
Valley-controlled photoswitching
of metal-insulator nanotextures
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Abstract

Spatial heterogeneity and phase competition are hallmarks of strongly-correlated materials [1,

2], directly connected to intriguing phenomena such as colossal magnetoresistance [3, 4, 5] and

high-temperature superconductivity [6, 7]. Active control over phase textures further promises

tunable functionality on the nanoscale [8]. Light-induced switching of a correlated insulator to

a metallic state is well established. However, optical excitation generally lacks the specificity

to select sub-wavelength domains and control final textures. Here, we employ valley-selective

photodoping to drive the domain-specific quench of a textured Peierls insulator. Polarized ex-

citation leverages the anisotropy of quasi-one-dimensional states at the correlated gap to ini-

tiate an insulator-to-metal transition with minimal electronic heating. We find that averting

dissipation facilitates domain-specific carrier confinement, control over nanotextured phases,

and a prolonged lifetime of the metastable metallic state. Augmenting existing manipulation
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schemes, valley-selective photoexcitation will enable the activation of electronic phase sepa-

ration beyond thermodynamic limitations, facilitating optically-controlled hidden states, engi-

neered heterostructures, and polarization-sensitive percolation networks.

Main

The interactions of electronic, orbital, spin and nuclear degrees of freedom govern the emer-

gence of symmetry-broken functional states in solids. Light allows for tilting the balance

between distinct correlated states and phases [9] and enables the control over final states by

precisely tuning the optical interaction (Fig. 1a, top). A prototypical scenario is given by the

optical quench of an electronic density modulation and lattice distortion in charge-density-wave

(CDW) materials [10, 11, 12, 13]. In the prevalent case of a Peierls insulator [14], the interplay

of quasi-one-dimensional (1D) electronic states at the Fermi energy and the lattice instability

lead to the opening of a band gap (∆CDW ) and the formation of electronic valleys in a metal-to-

insulator transition (Fig. 1a, bottom) [15]. Photodoping of occupied bonding and unoccupied

antibonding states at the band edges, in turn, collapses the band gap and transiently reverses the

phase change [16, 17].

Whereas such optical switching frequently occurs on femtosecond timescales, it is largely

indiscriminate with respect to the induced electronic transitions. In particular, correlated states

near the gap are generally populated indirectly via rapid relaxation from optically accessible

higher-lying bands (Fig. 1b, top) [10, 18]. The deposited energy per lifted carrier, therefore, far

exceeds that required for a minimally invasive phase transformation, which leaves the system

with substantial lattice and electronic heat. A valley-polarized population from resonant gap ex-

citation [19], on the other hand, may largely prevent dissipation to promote a minimum-energy

transition pathway (Fig. 1b, bottom). Moreover, close to the photon-energy threshold, the phase

change is expected to become particularly susceptible to local variations of the real-space mi-
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Figure 1: Optical surface electronic texture control via valley-selective photodoping. (a),
Top, schematic of optical control parameters that drive selective surface domain switching. Bot-
tom, the Peierls transition in a one-dimensional atomic chain yields the formation of a periodic
lattice distortion and charge density wave (CDW) with a characteristic energy gap (∆CDW ).
(b), Top, light-induced electronic quench of the CDW phase. A population of states at the
CDW gap, mediated by higher-lying surface bands, is accompanied by electronic and lattice
heating and yields a homogeneous phase change across the surface via delocalized energetic
charge carriers. Bottom, direct band gap excitation (valley-selective) minimizes dissipation
which manifests in domain-specific switching (red wires) with pronounced phase coexistence
and local carrier confinement. (c), Top, Optical transition between the insulating (8×2) and
metallic (4×1) phase of indium nanowires. Center, density-functional-theory (DFT) calculated
electronic band structure of the Si(111)(8×2)- In phase (see Methods for details). ∆Γ and ∆X

denote CDW gaps, leading to the formation of energetic valleys in the band structure. Bottom,
polarized optical absorption. X-valley selectivity at parallel polarization for low excitation en-
ergies enables orientation-specific switching. k|| is the momentum vector along Brillouin zone
high-symmetry points with respect to the wire direction.

crostructure and domain distributions [11, 20].

Realizing such conditions, in this work, we employ valley-selective photodoping of cor-

related electronic states to demonstrate control over the domains and texture of a quasi-one-

dimensional Peierls insulator. Specifically, we exploit the anisotropic absorption of nanowire

domains by tuning both the photon energy and the polarization to the transition matrix ele-

ments most strongly coupled to the structural transformation. The reduction in electronic excess

energy facilitates a minimum-energy pathway to domain-specific switching and a prolonged
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metastable lifetime. This selection of the carrier energy allows for a spatial control over the

phase transition, from delocalized carriers and homogeneous switching at high photon energy

to locally-confined carriers and domain-specific switching for resonant gap excitation. The

here demonstrated photoinduced formation of metallic surrounded by insulating nano-domains

represents the controlled preparation of nanoscale electronic textures, suggesting avenues for

optically engineered electronic percolation and quantum-confinement in ’Peierls heterostruc-

tures’.

