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Abstract.

In this work, we discuss the possibility of reaching the Ziman conditions for

collective heat transport in cubic bulk semiconductors, such as Si, Ge, AlAs and AlP.

In natural and enriched silicon and germanium, the collective heat transport limit is

impossible to reach due to strong isotopic scattering. However, we show that in hyper-

enriched silicon and germanium, as well as in materials with one single stable isotope

like AlAs and AlP, at low temperatures, normal scattering plays an important role,

making the observation of the collective heat transport possible. We further discuss the

effects of sample sizes, and analyse our results for cubic materials by comparing them

to bulk bismuth, in which second sound has been detected at cryogenic temperatures.

We find that collective heat transport in cubic semiconductors studied in this work is

expected to occur at temperatures between 10 and 20 K.
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1. Introduction

The study of the heat transport regimes in bulk and low dimensional materials in

general, and of the phonon hydrodynamics in particular, currently attracts a renewed

interest [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], both from theoretical and experimental

viewpoints. The discussion of recent advances can be found in the review article of

Ref. [4].

In most of the litterature until very recently, a regime in which phonons behave not

as independent carriers but as a collective excitation [14, 15] which manifests itself in

the form of the second sound temperature wave or of the Poiseuille flow, is referred to

as the hydrodynamic regime. Indeed, the hydrodynamic behaviour is expected to occur

in the limit where momentum-conserving ”normal” phonon-phonon scattering processes

dominate over resistive scattering processes. However, it was pointed out recently [2, 3]

that this collective Ziman limit is not the only regime in which non-Fourier effects can

be observed [3, 6]. As wave-like heat transport at the nanoscale [3, 6] is also referred to

as hydrodynamic heat transport in litterature [6], and to avoid confusion, in this work

we follow the clarification of Ref. [2] and discuss the collective (or Ziman) limit of heat

transport, rather than hydrodynamic regime.

The heat flow regimes in suspended graphene and graphene nanoribbons were

studied very actively [8, 16, 17, 18, 19, 20, 21] since the prediction, by ab initio methods,

of the occurence of collective transport regime in graphene nanoribbons [18, 19, 20,

21]. Recently the Poiseuille flow of phonons was experimentally observed in black

phosphorus [9], graphite [22, 1, 7, 23] and SrTiO3 [24]. All of these materials have

particular distinct features in their phonon dispersion facilitating ”normal” momentum-

conserving scattering processes necessary to reach the collective limit. The first two

materials, as well as graphene, belong to the group of 2D- or layered systems in

which the non-linear out-of-plane fluxural phonon mode plays a role of the efficient

scattering channel which accumulates decaying phonons from linear acoustic branches.

SrTiO3 is an ”incipient ferroelectric” with a ”falling” optical polar phonon mode at the

Brillouin zone (BZ) center which strongly decreases in frequency when the temperature

is decreased but, in contrast to real ferroelectrics, is eventually stabilized by quantum

fluctuations [25, 26]. Moreover, recently coherent second sound waves were observed in

a dense magnon gas [27]. At the same time, the collective limit of heat transport

was observed only in relatively few ”common” 3D materials, such as Bi [28, 29],

solid hellium [30], and NaF [31, 32] at cryogenic temperatures. In materials such as

natural Si and Ge, the dominance of resistive processes, and in particular scattering by

isotopes, prevents the occurence of the collective limit. We note that the importance

of the isotopic scattering in the damping of the peak of thermal conductivity at low

temperatures was demonstrated in many works [33, 34, 35, 36, 37, 38, 1]. At the

same time, we note that in contrast to the collective limit, the ”high-frequency”, or

”driftless” second sound was recently observed in bulk Si and Ge [3, 6] in a rapidly

varying temperature field. As it was pointed out in Ref. [3], in the latter case the
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dominance of the normal scattering events is not necessary to observe wave-like heat

transport, the slow decay of the energy flux being the key requirement instead.

