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Two-line Josephson traveling wave parametric amplifier

Victor K. Kornev, Alena N. Nikolaeva, and Nikolay V. Kolotinskiy∗

Lomonosov Moscow State University, Moscow, Russia

Feasibility of two-line design of Josephson traveling wave parametric amplifier aimed at increase of the

allowed pump wave energy and hence the gain growth is analyzed and discussed. Serious restrictions follow

from both the cyclic energy transfer of the pump, signal and idler waves in the coupled waveguide lines and

the phase mismatch of the waves. Besides, impact of the artificial line discreteness on the phase mismatch is

considered as well.
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I. INTRODUCTION

The parametric amplification mechanism enables extremely

high-sensitive amplifiers capable of providing a noise tem-

perature TN lower than the ambient temperature. A traveling

wave design concept of the amplifiers allows overcoming a

gain-bandwidth trade-off that is peculiar to cavity-based para-

metric amplifiers. Josephson traveling wave parametric am-

plifiers (JTWPAs) are based on the use of artificial discrete

lines composed of Josephson-junction cells which can consist

of either single Josephson junctions or SQUIDs of different

types (with different numbers of junctions). These amplifiers

capable of working at low and very low temperatures and ap-

proaching a quantum limit level sensitivity are considered as

promising readout devices in the field of precision quantum

measurements, quantum communications and quantum com-

puting (see [1, 2], and review [3]). In the capacity of the work-

ing reactive parameter, JTWPAs exploit a strongly nonlinear

kinetic inductance of Josephson junctions

LJ = LJ0/cos(ϕ) (1)

attributable to their superconducting current component

Is = Ic sin(ϕ) , (2)

where Ic is the critical current of Josephson junction, ϕ is the

Josephson-junction phase, LJ0 =Φ0/(2πIc), and Φ0 = h/(2e)
is the magnetic flux quantum.

In JTWPA, the energy of the pump wave is used up in its

transfer to both the signal and idle waves, as well as to the

higher harmonics and undesired components with combined

frequencies. This means that both the achievable gain and dy-

namic range are restricted by the depletion of the pump wave

[4, 5], as the starting amplitude of the pump wave is limited by

the critical current values of the Josephson junctions used. A

two-line JTWPA design driven by magnetic flux has been pro-

posed [6] for the purpose of problem solving. In this design,

a distinct non-Josephson (linear) transmission line is used for

pump wave’s propagation. The pump wave, with a sufficiently

high amplitude, applies traveling magnetic flux to the SQUID-

like cells in the signal line to provide the modulation of the

cells’ inductances in a traveling wave pattern [7]. However,

∗ kolotinskij@physics.msu.ru

from our point of view, one needs more fundamental consid-

eration of the two-line amplifier designs, especially since no

successfully realizations of such JTWPAs has been reported

so far.

II. CONSIDERATION OF TWO COUPLED WAVEGUIDES

In this paper, we analyse and discuss the feasibility of JTW-

PAs based on using two coupled artificial waveguide lines,

taking into consideration also the discreteness of the lines.

Figure 1 shows equivalent circuits of two coupled waveg-

uide lines with capacitive (a) and inductive (b) couplings re-

alised through either the linking capacitance C0 or the mutual

inductance M, respectively. In the continuum approximation,

the telegraph equations for the first system can be written as

follows:

∂U1

∂x
=−L1

∂ I1

∂ t
, (3)

∂ I1

∂x
=−C1

∂U1

∂ t
−C0

∂ (U1 −U2)

∂ t
, (4)

∂U2

∂x
=−L2

∂ I2

∂ t
, (5)

∂ I1

∂x
=−C2

∂U2

∂ t
−C0

∂ (U2 −U1)

∂ t
, (6)

where U1,2 and I1,2 are the voltage and the current in the lines

1 and 2, respectively. These equations yield in the following

set of two coupled wave equations:

v2
01

∂ 2U1

∂x2
=

∂ 2U1

∂ t2
−α1

∂ 2U2

∂ t2
, (7)

v2
02

∂ 2U2

∂x2
=

∂ 2U2

∂ t2
−α2

∂ 2U1

∂ t2
, (8)

where v2
01 = (L1C1)

−1
, v2

02 = (L2C2)
−1

are the partial phase

velocities in square, α1 = C0/(C1 + C0) ≈ C0/C1, α2 =
C0/(C2 +C0) ≈ C0/C2 are the capacitive coupling factors of

the lines. In case of inductive coupling, telegraph equations
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FIG. 1: Equivalent circuits of two coupled waveguide lines with capacitive (a) and inductive (b) couplings realized through

either the linking capacitance C0 or the mutual inductance M, respectively.