Valley-specific excitation of Peierls-distorted atomic wires

Atomic wires formed by indium atoms on the (111) face of silicon [21] are a prominent model

system with near-ideal quasi-1D electronic properties. The corresponding surface reconstruc-

tion in a metallic (4×1) room-temperature phase is characterized by a parallel arrangement

of atomic zigzag chains (Fig. 1c, top) [22]. Upon cooling below the critical temperature

Tc = 125K, a triple-band Peierls transition [23] transforms the system into the insulating

(8×2) hexagon phase. A doubling of lattice periodicity is brought about by shear and rotary

distortions, leading to the formation of interchain and intrachain covalent bonds within the cou-

pled indium chains, respectively [24]. The phase change is equally reflected in the electronic

band structure by the opening of band gaps and concomitant formation of energetic valleys (Fig.

1c, center). Lateral shearing of zigzag chains causes a band gap opening at the surface Brillouin

zone Γ-point (∆Γ) [25], while rotation-induced dimerization of outer indium atoms yields a

band gap at the X-point (∆X) [24].

Notably, the formation of a supercooled metallic (4×1) phase can be triggered by light with-

out reaching the phase transition temperature. In this process, optically generated electrons and

holes rapidly scatter towards correlated electronic states, quenching the insulating band gap and

lifting the structural distortion on a 350 fs timescale [16]. While the ultrafast transition involves
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a directed coherent nuclear motion driven by valley-specific couplings between carrier popula-

tions and well-defined unit cell distortions [24, 26, 17], the associated band structure dynamics

were thus far found to be independent of the incident photon energy [18, 27]. However, the

inherent anisotropy of bands at the insulating gap holds the potential for spatially distinct final

phase textures, which have not been explored [28].

In Fig. 1c, bottom, we display the normalized optical absorption of indium nanowires. For

low photon energies (less than twice the Γ-point gap), we find that absorption is largely limited

to transitions near the X-valley (at the insulating gap ∆X) and to a polarization parallel to the

nanowire direction (absorption at higher energies is shown in Extended data Fig. 11). In this

regime, a ’valley-selective’ transition from bonding to anti-bonding states enables orientation-

dependent optical switching (see also Extended data Fig. 12; Supplementary information for

tight-binding calculations of momentum-resolved absorption).

Creating coexistent electronic phases by polarization-selective
switching

We test this notion experimentally by using time-resolved low-energy electron diffraction

(ULEED) combined with wavelength- and polarization-controlled excitation (see Methods).

In short, ULEED employs backscattering diffraction of electron pulses from surfaces to probe

optically-induced changes of the atomic-scale structure [29, 30, 31, 32]. In the present system,

we monitor the phase transformation via changes in the intensity of characteristic diffraction

peaks. Specifically, at a base temperature of T = 60K, indium nanowires in the (8×2) CDW

phase undergo a pump-induced ultrafast transition into the metastable (4×1) structure, which

is subsequently probed by a photoemitted electron pulse. After the pump pulse, we observe an

intensity decrease and increase of (8×2) and (4×1) diffraction features, respectively.

As a central finding, we observe that the switching efficiency of the atomic wires is
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Figure 2: Polarization, photon energy and domain texture dependency of the (8×2) to
(4×1) switching efficiency. (a), LEED image and real-space sketch of parallel-oriented in-
dium atomic wires on a stepped Si wafer surface with a 2◦-miscut relative the (111) plane. (b),
Polarization-dependent switching efficiency for increasing photon energy, at maximum diffrac-
tion spot suppression (1 − I(8 × 2)∆t=40ps/I(8 × 2)∆t=−150 ps). The in-plane electric field
component is depicted relative to the nanowire direction. Incident fluences from left to right:
1.04, 0.59, 0.62, 1.09, 1.40 mJ cm−2. (c), Three-fold symmetric rotational domains on a flat
Si(111) wafer surface. The LEED image comprises a superposition of domain-specific reflexes.
(d), Polarization-dependent switching of rotational domains. ∆φ denotes the angle between
in-plane electric field and the nanowire orientation. Incident fluences from left to right: 1.60,
1.40, 2.03 mJ cm−2. The transition between valley-selective to multi-band excitation manifests
in a loss of the intrinsic anisotropy.

highly dependent on the incident electric-field polarization. We systematically trace the

photon-energy-resolved intensity suppression of (8×2) diffraction features at a fixed time

delay (∆t = 40 ps) as a function of polarization (analyzed diffraction features are sketched

in Extended data Fig. 13). For this purpose, a preferential orientation of the nanowires on

the Si(111) surface is imposed by a linear step gradient on a 2◦-miscut wafer (Fig. 2a). At

infrared (IR) driving wavelengths (Fig. 2b, left), the observed anisotropy aligns with the

nanowire orientation, which specifically points towards the direct absorption by quasi-1D
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electronic states close to the X point in the surface Brillouin zone (see Fig. 1c, bottom). This

assignment is corroborated by the fingerprint of the involved electronic states, given by their

preferential coupling to the vibrational rotation mode that modulates the structural distortion

upon excitation [24, 26, 17]. Indeed, we observe an increased amplitude of the rotational

mode in complementary coherent control experiments at IR wavelengths (see Supplementary

information).

In the near IR, the anisotropy gradually reverses towards perpendicular polarization (Fig.

2b, right), where the population of correlated states is largely mediated by higher-energy surface

bands, spread across the entire surface Brillouin zone. Our findings are qualitatively consistent

with linear reflectance anisotropy [28] and IR spectroscopy [33] studies. Yet, the non-linear

characteristic of the phase transition efficiency with absorbed fluence further enhances the

differences in absorption [32].

