaluated by
the Liechtenstein method

Figures 4(a) and (b) show J(q) for GdRu2Si2 and
GdFe2Si2 calculated based on the Liechtenstein formula,
Eq. (5). The result in Fig. 4(a) shows good agreement
with that in Ref. [49] but is slightly different from that
in Ref. [48] due to an erroneous treatment of the phase
factor in Eq. (8). According to the results, since the peak
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FIG. 4. Modulation vector Q dependence of the spin exchange
interaction J(q) in (a) GdRu2Si2 and (b) GdFe2Si2 calculated
based on the Liechtenstein formula. A pink (cyan) line with
open (filled) circle corresponds to the SDFT (SDFT+U with
U = 6.7 eV and J = 0.7 eV) result.

position Q in J(q) is the signature of magnetic instability
with the modulation vector Q, we can say that GdRu2Si2
favors the spin spiral state with Q ∼ (0.25, 0, 0) both in
SDFT and SDFT+U . On the other hand, in GdFe2Si2,
finite-Q instability is seen only in SDFT while SDFT and
SDFT+U give the same Fermi surface (see Figs. 3(c) and
(d)). This result indicates that the finite-Q structure is
determined not only by the shape of the Fermi surface
but also by other factors, such as an orbital character
and electronic structure far from the Fermi level.

The ferromagnetic instability observed in the
SDFT+U calculation for GdFe2Si2 is also found in
the spin spiral calculation (which will be discussed in
Section IV F). However, it seems to be inconsistent
with the observed spin flop transition in GdFe2Si2 [64],
which implies that we may need to treat the correlation
effect more precisely to understand the magnetisn in
GdFe2Si2. On the other hand, GdRu2Si2 has a peak at
Q ∼ (0.25, 0, 0) both in SDFT+U and SDFT calculation,
similar to the previous results based on SDFT (without
U) [48, 49], which is consistent with the experiment.

Note that, in principle, it is necessary to perform a spin
model simulation to find out a correct magnetic ground
state, especially for multiple-Q states like a skyrmion
lattice phase. For a spin model of GdRu2Si2, an analy-
sis based on the Landau-Lifshitz-Gilbert (LLG) equation
was performed in Ref. [49], using the following model for
the internal energy,

E = −1
2

∑
ij

Jijmi · mj − K
∑

i

(mi · ez)2 − B ·
∑

i

mi,

(10)

where K is a magnetocrystalline anisotropy constant,
and B is a external magnetic field applied along the c
axis. They solved the LLG equations for Eq. (10) with
Jij evaluated from first-principles, which is consistent
with Fig. 4(a), and obtained a magnetic phase diagram
in terms of K and B, as shown in Fig. 5. According to

FIG. 5. (a) A magnetic phase diagram of GdRu2Si2 in the
(K, B) parameter space, where K is the magnetocrystalline
anisotropy and B is the magnetic field. (b)-(d) Representative
magnetic textures described by the Gd moments. (b) Helical
state for (K, B) = (0.2, 0.6), (c) Skyrmion state for (K, B) =
(0.2, 1.0), and (d) cycloidal state for (K, B) = (0.1, 1.0). Re-
produced from Ref. [49].

Fig. 5, the skyrmion lattice phase appears when the easy-
axis anisotropy K is in the range from 0.2 to 0.4 meV.
On the other hand, as discussed in the previous sec-
tions, the SDFT+U calculation reproduces the easy-axis
anisotropy of GdRu2Si2. The value of K in GdRu2Si2 is
∼ 0.43 meV, which is in good agreement with the spin
model simulation Note that the significance of weak easy-
axis anisotropy can be straightforwardly understood: if
the anisotropy is easy-plane type, a helical single-Q state
is favored over multiple-Q states like a skyrmion phase,
and if the easy-axis anisotropy is too strong, Ising-type
magnetic order is favored over finite-Q structures. Thus,
we conclude that the SDFT+U result in GdRu2Si2 is
fully consistent with the observation of the skyrmion lat-
tice phase, and the present method correctly captures the
essential physics behind the magnetic structure.

D. Orbital decomposition of J(q) calculated based
on the Liechtenstein method

One of the advantages of evaluating J(q) based on the
tight-binding formalism is that it is easy to discuss the
microscopic origin of the magnetic interaction [48, 65].
Although J(q) was decomposed into the Gd-4f and 5d
components and a possible frustration mechanism be-
tween these two was discussed in Ref. [48], one may think
that the situation will be different in a real material since
their calculations were based on the SDFT electronic
structures. Indeed, with the SDFT+U results, we can
easily show that the contribution from Gd-4f orbital is
strongly suppressed and never affect the modulation vec-
tor of the helical states, as shown in Fig. 6(a). Naively,
this indicates the absence of conventional RKKY interac-