are as follows:

∂U1

∂x
=−L1

∂ I1

∂ t
−M

∂ I2

∂ t
, (9)

∂ I1

∂x
=−C1

∂U1

∂ t
, (10)

∂U2

∂x
=−L2

∂ I2

∂ t
−M

∂ I1

∂ t
, (11)

∂ I1

∂x
=−C2

∂U2

∂ t
, (12)

and yield in the similar set of two coupled wave equations:

v2
01

∂ 2I1

∂x2
=

∂ 2I1

∂ t2
−η1

∂ 2I2

∂ t2
, (13)

v2
02

∂ 2I2

∂x2
=

∂ 2I2

∂ t2
−η2

∂ 2I1

∂ t2
(14)

where v2
01 = (L1C1)

−1
, v2

02 = (L2C2)
−1

are the partial phase

velocities in square, η1 = M/L1, η2 = M/L2 are inductive

coupling factors of the lines.

Owing to the similarity of the wave equation sets (7), (8)

and (13), (14), one can consider the only first one and looking

for its solution as

U1 = Acos(ωt − kx) , U2 = Bcos(ωt − kx) . (15)

In this case, Eqs. (7) and (8) give the following set of two

linear equations for the wave amplitudes:

(

k2v2
01 −ω2

)

A+α1ω2B = 0, (16)

α2ω2A+
(

k2v2
02 −ω2

)

B = 0. (17)

Equating determinant of the set to zero, one comes to the

following equation
(

k2v2
01-ω2

)(

k2v2
02-ω2

)

−α1α2ω4 = 0. (18)

Solution of this equation gives two values for the squared

wave vector k2 and hence two values for the squared phase

velocity v2 = ω2/k2.

In the case of identical lines, when v2
01 = v2

02 = v2
0 and α1 =

α2 = α , the equation solution is as follows:

k2 =
ω2

v2
0

(1±α), (19)

v2 =
v2

0

(1±α)
≈ v2

0(1∓α), (20)

k1,2 =
ω

v0

(

1± α

2

)

= k0 ±∆k, (21)

v1,2 =
v0

(

1± α
2

) ≈ v0

(

1∓ α

2

)

= v0 ∓∆v, (22)

where k0 = ω/v0, ∆k = (a/2)k0, and ∆v = (a/2)v0.

Thus, the wave process in both lines consists of two waves

having different phase velocities. Amplitude ratio can be eas-

ily obtained from Eqs. (16) and (17):

χ1,2 ≡
B

A

∣

∣

∣

∣

k1,2

=
αω2

(

k2v2
0 −ω2

) =
α

(1±α)− 1
=±1. (23)

And therefore, the wave process in the lines is as follows:

U1 = A1 cos(ωt − k1x)+A2 cos(ωt − k2x) , (24)

U2 = A1 cos(ωt − k1x)−A2 cos(ωt − k2x) . (25)

When rf signal source U = Acos(ωt) is applied to input of

the only one of the two lines, e.g. to the first line, it corre-

sponds to the following simple boundary conditions

A1 +A2 = A, A1 −A2 = 0, (26)

resulting in amplitude values

A1 =−A2 = A/2. (27)

and hence in the following wave dynamics:

U1 = A · cos

(

k1 − k2

2
x

)

cos

(

ωt − k1 + k2

2
x

)

= A · cos(αk0x)cos(ωt − k0x) , (28)
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FIG. 2: Beat wave process in two coupled identical

waveguide lines, when rf signal source U = Acos(ωt) is

connected to input of the only first line.

U2 = A · sin

(

k1 − k2

2
x

)

sin

(

ωt − k1 + k2

2
x

)

= A · sin(αk0x)sin(ωt − k0x) . (29)

This is a beat process corresponding periodical transfer of the

wave energy from one waveguide line to the other line and

back as shown in Fig. 2. Any coupling of identical waveg-

uide lines leads to strong their connectedness yielding in full

energy transferring between the lines, and values of the cou-

pling factors α1, α2 influence only on the periodic beat length

Λ = 2π/(k1 − k2) (30)

In the case of nonidentical waveguide lines having differ-

ent partial phase velocities and coupling factors, the solution

of Eq. (18) has a much more complicated form. However, at

weak connectedness of the lines, when

4α1α2

v2
01v2

02
∣

∣v2
02 − v2

01

∣

∣

2
≪ 1, (31)

the solution can be expressed approximately as follows (as-

suming that v2
02 > v2

01):

k2
1 =

ω2

v2
01

[

1+
α1α2v2

01
(

v2
02 − v2

01

)