Harnessing the measured intrinsic anisotropy, we next demonstrate real-space texture control

in the rotational domain structure formed naturally on a non-stepped Si(111) surface (Fig. 2c)

(domain size range: 103 − 104 nm2 [34]). Here, the nanowire orientation is directly linked to

the diffraction reflex angle in the LEED image, providing orientation-resolved access to the

phase change within the domain texture. In order to illustrate the dependence of the switching

efficiency with the in-plane electric field component, the domain-specific anisotropy is depicted

with respect to the individual nanowire orientation (Fig. 2d, left). For IR excitation, the polar-

ization dependence agrees with the intrinsic anisotropy, i.e., with that measured on a stepped

surface, which demonstrates domain-specific absorption and switching. In stark contrast, at

shorter near-IR wavelengths, we find a surprisingly isotropic response (Fig. 2d, right), strongly

deviating from the intrinsic anisotropy. From these data, we conclude that the homogeneous

global response of all domains stems from the delocalizing transfer of energetic photoexcited

charge carriers across domain boundaries, effectively eliminating the intrinsic domain response.
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The strong dependence on photon energy is further attributed to the increasing amount of op-

tical excess energy in the electron system after the insulator-to-metal transition, allowing for a

higher mobility across potential barriers between metallic and neighboring insulating domains.

Enhanced metastability from minimized thermal fluctuations

Beyond charge carrier confinement, we examine the implications of lattice heating from pho-

ton excess energy on the metastable state. Specifically, we track the temporal evolution of the

(8×2) spot intensity at identical initial suppression on a stepped wafer and observe a prolonged

lifetime from near-IR to IR excitation (Fig. 3a). We ascribe this difference to photon-energy-

dependent thermal fluctuations, driving the relaxation via over-the-barrier transitions (Fig. 3a,

inset) [36]. Interestingly, we find that the reduction in lattice heating yields an increasingly

ordered metastable (4×1) phase, in which (8×2) phase defects are annihilated [37, 38].

The diffuse scattering background reflects this through an unusual pump-induced intensity re-

duction, becoming more pronounced at low photon energy (Fig. 3b). While thermal fluctuations

lead to a transient increase of elastic scattering, the annihilation of phase defects decreases it,

as the surface is driven into a more homogeneous phase texture. Hence, our findings imply that

valley-selective excitation approaches a pathway with minimized entropy for the phase transi-

tion and leaves the system in a highly-ordered state from which thermal relaxation is suppressed

(Fig. 3c).

Discussion and Outlook

From these observations, an intuitive picture of the spatio-temporal phase change dynamics in

the regime of valley-selective photodoping emerges. IR photon absorption effectively confines

charge carriers to rotational nanodomains, selected by the incident polarization (Fig. 4a). The

population and depopulation of strongly correlated electronic states at the X-valley collapses the
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ergy. (a), Integrated (8×2) diffraction spot intensity as function of pump-probe delay ∆t at 0.8
eV and 1.55 eV incident photon energy on a stepped wafer. The light polarization was chosen
parallel and perpendicular to the nanowire orientation, respectively, corresponding to the maxi-
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sured rotational domain-resolved surface area fraction, switched into the (4×1) phase at 0.8 eV
photon energy (see also Fig. 2d). The insets indicate particularly domain-selective optical
polarization states. (b), Electronic transport in a percolated domain texture within a Hall bar
geometry. Red, metallic (4×1); blue, insulating (8×2) domains. Selective domain switching
could be used to control the transversal anisotropic charge flow. (c), Top, calculated anisotropy
along the conducting network principal axes with incident polarization, using experimental data.
Bottom, transversal to longitudinal voltage ratio across the Hall bar. The voltage polarity can
be optically switched by deselecting individual wire orientations.

band gap (∆X in Fig. 1c) in an insulator-to-metal transition within about 200 fs [18], localizing

the low-energy photoexcited charges to the absorbing domain. As thermal fluctuations are sup-

pressed, the metastability likely persists far beyond the commonly observed few-nanosecond

lifetime [39, 32].

We believe that optically engineered phase textures expand the paradigm of light-induced

phenomena and enable a polarization-sensitive control of functional states in real space. There-

fore, motivated by our experimental findings, we theoretically explore a tangible implementa-

tion of ’Peierls heterostructures’. Polarization-specific switching can yield optically-controlled

electronic properties in correlated percolation networks. While homogeneous switching results

in a surface texture with isotropic conductivity, i.e., an equal fraction of metallic nanowire orien-
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tations, domain-specific switching promises tunable anisotropy when the incident polarization

and fluence is adjusted accordingly (further details are given in Methods). Specifically, we pro-

pose the optical steering of current flow, as manifested by the build-up of a transversal voltage

in a Hall bar geometry (Fig. 4b). The characteristics of this measurement are modeled, based

on experimental data for the orientational composition of nanowires in a metallic percolation

network and the intrinsic conductivity of indium atomic chains [40]. We find that electrical

anisotropy along the principal axes is peaked when one orientation is deselected by choosing a

polarization perpendicular to the wire direction (Fig. 4c, top). In this scenario, the preferential

transport along the wire direction yields a lateral deflection of charge carriers, resulting in a

transversal voltage with tunable polarity (Fig. 4c, bottom). Apart from the shown example,

a possible implementation of optically tailored electronic properties is given by the transient

formation of isolated metallic grains at parallel polarization, resulting in the quantization of

electronic states within the insulating band gap (see Extended data Fig. 14 for tight-binding

simulations of the resulting local density of states).