Turning back to the collective limit of heat transport, methods based on the density

functional perturbation theory and on the Boltzmann transport equation (BTE) were

shown to accurately predict the conditions of the occurence of the collective limit in

many materials [21, 39, 5, 4, 22]. It is expected to occur in samples with sizes defined

by the interplay between normal phonon scattering (τN), phonon-boundary (τb) and

resistive scattering (τR) times [39], under the condition: τN < τb < τR.

In the present work we apply the approach similar to the one of Ref. [39] or Ref. [5] to

discuss the conditions of the occurence of the collective limit of heat transport in cubic

semiconductors, such as silicon, germanium, AlAs and AlP, as a function of isotope

composition and at temperatures below 50 K. We show that in materials with single

stable isotope, such as AlAs and AlP, or in isotopically hyper-enriched silicon, the

collective limit of heat transport can be reached at temperatures between 10 and 20 K,

where the normal scattering dominates. We show that the reasons for the absence of

the collective limit in natural silicon and germanium is isotopic scattering, and that

collective heat transport phenomena such as ”drifting” second sound could in principle

be observed in hyper-enriched silicon and germanium samples, which become available

today [40].

2. Methodology and computational details

2.1. Methodology

To identify the conditions for the occurence of the collective limit of phonon transport,

we use the solution of the Boltzmann transport equation (BTE) beyond the single mode

approximation (SMA), which allows to explicitly take into account the repopulation

of phonon states. Thus, we use a ratio κV AR/κSMA between the lattice thermal

conductivity obtained by the solution of BTE iobtained with the variational approach

(V-BTE) and the one obtained in the single mode approximation (SMA-BTE), as

the criterium a of the occurence of the collective regime. We also compare the

thermodynamic average scattering rate of ”normal” (momentum conserving) phonon-

phonon scattering processes, Γn
av to resistive Umklapp phonon-phonon scattering rate,

ΓU
av, as well as to other resistive scattering rates due to isotopic scattering, and to

boundary scattering [39]. The thermodynamic averages of different phonon-scattering

rates are calculated as [39]: Γav =
∑

ν
CνΓν∑
ν
Cν

, where where Cν is the specific heat of the

phonon mode ν. We note that in this work, we consider isotropic cubic crystals, in which

all transport directions are equivalent, and thus there is no need to consider direction-

dependent averages of scattering rates, as it has to be done in highly anisotropic

materials [7].



Collective heat transport in cubic semiconductors 4

composition Mav gs

HEN Si28-99.9995%, Si29-0.0005% 27.98 6.38 · 10−9

EN Si28-99.983%, Si29-0.014%, Si30-0.003% 27.98 3.31 · 10−7

NAT Si28-92.23%, Si29-4.67%, Si30-3.10% 28.09 2.01 · 10−4

Table 1. Silicon. Composition, average mass Mav (in atomic mass units) and the

isotopic disorder parameter gs for hyper-enriched, HEN, (Ref. [40]), enriched, EN, and

natural, NAT, silicon.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

κ
V

A
R
(W

/m
-K

)

ph-ph only
ph-ph + iso. natural
ph-ph + iso. enriched
ph-ph + iso. hyper-enriched

Exp. natural Ref. [37]
Exp. enriched Ref. [37]
Theo. natural 2.82 mm
Theo. enriched 2.82 mm
Theo. hyper-enriched 500 mm
Theo. hyper-enriched 20 mm

10 50 100 200 300

Temperature (K)

10
0

10
1

10
2

κ
V

A
R
/κ

S
M

A

10 50 100

(a) (b)

(d)(c)

Figure 1. Panels a and c: the lattice thermal conductivity κV AR and the ratio

κV AR/κSMA for Si without boundaries. Black solid line - pure silicon with phonon-

phonon scattering mechanism only; Red, blue and green dashed-dotted lines - natural,

enriched and hyper-enriched silicon with phonon-phonon + isotopic scattering. Panels

c and d: the lattice thermal conductivity and the ratio κV AR/κSMA for Si with

boundaries, for different millimetric sample sizes.