]

= k01 +∆k1, (32)

k2
2 =

ω2

v2
02

[

1− α1α2v2
02

(

v2
02 − v2

01

)

]

− k02 +∆k2, (33)

v2
1 = v2

01

[

1− α1α2v2
01

(

v2
02 − v2

01

)

]

= v01 +∆v1, (34)

v2
2 = v2

02

[

1+
α1α2v2

02
(

v2
02 − v2

01

)

]

= v02 +∆v2, (35)

where k01 = ω/v01, k02 = ω/v02,

∆k1 =
α1α2v2

01

2
(

v2
02 − v2

01

)k

01

, (36)

∆k2 =
α1α2v2

02

2
(

v2
02 − v2

01

)k

02

, (37)

and

∆v1 =
α1α2v2

01

2
(

v2
02 − v2

01

)v01, (38)

∆v2 =
α1α2v2

02

2
(

v2
02 − v2

01

)v02. (39)

In this case, amplitude ratio is different:

χ1 ≡
B

A

∣

∣

∣

∣

k1

=− α2v2
01

(

v2
02 − v2

01

) ≈− α2v01

2(v02 − v01)
, (40)

χ2 ≡
B

A

∣

∣

∣

∣

k2

=

(

v2
02 − v2

01

)

α2v2
01

≈− 1

χ1
. (41)

In force of weak connectedness, coefficient |χ1| is small,

while |χ2| is oppositely high.

When rf signal source U = Acos(ωt) is applied to input of

the only first line, boundary conditions

A1 +A2 = A, χ1A1 + χ2A2 = 0 (42)

yield in

A1 =
χ2

(χ2 − χ1)
A, A2 =− χ1

(χ2 − χ1)
A. (43)

Thus, the wave process in the coupled nonidentical lines can

be written as follows:

U1 = A1 cos(ωt − k1x)+A2 cos(ωt − k2x)

= D(x)cos(ωt − k1x+θ (x)) , (44)

U2 = A1 cos(ωt − k1x)−A2 cos(ωt − k2x)

= 2A
|χ1|χ2

(χ2 − χ1)
sin

(

(k1 − k2)

2
x

)

× sin

(

ωt − (k1 + k2)

2
x

)

, (45)
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FIG. 3: Beat wave process in two coupled nonidentical

waveguide lines at weak connectedness of the lines, when rf

signal source U = Acos(ωt) is connected to input of the only

first line.

where

D(x) = A1

√

1+ 2cos

(

k1 − k2

2
x

)

A2

A1

+

(

A2

A1

)2

, (46)

tan(θ ) =
A2 sin

(

k1−k2
2

x
)

A1 +A2 cos
(

k1−k2
2

x
) ≈ A2

A1

sin

(

k1 − k2

2
x

)

. (47)

This is also beat-like process with the cycle length (30) but

with much lower energy transferring from the first line to the

second one and back due to weak connectedness as shown in

Fig. 3.

III. TWO-LINE JTWPA CRITICAL ISSUES

In the case of the two-line JTWPA, the wave processes

shown in Figs. 2 and 3 for strong and weak connectedness

of the lines are described as the pump wave propagation, as

well as the signal and idler waves propagation. One can sup-

pose that the pump signal is applied to the input of the first

line while the input signal is applied to the second line. Then,

the pump wave penetrates into the second line in the form of

beats and changes phase by π every beat cycle. This fact limits

the possible length of the used lines to the only one beat cycle

length Λ (described by Eq. (30)) or even less. Indeed, at strong

connectedness, the length of the coupled lines should be ap-

preciably less than the beat cycle length since the permissible

amplitude of the pump wave propagating in the second line is

restricted by the critical current value of Josephson junctions.

This limitation of the line length imposes a restriction on the

attainable gain of the JTWPA. Moreover, the inevitable leak

of the signal and idler waves into the other line additionally

decreases the gain.

C

L

C

C

L

C

FIG. 4: Fragment of two artificial waveguide lines of the flux

driven JTWPA [6]. In the design, the pump wave current Ip

flowing through the inductance L of the first line applies

magnetic flux to the dc SQUID cell of the second (signal)

line and provides periodic modulation of the cell inductance.