In conclusion, our results demonstrate the quench of a Peierls insulator by means of valley-

selective optical transitions that specifically address strongly-correlated orbitals. In this way,

we achieve deep sub-wavelength precision in an optically-driven phase change and gain con-

trol over the real-space texture. Our results suggest an important role of optical excess energy

in photo-induced phenomena with immediate ramifications for the ability to prepare and ma-

nipulate coexisting electronic phases. The inherent nature of Peierls physics at the core of

this quasi-1D system implies a broader relevance to materials, wherein changes between elec-

tronic phases are instigated by distinct low-symmetry electronic states. As such, we believe that

polarization-sensitive switching offers a versatile framework for patterning domain structures

and controlling nano-engineered functionalities across various exotic electronic systems, such

as correlated oxides [11, 41, 36, 42, 43, 44, 20], Weyl semimetals [45, 46], and materials ex-
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hibiting electronic nematicity [47, 48, 49, 50]. Hence, optical preparation of electronic phase

separation introduces an additional degree of freedom in light-induced switching.

12



Methods

Density functional theory calculations

We performed DFT simulations within the local-density approximation (LDA) [51] as imple-

mented within the Vienna ab-initio simulation package (VASP) [52]. The electronic structure

is described by projector-augmented wave potentials [53] with a plane wave basis set limited to

a cutoff energy of 250 eV. The surface was modeled using periodic boundary conditions and a

slab with three bilayers of silicon. Si dangling bonds at the bottom layer were saturated with

hydrogen. To determine the ground-state electronic structure, a 2×8×1 Monkhorst-Pack mesh

was used to sample the Brillouin zone of the Si(111)-(8 × 2)In structure, corresponding to 256

k-points in the Si(111)-(1×1) surface unit cell. The band structure calculations were performed

using 40 (10) k-points along the Γ−X (X −M ) directions, respectively.

The orbital character of the bonding and anti-bonding states, as illustrated in Extended data Fig.

12, was determined by integrating the electronic density of states along the X−M direction and

over the topmost 4 valence bands and lowest 4 conduction bands, respectively. The resulting

densities were plotted in Extended data Fig. 12 at an isovalue of 0.033 e−Å−3.

Consistent with the numerical approach outlined in Ref. [28], the oscillator strength was calcu-

lated in independent particle approximation (IPA) from the squared transition matrix elements

(∥Mif∥2) between all occupied (i) and unoccupied (f) surface bands within the Brillouin zone

along the depicted high-symmetry points at parallel and perpendicular polarization with respect

to the wire direction. To this end, we considered 240 occupied and 120 empty bands. The

calculated values at all momenta are energy integrated and normalized to the overall maximum.

Ultrafast LEED and optical setup

Ultrafast low-energy electron diffraction (ULEED) is a technique for the investigation of struc-

tural dynamics at solid-state surfaces by means of an optical-pump/electron-probe scheme (Fig.
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sity.

5) [29, 30, 31, 32]. It combines the high surface sensitivity of photoemitted low-energy elec-

trons in backscattering geometry with ultrafast optical excitation to follow the evolution of

non-equilibrium surface structures .

The demonstrated high temporal and momentum resolution is achieved with a home-built laser-

driven electron gun consisting of a nanometric tungsten tip as well as four metal electrodes

(outer diameter of 2 mm). Ultrashort electron pulses are generated from localized two-photon

photoemission by illuminating the tip apex with femtosecond laser pulses (central wavelength

λc = 400 nm, pulse duration τp = 45 fs, pulse energy Ep = 30 nJ) at a repetition rate of

100 kHz. The small diameter of the electron gun allows for a small sample distance without

blocking the backscattered electrons, resulting in pulse durations down to 16 ps. Detected elec-

trons are amplified and recorded by a combination of a chevron microchannel plate, a phosphor

screen, and a scientific complementary metal–oxide–semiconductor camera.
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In the described experiments, the surface is excited with a wavelength-tunable optical pump

pulse from an optical parametric amplifier (λc=800, 1240, 1550, 2066 nm, h̄ω=1.55, 1.0, 0.8,

0.6 eV, ∆τ = 232 fs) or with a fixed pulse wavelength from a Yb:YAG amplifier system (λc =

1030 nm, h̄ω=1.2 eV, ∆τ=212 fs). The surface is probed by a photoemitted 80 eV electron pulse

with a beam diameter of (≈ 80×80µm2 (FWHM)).

Sample preparation

All experiments in this work have been conducted under ultra-high-vacuum conditions

(base pressure p < 2 × 10−10 mbar), thus minimizing the effect of adsorbate-related (8×2)

ground state recrystallization from the supercooled (4×1) phase [54]. The silicon substrate

(phosphorus-doped wafers with resistivity R=0.6–2Ω cm), showing only a single wire orien-

tation, was miscut by 2 ◦ towards the [-1 -1 2] direction to create a high surface step density.

The oriented steps effectively confine the atomic indium wires along one crystallographic

direction. On the other hand, wafers cut along the (111) face of silicon exhibit much larger

terraces, where all three crystallographically equivalent orientations are equally found. All

samples were cleaned by flash-annealing at 1350 ◦C for five seconds through direct current

heating. Subsequently, 1.2 monolayers of indium were deposited onto the resulting Si(111)

(7×7) surface reconstruction at room temperature and annealed at T=400 ◦C for 300 s. The

resulting Si(111) (4×1)-In phase was inspected in our ultrafast LEED setup and subsequently

cooled to a base temperature of T=60 K using an integrated continuous-flow helium cryostat.