2.2. Computational details

Si, AlAs and AlP are described within density functional perturbation theory in

local density approximation (DFT-LDA) with norm-conserving pseudopotentials [41].

Harmonic force constants were computed on a 8×8×8 q-point grid using Density

Functional Perturbation theory (DFPT) [42] as implemented in the Quantum

ESPRESSO package [43]. Third-order anharmonic constants of the normal and

Umklapp phonon interactions have been computed on a 4×4×4 q-point grid sampling

the Brillouin zone (BZ) using the DFPT formalism as implemented in the D3Q

package [44] and then Fourier-interpolated on the denser 30×30×30 grid necessary

for converged integrations of the phonon-phonon scattering rates [44, 45]. The lattice

thermal conductivity has been computed with the linearized Boltzmann transport
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equation and the variational method (V-BTE) on a 30×30×30 q-point grid with the

smearing parameter σ = 2 cm−1 [46, 45]. Phonon-boundary scattering is modeled by the

Casimir model with the cylindrical geometry for millimeter-sized wires [47, 45, 48], in

the completely diffusive limit with no specularity [39, 49]. Isotope scattering is described

with the widely used Tamura model [50, 51, 47, 45] with the scattering probability:

P iso
jq,j′q′ =

π

2N0

ωjqωj′q′

[
njqnj′q′ +

njq + nj′q′

2

]
×

×δ(h̄ωqj − h̄ωq′j′)
∑
s

gs

∣∣∣∣∣∑
α

zsαqj ∗ zsαq′j′

∣∣∣∣∣
2

(1)

where s run over all atoms, α is the Cartesian coordinate index, j is the phonon branch

index, q is the phonon wavevector, zsαqj is the phonon eigenmode, ωqj is the phonon

frequency, gs =
(Ms−<Ms>)2

<Ms>
is the mass variance parameter.

3. Results: calculated thermal conductivity

3.1. Phonon state repopulation in Si and isotope scattering effect

In panel a of figure 1, we show the thermal conductivity (without boundary) calculated

within the V-BTE approach for natural silicon, isotopically enriched silicon, and extra-

pure silicon which became available recently [40], and which we will refer to as ”hyper-

enriched Si” in the present work. The isotopic compositions of Si studied in our work

are summarized in table 1. In panel b, we show our results for the thermal conductivity

of silicon in presence of boundary scattering. In presence of boundary scattering, our

calculated thermal conductivity of Si with various isotopic compositions is found in good

agreement with available experimental data [37, 38]. We note that our calculations of

the lattice thermal conductivity of Si, as well as those of AlAs and AlP which will

be discussed later, are also in agreement with previous ab initio calculations [52, 53]

(previous theoretical data of Ref. [53] has been obtained for the 100-400 K temperature

range).

In panel c of Fig. 1, we show the ratio κV AR/κSMA, for Si with various isotopic

compositions. At room temperatures and down to 70 K, the ratio κV AR/κSMA is

equal to one for all samples, which is a clear signature of the kinetic regime, where

heat is transported by single phonon modes. However, as one can see in panel c,

the ratio κV AR/κSMA for isotopically pure silicon attains two orders of magnitude

below 20 K (black curve), and similar results are obtained for hyper-enriched silicon

(blue dashedcurve), demonstrating the importance of the normal processes and of the

repopulation for pure and hyper-enriched samples below 20 K. Therefore, the possibility

of the collective heat transport limit is not excluded for these samples. In contrast,

one can see that the collective heat transport limit is not possible in natural silicon

according to our analysis (red dashed curve with crosses), and in agreement with

common knowlege. Indeed, the κV AR/κSMA ratio is close to one, and thus one can
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Figure 2. Panels a and b: the lattice thermal conductivity κV AR and the ratio

κV AR/κSMA for AlP and AlAs. Black solid and dashed lines - pure AlP and AlAs

respectively with phonon-phonon interaction only.

conclude that the resistive processes dominate and that the repopulation does not

play any important role in the latter case. In the isotopically enriched silicon case

(green dashed curve with dots), the κV AR/κSMA ratio is much larger than that of the

natural silicon, however, there is no temperature regime in which it attains one order of

magnitude.