7

−2

0

2

4

6

8

10

12

14

16
(a)

J
(Q

)
[m

eV
]

total
dd
df
ff

−2

0

2

4

6

8

10

12

14

16
(b)

J
(Q

)
[m

eV
]

total
11
22
33
44
55

−2

0

2

4

6

8

10

12

14

16

(0, 0, 1
2
) (0, 0, 0) (1

2
, 0, 0)

(c)

J
(Q

)
[m

eV
]

total
12
13
14
15
23
24
25
34
35
45

FIG. 6. Orbital decomposed J(q) calculated by the Liecht-
enstein method. (a) The contributions from the Gd-5d and
4f orbitals. (b) The diagonal contribution to in the Gd-
5d manifold. Here, the indices 1 to 5 correspond to the
dz2 , dxz, dyz, dx2−y2 , and dxy orbitals, respectively. (c) The
off-diagonal contributions in the Gd-5d manifold.

tions in this compound since it is included in the Gd-4f
contribution as discussed in Ref. [48]. On the other hand,
as seen in the previous subsections, the orbital character
and the electronic structures not at the Fermi level are
essential factors in determining the finite-Q instability.
Since the q dependence of J(q) mainly comes from the
Gd-5d manifold according to Fig. 6(a), it would be inter-
esting to decompose J(q) into each 5d orbital based on
the SDFT+U electronic structures.

Figure 6(b) and (c) show the diagonal and off-diagonal
contributions to J(q) in the Gd-5d manifold, respectively.
Among the five 5d orbitals, the contributions from the
dz2 and dxy orbitals are negligibly small, and the q de-
pendence of J(q) originates from the remaining three or-
bitals. Among the three, we can see that only the diago-
nal contribution from the dx2−y2 orbital has a peak struc-
ture at the Γ point, favoring the ferromagnetic ground
state. In contrast, the other diagonal and off-diagonal
ones show the peak at Q ∼ (0.25, 0, 0) or almost flat
along the Γ-X line. These results indicate that the or-
bital frustration exists in the 5d orbital manifold, and
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FIG. 7. Orbital decomposed J(q) calculated by the Liechten-
stein method. The total (dotted line with open square), diago-
nal dx2−x2 orbital (solid line with filled square), and the other
contribution (dotted like with filled circle) are shown. The
pink and cyan lines correspond to the results for GdRu2Si2
and GdFe2Si2, respectively.

whether the system favors the ferromagnetic or finite-
Q spin spiral state depends on the competition between
the contributions from dx2−y2 and the other orbitals. No-
tably, this situation is realized not only in GdRu2Si2 but
also in GdFe2Si2 as is shown in Fig. 7. The figure shows
why these two compounds favor different magnetic struc-
tures though they share almost the same Fermi surface.
Namely, the contribution from the dx2−y2 orbital relative
to that from the other d orbitals is larger in GdFe2Si2
than GdRu2Si2. This is mainly due to the suppression
of the finite-Q peak in the contribution from the other d
orbitals in GdFe2Si2.

Here, let us look into the detail of the microscopic ori-
gin of J(q) based on the following simple model Hamil-
tonian H = Hd + Hf + Hdf , where,

Hd = td

∑
⟨i,j⟩σ

d†
iσdjσ + Ud

∑
i

nd
i↑nd

i↓, (11)

Hf = tf

∑
⟨i,j⟩σ

f†
iσfjσ + Uf

∑
i

nf
i↑nf

i↓, (12)

Hdf = V
∑
iσ

(d†
iσfiσ + f†

iσdiσ) + Jcf

∑
i

sd · sf . (13)

Here, Hd, Hf and Hdf represent terms for the Gd-5d
orbitals, 4f orbitals and their hybridization terms, re-
spectively. Our calculations for GdT2X2 show that, in
the presence of U , the 5d contribution always overcomes
that of 4f since the latter is strongly suppressed. This
clearly indicates that both the super-exchange interac-
tion Jf

ex ∼ t2
f /Uf and the conventional RKKY interac-

tion JRKKY ∼ (V 2/Uf )2χd, where χd is the spin suscep-
tibility in the 5d orbitals, are negligibly small in these
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compounds. Conversely, the strong magnetic interaction
from the 5d orbitals can be easily understood since they
have large DOS near the Fermi level, and have a finite
exchange splitting due to the magnetic ordering although
it is not as large as that of the 4f orbitals. Here, we note
that there are two possibilities for the origin of the ex-
change splitting in the 5d states. One is the Coulomb
interaction inherent in the 5d orbitals, i.e., the second
term in eq. (11), in which case the spin instability is
described purely by the 5d orbitals. The other is the
magnetic coupling between the 5d and 4f orbitals, i.e.,
the second term in eq. (13), which one may call ”gener-
alized” RKKY interaction since it comes from the cou-
pling between conduction bands and local spins [66]. It
should be noted that in SDFT+U , the correlation ef-
fect is included in the exchange-correlation functional,
and the many-body problem turns into an effective one-
body calculation. Then, we can not distinguish these two
contributions from the resulting exchange splittings. In-
vestigating the microscopic origin of J(q) more precisely
requires more elaborated calculations, such as a calcu-
lation combined with dynamical mean-field approxima-
tion [67]. This direction of development is an interesting
and important future task in this field.