The phase transition between the high-temperature (4×1) and low-temperature (8×2) phases

was observed at a temperature of 125 K.
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Tight-binding simulations
Model for homogeneous systems

Following Ref. [26] we choose a quasi-1D tight-binding Hamiltonian with four coupled parallel

chains. Indexing of the lattice sites for two (4 × 1) unit cells is shown in Fig. 6. Due to the

symmetry in this setup we denote this as the symmetric configuration or metallic phase (see

the discussion further below on the band structure of the system). Note that this configuration

corresponds to the high temperature phase. We will add a distortion to the lattice, which leads

to a metal-insulator transition and doubled lattice periodicity, similar to a Peierls transition [14].

This corresponds to the (8× 2) low-temperature configuration.

Figure 6: Lattice site indexing for two unit cells in the symmetric (high-temperature) con-
figuration. [modified from Ref [26]].

We discuss our approach on the simpler symmetric configuration, which consists of 4 sites

per unit cell. Let m ∈ {1, ..., N} be the index for the unit cell and α ∈ {A,B,C,D} the

intracell index. A general tight-binding Hamiltonian in real space is denoted as:

H =
∑

(m,α),σ

ϵ(m,α)c
†
(m,α),σc(m,α),σ −

∑
<i,j>,σ

tij
(
c†i,σcj,σ + c†j,σci,σ

)
, (1)

where σ is the spin index, ϵ(m,α) is the on-site energy on lattice site (m,α), and tij is the hopping

strength between lattice sites i and j, where we simplify the notation by setting (m,α) =: i and

(m′, α′) =: j in the second sum. c†i,σ is the usual fermionic annihilation (creation) operator for
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an electron with spin σ on lattice site i. We omit the spin index of the two spin directions in

the following, as they are treated independently. In position space, this leads to the following

matrix representation of the Hamiltonian:

Hreduced =



ϵAA tAB tAC tAD tAA′ tAB′ tAC′ tAD′

tBA ϵBB tBC tBD tBA′ tBB′ tBC′ tBD′

tCA tCB ϵCC tCD tCA′ tCB′ tCC′ tCD′

tDA tDB tDC ϵDD tDA′ tDB′ tDC′ tDD′

tA′A tA′B tA′C tA′D ϵA′A′ tA′B′ tA′C′ tA′D′

tB′A tB′B tB′C tB′D tB′A′ ϵB′B′ tB′C′ tB′D′

tC′A tC′B tC′C tC′D tC′A′ tC′B′ ϵC′C′ tC′D′

tD′A tD′B tD′C tD′D tD′A′ tD′B′ tD′C′ ϵD′D′


=:

 H intra
cell T inter

cell

(T inter
cell )† H intra

cell



(2)

Note that this matrix considers only intercell hopping between two adjacent unit cells as

well as intracell hopping inside the two unit cells. The hopping rates tij , which are finite for

our system, are colour coded (equal colors correspond to equal transition amplitudes in the

symmetric case). In the second equality we have split up the Hamiltonian into intercell and

intracell operators. Given the shape of the unit cell, we can write the Hamiltonian as a tensor

product:

H =
∑
n

|n⟩⟨n| ⊗H intra
cell +

(∑
n

|n⟩⟨(n mod N) + 1| ⊗ T inter
cell + h.c.

)
(3)

The n mod N term implements the periodic boundary conditions in the direction paral-

lel to the wires (in perpendicular direction, we apply open boundary conditions). We use the

discrete translational symmetry of the system to calculate the momentum eigenstates using

|n⟩ = 1√
N

∑
k e

−ikn|k⟩ with k = 2πm
aN

and m = 1, ..., N and set the distance between two unit

cells a = 1. Note that k here corresponds to k∥ in Fig. 1c of the main text. Following the

naming of transition variables from Ref. [26], we obtain the Bloch Hamiltonian H(k) for the
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a

b

Figure 7: Electronic band structure for (a) the metallic symmetric phase and (b) the distorted
insulating phase. Bands are folded back around the X-point of the distorted configuration. The
respective Fermi energies are shown as a dashed line in both plots.

(4× 1) unit cell:

H(k) =


ϵO − 2tO cos k −2tIOe

−ik
2 cos k

2
0 0

−2tIOe
ik
2 cos k

2
ϵI − 2tI2 cos k −2tI1e

ik
2 cos k

2
0

0 −2tI1e
−ik
2 cos k

2
ϵI − 2tI2 cos k −2tIOe

−ik
2 cos k

2

0 0 −2tIOe
−ik
2 cos k

2
ϵO − 2tO cos k

 (4)

The eigenstates of the entire system are then found via numerical diagonalization of H(k)

and calculation of the tensor product with |k⟩ for each allowed value of k. For each energy

eigenvector with H|Ψn⟩ = En|Ψn⟩ we find a corresponding state, constructed from |k⟩, and
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the eigenvectors of H(k), i.e. |Ψn⟩ ↔ |k⟩ ⊗ |i⟩ (up to an arbitrary complex phase), where

|k⟩ = 1√
N

∑
n e

−ikn|n⟩ and |i⟩ are the eigenvectors of H(k). Due to the dimension of H(k)

we have four energies for each possible value of k, corresponding to the band structure for

the symmetric configuration (Fig. 7A). We adapt the parametrization from Ref. [26] to model

the metal to insulator phase transition of the indium nanowires. To this end, two parameters

are introduced, corresponding to shear- and rotational structural distortions. The effect on the

transition rates is then modeled by:

tij(dij) = tij exp
[
−αij

(
dij − d0ij

)]
, (5)

where d0ij and dij are the distances between lattice sites i and j before and after distortion,

respectively. The distortion leads to a unit-cell doubling due to discrete translational symmetry

breaking. Fig. 7b shows the band structure of the symmetry-broken configuration in a reduced

scheme, i.e. the band structure is folded back around the X-point.