According to our resuls, the same conclusions are valid for germanium (results not

shown): in natural and isotopically enriched samples, the possibility of the collective

heat transport limit which could potentially exist in hyper-enriched or pure samples, is

destroyed by isotopic scattering.

In order to further investigate the possibility of the collective heat transport limit

in the isotopically hyper-enriched silicon and to compare with experiments, we include

boundary scattering. In panels b and d of Fig. 1, we show the thermal conductivity of Si

and the ratio κV AR/κSMA for various isotopic compositions and in presence of boundary

scattering for different sample sizes. In panel b, our computational results for 2.82 mm

sample size, for natural and enriched silicon, are compared with the experimental results

of Ref. [37]. As one can see, the agreement between calculated and experimental thermal

conductivity is very good. To illustrate the effect of sample size on the lattice thermal

conductivity, we also show the calculated results in hyper-enriched silicon for the 20 mm

and 500 mm sizes.
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As one can see in panel d of Fig. 1, as expected, the ratio κV AR/κSMA is reduced

in presence of the boundary scattering, for all sizes and all isotopic compositions.

Nevertheless, normal processes play an important role for hyper-enriched samples,

especially for sample sizes of 20 mm and larger.

The possibility of the collective heat transport limit in isotopically enriched samples

of 2.82 mm size was discussed in Ref. [37]. As one can see in panel d of Fig. 1, we find

indeed that the ratio κV AR/κSMA for those samples (blue dot-dashed curve) exceeds

1 for temperatures between 10 K and 60 K, with the maximum value of 1.8 at 25 K,

confirming the conclusions of Ref. [37] that the collective heat transport can exist to

some extent. However, the effect of the repopulation of phonon states by the normal

processes is strongly reduced by the isotopic and boundary scattering for 2.82 mm

samples.

3.2. Repopulation in AlAs and AlP

In the previous section, we have demonstrated that the isotopic stattering is the main

reason why the collective limit can not be observed in Si and Ge, while it could exist

in pure or hyper-enriched samples. This is the reason why we have decided to further

explore cubic materials that naturally have no isotopes, such as AlP and AlAs.

In panel a of Fig. 2, we show our calculated lattice thermal conductivity for AlP and

AlAs, as a function of temperature. In panel b of Fig. 2, in analogy with the analysis

of Fig. 1, we show the ratio κV AR/κSMA for AlP and AlAs. One can see that, similarly

to pure Si, the κV AR/κSMA ratio for AlP attains two orders of magnitude around 17 K.

The same is true for AlAs, at slightly lower temperatures around 8 K. Thus, we conclude

that according to our results, repopulation due to normal processes is very strong in

AlP and AlAs at low temperatures. Therefore, the collective transport limit can also

exist in AlP and AlAs. Also, we can conclude that contrary to common belief, normal

processes play an important role in cubic materials such as Si, AlP and AlAs, but at

temperatures below 20 K, and when isotopic scattering is absent or strongly reduced.

In the next section, we further analyse the effect of sample sizes.

4. Discussion: size effects and scattering rates

The effect of boundary scattering, analysed in panel d of Fig. 1 for silicon, appears to be

very strong. Indeed, the κV AR/κSMA between 10 and 20 K for hyper-enriched samples is

reduced by almost two orders of magnitude (without borders), from about one hundred

to 3.7 in 20 mm samples (green curve).

In Fig. 3, we compare κV AR/κSMA ratios in hyper-enriched silicon, cubic AlP and

bismuth, which was studied in our earlier works [39, 48]. The interest in comparing

materials studied in the present work with Bi resides in the fact that the collective

heat transport (drifting second sound) was experimentally observed in the latter [28].