All these restrictions are actual also for the flux driven

JTWPA [6] based on using two magnetically coupled artificial

lines, where one of the lines is composed of dc SQUID cells

as shown in Fig. 4. To apply some flux to the SQUID cells

by a pump wave propagating along the other line to modulate

the cell inductance, some mutual inductance value M has to

be provided between the inductance L of the first line (used

for pump wave) and half an inductance LSQ/2 of the SQUID

loop. In this case, the pump wave current Ip flowing through

the inductance L induces also electromotive difference across

the SQUID cell

U =−M

2
· dIp

dt
=−iωp

M

2
Ip. (48)

This fact evidences the existence of mutual coupling of the

lines characterized by coupling factor η = M/(2L). In such a

way, the flux driving process will be accompanied by a trans-

fer of the pump wave energy into the second (signal) line as

well as also by a leak of the signal and idler waves into the

other line.

The other important drawback and restrictions follow from

the presence of an inevitable phase mismatch between the

pump wave and the signal and idler waves in the most in-

teresting case of a weak connectedness of the coupled lines.

As seen from expressions Eqs. (32) and (33), in continuum

approximation the signal and the idler waves propagating in

the same waveguide line have the same phase velocity equal

to either v1 or v2 (in dependence of the number of the used

line). However, the pump signal transferred from the other

line propagates along this line with other phase velocity v cor-

responding to the mean wave vector (k01 + k02)/2 as shown

in Fig. 5.

Artificial discrete LC waveguide lines should be descried

by discrete telegraph equations:

In − In+1 = iωCUn, (49)

Un −Un−1 = iωLIn+1, (50)
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FIG. 5: Phase velocities v1 and v2 (solid lines) of the two

eigen waves in the system of two coupled continuum

waveguide lines at weak connectedness. Dashed line shows

phase velocity v corresponding to the mean wave vector

(k1 + k2)/2

.

where the propagating wave is considered as a harmonic wave,

and the cell size of the discrete line a = 1. These equations

result in the following dispersion expression:

sin2 (k/2) =
ω2

ω2
cut

(51)

and the phase velocity

v =
ω

k
=

ω

2arcsin
(

ω
ωcut

) , (52)

where

ωcut =
2√
LC

(53)

is the cut-off frequency of the discrete line. Moreover, such a

discrete line has complex wave impedance

Z0 = iωL/2+
√

L/C− (ωL)2/4 =
√

L/C·eiθ (54)

where

θ = arcsin

(

ω

ωcut

)

. (55)

The existence of the cut-off frequency gives good possibil-

ity to keep the higher harmonics of pump signal and the inter-

modulation components out of the frequency band. However,

in a one-line JTWPA, the frequency dependent phase velocity

does not allow achieving good phase matching between the

pump, signal and idler waves and hence a higher gain in wide

frequency band without an additional dispersion engineering

technique. The restrictions can be mitigated in the one-line

JTWPA with using 4-wave mode of operation: ωs+ωi = 2ωp,

when all the waves frequencies are located nearer with each

other in the vicinity of ωcut/3 where the wave velocities are

quite close, and at the same time, both the harmonics of ωp

and the intermodulation components produced by the cubic

nonlinearity are above the cut-off frequency.

0.4 0.8 1.20.0

0.2

0.4

0.6

vv1

idler

cut2cut1

pumpsignal

Ph
. v

el
oc

ity
, a

rb
. u

.

Frequency , arb. units

v2

FIG. 6: Phase velocities v1 and v2 (solid lines) of the two

eigen waves in the system of two coupled discrete waveguide

lines with different cut-off frequencies at weak

connectedness. Dashed line shows phase velocity v

corresponding to the mean wave vector (k1 + k2)/2.

In the case of a two-line JTWPA, one can recommend to

use per contra 3-wave mode of operation ωs +ωi = ωp as a

better trade-off. Figure 6 shows the phase velocities v1 and v2

of the two eigen waves in the system of two coupled discrete

waveguide lines with different cut-off frequencies at weak

connectedness, as well as a possible frequency scheme cor-

responding to the 3-wave operation mode, where the pump

source is connected to the line 2 and the pump wave propa-

gates along the line with phase velocity v2. The signal source

is connected to input of the line 1 and the signal wave prop-

agates along this line with phase velocity v1 together with

idler wave. The pump wave penetrates in part into the line

1 and then propagates along the line with the phase velocity v

(shown by dashed line) corresponding to the mean wave vec-

tor (k1 + k2)/2. In the shown frequency scheme, this velocity

is quite close to the one of the signal and idler waves. This

allows achieving quite well phase matching needed for the ef-

fective signal amplification.

IV. CONCLUSION

In such a way, the two-line design of Josephson traveling

wave parametric amplifier meets with serious restrictions fol-

lowing from both the cyclic energy transfer of the travelling

waves in the coupled waveguide lines and the phase mismatch

of the pump, signal and idler waves due to the line coupling

and the line discreteness.
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