Model for a Peierls heterostructure

The Hamiltonian for the Peierls heterostructure combines the insulating Peierls-distorted phase

and the metallic symmetric phase. We model the Hamiltonian as being made up of (8× 2) unit

cells where the distortion parameters for each cell can be individually altered and the transi-

tion rates change according to Eq. 5. A metallic domain of 20 cells width ≈ 15.4 nm [26] is

sandwiched between two equally sized homogeneously distorted insulating regions (each of 96

cell width ≈ 73.7 nm). Given the periodic boundary conditions in our model, the two insulating

regions should be considered as one region connecting to the metallic domain on both sides. As

a side note, the cells in the metallic region contain two symmetric unit cells, i.e. 40 (4× 1) unit

cells. Large jumps in the distortion parameters on the phase junction/boundary are avoided by

designating a transition region of 4 cells (≈ 3.1 nm) where the parameters are linearly interpo-

lated (Fig. 8). This junction size is derived from experimentally determined values of 0.4-7 nm
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[35].

0 1 2 3 4 5 6 7 8 9 10
unit cell index

Insulating
  region

Transition
  region

Metallic 
 region

Figure 8: Lattice for a heterostructure with a transition region extending over 4 unit cells.

The corresponding Hamiltonian is not symmetric under arbitrary lattice translations, hence

defining crystal momentum in this system is non-trivial. Instead of investigating the band struc-

ture, we calculate the local density of states (LDOS) which we define at cell index i and energy

E as LDOS(i, E) :=
∑

n,x∈ unitcell(i) |Ψn(x)|2 δ(E − En). Since we are grouping 8 sites of a

unit cell into one cell index, using the cell index to be the position is only valid as long as the

distortion of the unit cells is small. This is the case for our choice of parameters. We broaden the

resulting LDOS values with a bivariate Lorentzian with a mean absolute deviation of γ = 0.015,

corresponding to a spatial resolution of approximately 1.5 nm and 3 · 10−3 eV,

LDOSγ(i, E) =
∑
l,n

γ · LDOS(l, En)

2π
((

i−l
N

)2
+
(

E−En

Emax−Emin

)2
+ γ2

)3/2
. (6)

The calculated LDOS for the Peierls heterostructure is depcted in Extended data Fig. 14.

Conductivity in a percolation network

The rotational domain texture of indium nanowires [34] is approximated by a randomized

Voronoi tiling. To this end, a Voronoi network and corresponding Delauney triangulation is

constructed from a Poisson-distributed point grid of 600×600 sites. For finding the percolation
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threshold, we follow established procedures [55, 56]. An active seed site is placed on the net-

work center and its neighbors are turned on with a probability p or turned off with probability

1 − p [57]. Depending on p, the seed will either die off or grow indefinitely, thus marking

the transition towards a fully percolated network. Statistical averaging was performed across

500 runs for each p to determine the critical threshold pc for growth beyond the grid bounds

(Fig. 9a). We find pc ≈ 0.54, in good agreement with the literature value for Voronoi tiling

percolation (pc = 0.5) [55, 56].

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Pe
rc

ol
at

io
n 

pr
ob

ab
ilit

y

p

pc

N
or

m
. c

on
du

ct
iv

ity

Percolation 
threshold

σ(4×1)

(4×1)(8×2)
ϕc=0.5

ba

Figure 9: Voronoi tiling percolation and conductivity in percolation network. (a), The size
of the largest connected component in a randomized Voronoi network is calculated as function
of switching probability p. (b), Conductivity of the resulting percolative metallic network above
the tiling percolation threshold, following a universal scaling law (∝ (⟨ϕ⟩ − ϕc)

1.3) [58].

Above the percolation threshold, p approaches the network filling factor ϕ, i.e. the metal-

lic/insulating surface fraction. The effective conductivity of the network, in this regime, follows

a universal scaling law [58]:

σeff ∝ (⟨ϕ⟩ − ϕc)
t (7)

where t is a critical exponent with universal value of 1.3 for 2D systems (Fig. 9b) [59]. For the

presented simulations, we chose ⟨ϕ⟩ = 0.6 , above the percolation threshold.
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Electrical anisotropy

The electrical properties of the percolated network are modeled as an ensemble average of

metallic rotational domains, determined from experimental data. To this end, we consider the

polarization dependence of switched nanowires (see also Fig. 2d in the main text) to depend

both on the relative absorption as well as on the non-linear switching yield with absorbed flu-

ence. Fig. 10a shows the fluence-dependent switched area fraction ϕi(F ) for 1.2 eV photon

energy, where i denotes the nanowire orientation. Even though the following calculations are

performed for 0.8 eV, the threshold characteristic was found to be universal in the investigated

energy range. A best fit to the data was found for the phenomenological expression:

ϕi(F ) = ath · arctan((F − fth)/wth) + cth (8)

where ath, fth, wth and cth denote fit parameters for the threshold amplitude, fluence, width and

central value and F is the incident fluence. For 1.2 eV, the nanowire absorption anisotropy is

completely diminished by charge carrier delocalization across all domains. For 0.8 eV, how-

ever, the absorbed fluence and switched area fraction become orientation-specific. Hence, the

polarization dependence of the switched area fraction is fit by an anisotropic absorption:

ϕi(F, φ) = ath · arctan((F · (A||cos(φ− φ0)
2 + A⊥sin(φ− φ0)

2)− fth)/wth) + cth (9)

where A||, A⊥ and φ0 are fit parameters for the relative absorption and nanowire orientation

with respect to the in-plane electric field and φ denotes the incident polarization angle. Fits to

the experimental data are depicted in Fig. 10b.