As one can see in Fig. 3, scattering by boundaries reduces the repopulation effects
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Figure 3. κV AR/κSMA ratio for AlP and hyper-enriched Si samples of 20 mm,

compared to κV AR/κSMA ratio for Bi sample of 9.72 mm.

in all three materials. We can also note that the effect of repopulation reduction by

boundary scattering appears to be somewhat weaker in Bi, resulting is larger peak

value of κV AR/κSMA ratio. At the same time, the peak value of κV AR/κSMA in AlP at

16 K for 20 mm sample is still comparable to that of Bi at 3.2 K for 9.72 mm sample,

indicating that observation of the collective heat transport limit in AlP must be possible

at temperatures around 16 K for 20 mm samples.

To further understand why the effect of repopulation reduction by boundary

scattering is stronger in Si and AlP compared to Bi, we study the average scattering

rates in Fig. 4. By comparing the Umklapp and normal scattering rates in panels a

(Si), b (AlP) and c (Bi) of Fig. 4, we notice that overall, in all three materials the

normal scattering dominates over the Umklapp scattering at low temperatures. In that

respect, cubic materials studied in this work are similar to Bi. The major role of isotopic

scattering, which is the dominant scattering process below 70 K in natural silicon, is

also illustrated in panel a of Fig. 4.

Coming now to boundary scattering rates, we notice that for equal sample sizes,

boundary scattering rates are 4 to 5 times larger in Si and AlP, compared to Bi. This

fact, which is due to larger phonon group velocities in Si and AlP as compared to those

in Bi, explains why the repopulation reduction by boundary scattering is stronger in Si

and AlP.

5. Conclusions

In this work we have performed the theoretical analysis of the conditions necessary to

reach the collective heat transport limit in silicon with various isotopic compositions, as

well as in AlAs and AlP which contain naturally one single stable isotope. While the
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collective heat transport is impossible in natural silicon due to isotopic scattering, it

can in principle be reached in hyper-enriched Si, as well as in natural AlAs and AlP. We

have shown that, contrarily to common belief, the normal phonon-phonon scattering

processes play an important role in cubic semiconductors below 20 K, similarly to

Bi where collective heat transport phenomena have been experimentally observed. In

addition, in the cubic materials studied in this work, the possibility to reach the collective

heat transport limit is reduced by the large phonon group velocities that enhance the

effect of boundary scattering with respect to, e.g., bismuth. Nevertheless, as we have

shown in the present work, the observation of the collective heat transport limit in AlP

must be possible at temperatures around 16 K for 20 mm samples.
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[3] A. Beardo, M. López-Suárez, L. A. Pérez, L. Sendraand M. I. Alonso, C. Melis, J. Bafaluy,



Collective heat transport in cubic semiconductors 10

J. Camacho, L. Colombo, R. Rurali, F. X. Alvarez, and J. S. Reparaz. Observation of second

sound in a rapidly varying temperature field in Ge. Sci. Adv., 7:eabg4677, 2021.

[4] K. Ghosh, A. Kusiak, and J.-L. Battaglia. Phonon hydrodynamics in crystalline materials.

J. Phys.: Condens. Matter, 34:323001, 2022.

[5] K. Ghosh, A. Kusiak, and J.-L. Battaglia. Effect of characteristic size on the collective phonon

transport in crystalline GeTe. Phys. Rev. Materials, 5:073605, 2021.

[6] A. Beardo, M. Calvo-Schwarzwalder, J. Camacho, T. G. Myers, P. Torres, L. Sendra, F. X. Alvarez,

and J. Bafaluy. Hydrodynamic heat transport in compact and holey silicon thin films. Phys.

Rev. App., 11:034003, 2019.

[7] Z. Ding, J. Zhou, B. Song, V. Chiloyan, M. Li, T.-H. Liu, and G. Chen. Phonon hydrodynamic

heat conduction and knudsen minimum in graphite. Nano Lett., 18:638, 2018.

[8] Y. Machida1, N. Matsumoto, T. Isono, and K. Behnia. Phonon hydrodynamics and

ultrahigh–room-temperature thermal conductivity in thin graphite. Science, 367:309, 2020.