E. Systematic evaluation of J(q) based on the
Liechtenstein method

Let us move on to the results of J(q) calculated with
SDFT+U for GdT2X2 and EuT2X2 in Fig. 8 and Fig. 9,
respectively. From these figures, we see that the general
trend of J(q) is not sensitive to the choice of group 14
elements X = Si or Ge. On the other hand, the choices of
different f -elements and different periods (i.e., 3d, 4d, or
5d) of the transition metals T dramatically change the
structure of J(q). For example, for the GdT2X2 com-
pounds, the T dependence of group 5 (T = V, Nb, Ta),
8 (T = Fe, Ru, Os), and 9 (T = Co, Rh, Ir) are not
so significant. On the other hand, for EuT2X2, the T
dependence is more noticeable. These dependencies may
come from the chemical pressure effects on the lattice
structures or the spreads and local energy levels of the
d-orbitals.

According to Figs. 8 and 9, the most promising can-
didates showing skyrmion lattice phase would be com-
pounds with T being the group 8 transition metal. In
particular, GdRu2Si2, GdRu2Ge2, GdOs2Si2, GdOs2Ge2,
and EuOs2Si2 have the highest peaks at finite Q
along the Γ-X line. Together with the small easy-axis
anisotropy shown in Figs. 2(a-d), they should show the
skyrmion lattice phase, and indeed, it is already found
in GdRu2Si2. Except for these compounds, we can
also see that GdW2X2, GdRe2X2, GdAg2X2, GdAu2X2,
EuCo2X2, and EuAg2X2 with X = Si and Ge have the
highest peaks along the Γ-X line. However, the peaks in
GdW2X2 and EuCo2X2 may be too small to stabilize the
magnetic order.

F. Modulation vector based on spin spiral
calculations

Up to now, we have discussed the magnetic interac-
tion J(q) and the corresponding modulation vectors Q
based on the Liechtenstein method. The calculations are
performed for the Wannier tight-binding models derived
from first-principles for the ferromagnetic ground states.
Thus, in principle, the reliability of the q-dependence far
from the Γ point, as well as the validity of the mapping
to the classical spin model cannot be justified. Here, we
present spin spiral calculations for the materials expected
to be a good candidate for showing the skyrmion phase.
Since the calculation is exact within the SDFT+U level,
the results can be used in a way complementary to that
of the Liechtenstein method.

Figure 10(a) shows the q-dependence of the total en-
ergies for GdT2X2 with T = Fe, Ru, Os. The cal-
culations are performed by the spin spiral calculations
based on SDFT+U with U = 6.7 and J = 0.7 eV.
Since the minimum position of E(q) represents the most
stable modulation vector, we can see that GdRu2Si2,
GdRu2Ge2, and GdOs2Si2 favor the finite-Q state with
Q ∼ (0.20, 0, 0)-(0.25, 0, 0). On the other hand, GdFe2Si2
and GdFe2Ge2 have the minimum at the Γ point, indi-
cating that the ferromagnetic state is the most stable.
These features are in good agreement with the calcula-
tions based on the Liechtenstein method. Although the
GdOs2Ge2 does not show the finite-Q instability in con-
trast with the Liechtenstein result, the peak of J(q) in
GdOs2Si2 is more fragile than the others as is shown
in Fig. 8(e). Thus, the disagreement with the Liecht-
enstein method is not serious. For the comparison, we
also show E(q) of GdT2X2 with T = Fe, Ru, Os and
X = Si, Ge based on SDFT in Fig. 10(b). We can see
that the finite-Q instability becomes stronger in all cases
than in SDFT+U . Here, GdFe2Si2 shows the finite-Q in-
stability in SDFT while it does not in SDFT+U , which
again agrees well with the Liechtenstein calculations. In
Fig. 10(c), we show E(q) for the other candidates for
showing the skyrmion phase predicted by the Liechten-
stein calculations, namely, GdT2X2 with T = Re, Ag,
Au and X = Si, Ge, EuAg2Si2 and EuAg2Ge2. We can
see that GdRe2Si2, and GdRe2Ge2 show nearly flat q de-
pendence near the Γ point, and thus, it is possible that
some subtle perturbations select a finite-Q state. On the
other hand, GdAg2X2, GdAu2X2, and EuAg2X2 have
a broad peak at Q ∼ ( 1

2 , 0, 0) corresponding to the 90-
degree rotating structure with the nearest neighboring
spins, which seems to be too large to realize a skyrmion
phase. However, due to its broad nature, we may still
have a chance to achieve a skyrmion phase with smaller
Q in experiments by using, for example, chemical sub-
stitution and external pressure. We leave the possible
magnetic structures favored in these compounds as a fu-
ture study.