In the simulation of a percolative conduction network, we choose a corresponding F for

every φ so that the mean switched surface area:

⟨ϕ⟩ =
3∑

i=1

ϕi(F0.6, φ)/3 (10)
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Figure 10: Fits to experimental data. (a), Fluence-dependent isotropically switched surface
fraction at 1.2 eV incident photon energy (markers) and fit to the experimental data (line). (b)
Polarization-dependent and domain-resolved switched surface fraction at 0.8 eV incident pho-
ton energy (markers) and fit to the experimental data (lines).

reaches a constant value of 0.6, well above the percolation threshold (see Methods: Conduc-

tivity in a percolation network). In this way, the composition of the metallic network of ro-

tational domains is weighted by the orientation-resolved relative fraction of switched domains

(ϕi(F0.6, φ)/(3⟨ϕ⟩)).

Based on the experimental data, we calculate the anisotropic resistivity tensor of the rotational

domain texture from the ensemble mean. To this end, we follow established procedures for

anisotropic conductive fillers, embedded in an insulating matrix [60, 61].

The intrinsic in-plane resistivity tensor of indium nanowires is:

ρ =
(
ρ|| 0
0 ρ⊥

)
(11)

where ρ|| = 1/σ|| = 1.4×103Ω/square and ρ⊥ = 1/σ⊥ = 8.3×104Ω/square are taken from

literature [40]. Within the ensemble of rotational domains, the mean resistivity ⟨ρ⟩ is expressed

in terms of a tensor rotation by the angle of nanowires θ with respect to the above parallel axis

[62, 63]:

ρ̄ = (ρ|| + ρ⊥)/2 (12)

∆ρ = (ρ|| − ρ⊥)/2 (13)
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⟨ρ⟩ =
(
ρ̄+∆ρ⟨cos(2θ)⟩ ∆ρ⟨sin(2θ)⟩
∆ρ⟨sin(2θ)⟩ ρ̄−∆ρ⟨cos(2θ)⟩

)
(14)

The angular dependence is calculated with respect to one nanowire orientation (i = 2 in fig.

10B), such that θ1 = −2π/3, θ2 = 0 and θ3 = 2π/3:

⟨cos(2θ)⟩ = (ϕ1(F0.6, φ) cos(2θ1) + ϕ2(F0.6, φ) cos(2θ2) + ϕ3(F0.6, φ) cos(2θ3))/3⟨ϕ⟩ (15)

⟨sin(2θ)⟩ = (ϕ1(F0.6, φ) sin(2θ1) + ϕ2(F0.6, φ) sin(2θ2) + ϕ3(F0.6, φ) sin(2θ3))/3⟨ϕ⟩ (16)

Diagonalization of the mean resistivity yields the anisotropy ratio, i.e. the ratio of diagonal

components, with respect to the polarization-dependent principal axes (Fig. 4c in the main

text). In the depicted Hall bar geometry, the current J is constrained in the x-direction (J = Jx).

The resulting electric field ratio is thus calculated as:

Ey/Ex = ⟨ρ⟩xy/⟨ρ⟩xx = ∆ρ⟨sin(2θ)⟩/(ρ̄+∆ρ⟨cos(2θ)⟩) (17)
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Figure 11: Polarized optical absorption at near-IR photon energies. Calculated normalized
optical absorption at near-IR photon energies. The absorption is delocalized throughout the
electronic band structure and unspecific towards incident polarization.
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Figure 12: Band structure and valley-selective photoexcitation. Left, density-functional-
theory (DFT) calculated electronic band structure of the Si(111)(8×2)-In phase (see Methods
for details). Gray, projected Si bulk bands; dark green, surface localized bands; red, quasi-1D
states with bonding and anti-bonding orbital character (right). ∆Γ and ∆X denote CDW gaps,
leading to the formation of energetic valleys in the band structure. k|| and k⊥ are the momentum
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a b c

Figure 13: Analyzed diffraction features. Schematic diffraction image of the (8×2) indium
phase on the (111) face of a Si wafer. (8×2) diffraction spots, analyzed in (a), Fig. 2b on a
stepped wafer and b, Fig. 2d on a flat wafer are highlighted (blue). c, (8×2) (blue) and diffuse
background (green) features, analyzed in Fig. 3.
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Figure 14: Tight-binding calculation of Peierls heterostructure local density of states. (a),
Sketch of transient quantum well formation due to suppressed relaxation dynamics and domain-
specific switching. Long-lived metallic segments are embedded in relaxed insulating nanowires.
(b), Tight-binding calculations of the local density of states along the atomic chain show the
formation of quantized metallic states within the insulating band gap (∆X). In the transition
region one expects strong band bending and therefore high curvature, which increases the ef-
fective mass of the electron and causes localization. Mismatch in band alignment between the
metallic and insulating phase further leads to confinement even beyond the insulating gap in
metallic and insulating segments.
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Supplementary information

Simulation results for TB model

In the presented tight-binding calculations, the complexity arising from time-dependent optical

intensity or the manifold of structural degrees of freedom acting in concert, is omitted. However,

a qualitative understanding of valley-selective optical absorption, arising from the formation of

a CDW gap is captured by Eq. 2 in the Methods section.