[9] Y. Machida, A. Subedi, K. Akiba, A. Miyake, M. Tokunaga, Y. Akahama, K. Izawa, and K. Behnia.

Observation of Poiseuille flow of phonons in black phosphorus. Science Advances, 4:eaat3374,

2018.

[10] D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H Fan, K. E. Goodson, P. Keblinski, W. P.

King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi. Nanoscale

thermal transport. II. 2003-2012. Applied Physics Reviews, 1:011305, 2015.

[11] S. Volz, J. Ordonez-Miranda, A. Shchepetov, M. Prunnila, J. Ahopelto, T. Pezeril, G. Vaudel,

V. Gusev, P. Ruello, E. Weig, M. Schubert, M. Hettich, M. Grossman, T. Dekorsy, F. Alzina,

B. Graczykowski, E. Chavez-Angel, J-S. Reparaz, M. R. Wagner, C. M. Sotomayor-Torres,

S. Xiong, S. Neogi, and D. Donadio. Nanophononics: state of the art and perspectives. Eur.

Phys. J. B, 89:15, 2016.

[12] C. W. Chang, D.Cohen Okawa, H. Garcia, A. Majumdar, and A. Zettl. Breakdown of Fourier’s

law in nanotube thermal conductors. Phys. Rev. Lett., 101:075903, 2008.

[13] N. Yand, G. Zhang, and B. Li. Violation of Fourier’s law and anomalous heat diffusion in silicon

nanowires. Nano Today, 5:85, 2010.

[14] A. Cepellotti and N. Marzari. Thermal transport in crystals as a kinetic theory of relaxons. Phys.

Rev. X, 6:041013, 2016.

[15] A. Cepellotti and N. Marzari. Transport waves as crystal excitations. Phys. Rev. Mat., 1:045406,

2017.

[16] X. Li and S. Lee. Crossover of ballistic, hydrodynamic, and diffusive phonon transport in suspended

graphene. Phys. Rev. B, 99:085202, 2019.

[17] A. K. Majee and Z. Aksamija. Dynamical thermal conductivity of suspended graphene ribbons

in the hydrodynamic regime. Phys. Rev. B, 98:024303, 2018.

[18] J. Zhang, X. Huang, Y. Yue, J. Wang, and X. Wang. Dynamical response of graphene to thermal

impulse. Phys. Rev. B, 84:235416, 2011.

[19] G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, and F. Mauri. Thermal conductivity

of graphene and graphite: collective excitations and mean free paths. Nano Lett., 14:6109, 2014.

[20] S. Lee, D. Broido, K. Esfarjani, and G. Chen. Hydrodynamic phonon transport in suspended

graphene. Nature Communications, 6:6290, 2015.

[21] A. Cepellotti, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, and N. Marzari. Phonon

hydrodynamics in two-dimensional materials. Nature Communications, 6:6400, 2015.

[22] X. Huang, Y. Guo, Y. Wu, S. Masubuchi, K. Watanabe, T. Taniguchi, Z. Zhang, S. Volz,

T. Machida, and M. Nomura. Observation of phonon Poiseuille flow in isotopically purified

graphite ribbons. Nat. Comm., 14:2044, 2023.

[23] S. Huberman, R.A. Duncan, K. Chen, B. Song, V. Chiloyan, Z. Ding, A.A. Maznev, G. Chen, and

K.A. Nelson. Observation of second sound in graphite at temperatures above 100 K. Science,

10.1112:science.aav3548, 2019.

[24] V. Martelli, J.L. Jimenez, M. Continentino, E. Baggio-Saitovitch, and K. Behnia. Thermal



Collective heat transport in cubic semiconductors 11

transport and phonon hydrodynamics in strontium titanate. Phys. Rev. Lett., 120:125901,

2018.

[25] K. M. Rabe, C. H. Ahn, and J.-M. Triscone. Physics of Ferroelectrics. A Modern Perspective.

Springer-Verlag, Berlin Heidelberg, 2007.

[26] V. L. Gurevich and A. K. Tagantsev. Second sound in ferroelectrics. Sov. Phys. JETP, 67:206–212,

1988.