9

−4

−2

0

2

4

6

8

10

12

14

16

Z Γ X

(a) T = Ti, Zr, Hf

J
(Q

)
[m

eV
]

−10

−5

0

5

10

15

20

25

30

Z Γ X

(b) T = V, Nb, Ta

−10

−5

0

5

10

15

20

25

Z Γ X

(c) T = Cr, Mo, W

−15

−10

−5

0

5

10

15

20

25

Z Γ X

(d) T = Mn, Tc, Re

−15

−10

−5

0

5

10

15

Z Γ X

(e) T = Fe, Ru, Os

J
(Q

)
[m

eV
]

Q-vector

−10

−5

0

5

10

15

20

Z Γ X

(f) T = Co, Rh, Ir

Q-vector

−5

0

5

10

15

20

Z Γ X

(g) T = Ni, Pd, Pt

Q-vector

−4

−3

−2

−1

0

1

2

3

4

5

Z Γ X

(f) T = Cu, Ag, Au

Q-vector

FIG. 8. Spin interactions J(q) in GdT2X2 calculated by the Liechtenstein method based on the SDFT+U electronic structures.
The pink, green, and cyan lines with square, circle, and triangle points correspond to 3d, 4d, and 5d elements as T , respectively.
The solid (dashed) lines with filled (open) symbols stand for X = Si (Ge). Note that the high symmetry points Z, Γ, and X
correspond to (0, 0, 2π

c
), (0, 0, 0) and ( 2π

a
, 0, 0) in the cartesian frame of the reciprocal lattice space, respectively.

−5

0

5

10

15

20

Z Γ X

(a) T = Ti, Zr, Hf

J
(Q

)
[m

eV
]

−10

−5

0

5

10

15

20

Z Γ X

(b) T = V, Nb, Ta

−10

−5

0

5

10

15

20

25

30

35

40

Z Γ X

(c) T = Cr, Mo, W

−10

−5

0

5

10

15

20

25

Z Γ X

(d) T = Mn, Tc, Re

−15

−10

−5

0

5

10

15

20

Z Γ X

(e) T = Fe, Ru, Os

J
(Q

)
[m

eV
]

Q-vector

−4

−3

−2

−1

0

1

2

3

4

5

6

7

Z Γ X

(f) T = Co, Rh, Ir

Q-vector

−10

−5

0

5

10

15

20

Z Γ X

(g) T = Ni, Pd, Pt

Q-vector

−4

−2

0

2

4

6

8

10

Z Γ X

(f) T = Cu, Ag, Au

Q-vector

FIG. 9. Spin interactions J(q) in EuT2X2 calculated by the Liechtenstein method based on the SDFT+U electronic structures.
Color, line and point types are the same as Fig. 8.

V. CONCLUSION AND OUTLOOK

In this Perspective, we present systematic first-
principles calculations for GdT2X2 and EuT2X2 with

T being a transition metal element and X being Si or
Ge. From the magnetocrystalline anisotropy calculations
based on SDFT and SDFT+U , we show that the inclu-
sion of Coulomb interaction U and Hund’s coupling J
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is essential to obtain the easy-axis anisotropy. Then,
based on the SDFT+U electronic structures, we eval-
uate magnetic interactions J(q) based on the Liecht-
enstein method and show that the obtained J(q) is in
good agreement with E(q) by the spin spiral calcula-

tions. Our calculations indicate that the finite-Q struc-
ture is determined not only by the Fermi surface topol-
ogy but also by the details of the electronic structure,
and the competition of each Gd-5d orbital contribution
determines whether a ferromagnetic spin configuration
or finite-Q structure is favored in GdT2Si2 with T =
Fe and Ru. According to our calculations, GdRu2X2,
GdOs2X2, and GdRe2X2 are promising candidates, while
GdAg2X2, GdAu2X2, and EuAg2X2 are possible can-
didates for showing the skyrmion lattice phase. Since
the systematic calculations based on the Liechtenstein
method is shown to be helpful in evaluating the finite-
Q structure, the extension to other crystal structure
would be a possible direction to discover and engineer
new skyrmion compounds. On the other hand, develop-
ing new methods to evaluate transport properties in the
short pitch skyrmion phase is another crucial direction for
its practical applications. Since most of the novel phe-
nomena associated with its high skyrmion density have
been studied based on simple models, further develop-
ment is necessary to achieve a better understanding of
material dependence and quantitative evaluations.
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