Current operator

In order to discuss the currents and the associated absorption anisotropies (see Methods section

), we treat the system in the two-dimensional plane with coordinates (x, y) and unit vectors

x̂ and ŷ for both directions, respectively. We can then define currents in the system, which

are parallel to the chain directions (longitudinal direction, denoted by x̂) and orthogonal to it

(transverse direction, denoted by ŷ). Following Ref. [64], we can formulate a current operator

for each direction:

Jx =
N⊥

Na

∑
ij

tij(dij)
(
t̂ij · x̂

) (
c†icj − c†jci

)
, (18)

where t̂ij is the unit vector pointing in the direction of the bond connecting lattice sites i and

j and N⊥ is the number of chains perpendicular to the chain direction, i.e. four in this model.

Analogously, for the orthogonal direction we replace x̂ by ŷ. We use the expression for the

optical conductivity derived in Ref. [65] and adapt it to account for half-filling. In this way, we

calculate the absorption spectrum as the real part of the optical conductivity σ(ω):

σx/y(ω) =
π

ω
Im


∑

n0 ≤ N
2

nex > N
2

∣∣∣⟨Ψn0 |Ĵx/y|Ψnex⟩
∣∣∣2( 1

ω + (Enex− E0) + iγ
− 1

ω − (Enex− E0) + iγ

)
(19)
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a b c

d e f

Figure 15: Tight-binding simulation results for homogeneous systems. (a,d) Lattice config-
uration in real space, (b,e) band structure with weighted transitions and (c,f) optical conductivi-
ties for the metallic phase and insulating phase, respectively. ∆Γ corresponds to the energy gap
in Fig. 1c

Optical conductivities

We calculate the optical conductivities from optical transitions in the band structure for both

the symmetric and distorted nanowire structures (Fig. 15). The current operator matrix ele-

ments |⟨Ψn0|Ĵx/y|Ψnex⟩|2 of individual transitions are depicted in Fig. 15b and e, while optical

conductivities for both phases are shown in Fig. 15c and f. In qualitative agreement with DFT

calculations (see Fig. 1c of the main text), we find a strongly anisotropic absorption for the

insulating phase at the zone-boundary CDW gap along the nanowire direction.

Coherent control at IR- and near-IR excitation

A direct fingerprint of the involved electronic states is given by their preferential coupling to

the individual amplitude phonon modes that modulate the structural distortion upon excitation

[24, 26, 17]. Specifically, DFT calculations show that the electronic rearrangement due to the
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population of states at the Γ-point initiates a shearing between coupled indium chains while

the depopulation of states around the X-point drives a hexagon rotary motion (Fig. 16a). We

detect the resulting structural dynamics from an optical excitation in a coherent control scheme

[32], where a weak first pulse of variable wavelength creates vibrational coherence within the

(8×2) minimum of the potential energy landscape along the structural distortion (Fig. 16b).

Subsequently, a stronger near-infrared pulse transforms a fraction of indium atomic wires into

the (4×1) phase, as probed by an electron pulse at ∆t=40 ps. The switched surface fraction thus

becomes dependent on the momentary vibrational state and its impact on overcoming the po-

tential energy barrier [17]. Oscillations in the relative switching yield with delay time between

optical pulses reveal the vibrational modes, excited by 1.0 eV photons (Fig. 16c). A Fourier

transform shows contributions from both shear and rotary modes, as previously observed for

higher photon energies [32], suggesting relevant transitions within the entire surface Brillouin

zone (Fig. 16d) [18]. The relative strength of the shear mode is likely attributed to the stronger

electron-phonon coupling of zone-center electronic states [26]. On the other hand, spectral tran-

sitions from 0.6 eV photons are highly localized at the X-point, thus coupling primarily to the

rotation mode, as manifested in the oscillatory component of the relative switching yield (Fig.

16e) and the corresponding Fourier transform (Fig. 16f). The inferred decisive role of charge

carriers around the X-point for the phase transition is in perfect agreement with photoemission

spectroscopy and molecular dynamics simulations [18].
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Figure 16: Photon-energy-resolved vibrational coherences in coherent control measure-
ments. (a), Calculated band structure along the momentum direction, parallel to the atomic
wire. CDW gaps at the Γ- and X-points preferentially couple the shear and rotation vibrational
amplitude modes, respectively. (b), Scheme for coherent control measurements. A first weaker
preparation pulse creates a coherent vibrational oscillation in the ground state (left), which is
translated into a measurable difference in ensemble averaged switching efficiency, depending
on the momentary vibrational state upon the arrival of a stronger switch pulse (Eph=1.2 eV)
after time ∆τ (center). The resulting switched surface fraction is probed by a later electron
pulse at ∆t=40 ps (right). (c), Relative switching yield as function of ∆τ for a preparation pulse
photon energy of 1.0 eV, showing characteristic vibrational oscillations. (d), The correspond-
ing Fourier transform reveals the relative amplitudes at the shear mode (0.55 THz) and rotation
mode frequencies (0.82 THz) [24, 66]. (e), Analogous measurement for a preparation pulse
photon energy of 0.6 eV (f), The Fourier transform of the time trace shown in (e).
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