[27] V. Tiberkevich, I. V. Borisenko, P. Nowik-Boltyk, V. E. Demidov, A. B. Rinkevich, S. O.

Demokritov, and A. N. Slavin. Excitation of coherent second sound waves in a dense magnon

gas. Scientific Reports, 9:9063, 2019.

[28] V. Narayanamurti and R.C. Dynes. Observation of second sound in bismuth. Phys. Rev. Lett.,

28:1461, 1972.

[29] L.P. Mezhov-Deglin, V.N. Kopylov, and E.S. Medvedev. Contributions of various phonon

relaxation mechanisms to the thermal resistance of the crystal lattice of bismuth at temperatures

below 2 K. Sov. Phys. JETP, 40:557, 1974.

[30] C. C. Ackerman, B. Bertman, H. A. Fairbank, and R. A. Guyer. Second sound in solid helium.

Phys. Rev. Lett., 16:789, 1966.

[31] H. E. Jackson, C. T. Walker, and T. F. McNelly. Second sound in NaF. Phys. Rev. Lett., 25:26,

1970.

[32] D. W. Pohl and V. Irniger. Observation of Second Sound in NaF by Means of Light Scattering.

Phys. Rev. Lett., 36:480, 1976.

[33] P. D. Thacher. Effect of boundaries and isotopes on thermal conductivity of LiF. Phys. Rev.,

156:975, 1967.

[34] V. I. Ozhogin, A. V. Inyushkin, A. N. Taldenkov, A. V. Tikhomirov, and G. E. Popov. Isotope

effect in the thermal conductivity of germanium single crystals. JETP Lett., 63:490, 1996.

[35] A. P. Zhernov and A. V. Inyushkin. Kinetic coefficients in isotopically disordered crystals. Phys.

Usp., 45:527–555, 2002.

[36] L. Lindsay. First principles Peierls-Boltzmann phonon thermal transport: A topical review.

Nanoscale and Microscale Thermophysical Engineering, 20:67, 2016.

[37] A. V. Inyushkin, A. N. Taldenkov, A. M. Gibin, A. V. Gusev, and H.-J. Pohl. On the isotope

effect in thermal conductivity of silicon. Phys. Status Solidi C, 1:2995, 2004.

[38] A. V. Inyushkin, N. V. Abrosimov, A. N. Taldenkov, J. W. Ager, E. E. Haller, H. Riemann, H-J.

Pohl, and P. Becker. Ultrahigh thermal conductivity of isotopically enriched silicon. J. Appl.

Phys., 123:095112, 2018.

[39] M. Markov, J. Sjakste, G. Barbarino, G. Fugallo, L. Paulatto, M. Lazzeri, F. Mauri, and N. Vast.

Hydrodynamic heat transport regime in bismuth : a theoretical viewpoint. Phys. Rev. Lett.,

120:075901, 2018.

[40] N.V. Abrosimov, D.G. Aref’ev, P. Becker, H. Bettin, A.D. Bulanov, M. F. Churbanov, S.V.

Filimonov, V.A. Gavva, O.N. Godisov, A.V. Gusev, T.V. Kotereva, D. Nietzold, M. Peters,

A.M. Potapov, H.-J. Pohl, A. Pramann, H. Riemann, P.-T. Scheel, R. Stosch, S. Wundrack,

and S. Zakel. A new generation of 99.999 enriched 28 Si single crystals for the determination

of Avogadro’s constant. Metrologia, 54:599, 2017.

[41] M. Fuchs and et al. http://www.fhi-berlin.mpg.de/th/fhi98md/fhi98PP/.

[42] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi. Phonons and related crystal properties

from density-functional perturbation theory. Rev. Mod. Phys., 73:515, 2001.

[43] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra,

R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso,

S. de Gironcoli, P. Delugas, R. A. DiStasio Jr.and A. Ferretti, A. Floris, G. Fratesi, G. Fugallo,

R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-Y. Ko, A. Kokalj,
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