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Abstract

Achieving high-performance in multi-object tracking algorithms heavily relies on modeling spatio-
temporal relationships during the data association stage. Mainstream approaches encompass rule-
based and deep learning-based methods for spatio-temporal relationship modeling. While the former
relies on physical motion laws, offering wider applicability but yielding suboptimal results for com-
plex object movements, the latter, though achieving high-performance, lacks interpretability and
involves complex module designs. This work aims to simplify deep learning-based spatio-temporal
relationship models and introduce interpretability into features for data association. Specifically, a
lightweight single-layer transformer encoder is utilized to model spatio-temporal relationships. To
make features more interpretative, two contrastive regularization losses based on representation align-
ment are proposed, derived from spatio-temporal consistency rules. By applying weighted summation
to affinity matrices, the aligned features can seamlessly integrate into the data association stage of
the original tracking workflow. Experimental results showcase that our model enhances the major-
ity of existing tracking networks’ performance without excessive complexity, with minimal increase
in training overhead and nearly negligible computational and storage costs. Our code is available at
https://github.com/liuzhonglincc/RATracker.

Keywords: Representation Alignment, Multi-Object Tracking, Contrastive Regularization, Spatio-Temporal
Relationship

1 Introduction

Multi-Object Tracking (MOT) has been a long-
standing challenge in the field of computer vision
[1-3]. The main objective of MOT is to accu-
rately determine the positions of various objects

of interest within a video and to establish dis-
tinct trajectories for each of these objects. The
potential applications of high-resolution MOT
are widespread, encompassing areas such as
autonomous driving [4], video analysis [5, 6], and
scene comprehension [7].


https://github.com/liuzhonglincc/RATracker

Temporal Rule

Spatial Rule

Fig. 1: Demonstration of representation align-
ment rules: Temporal rule reduces gap between
consecutive frame’s target representations, while
spatial rule unites representations of the same
object.

While many researchers [8—11] are increasingly
inclined towards addressing the MOT problem
by simultaneously tackling both object detection
and tracking, the tracking-by-detection (TBD)
approach remains a prominent paradigm in MOT
due to its efficiency and cost-effectiveness [12-14].
In the tracking-by-detection approach, the MOT
task is divided into two distinct tasks: object
detection and association. The first task involves
identifying and localizing target objects in each
frame, while the second task revolves around
solving the challenge of associating historical tra-
jectories with presently detected objects.

To achieve high-performance tracking results,
a diverse array of algorithms and models have
been proposed, incorporating spatial and tem-
poral clues. These include methodologies like
the Kalman filter [15], optical flow [16], mem-
ory buffers [17, 18], Long Short-Term Memory
(LSTM) networks [19], graph-based approaches
[19, 20], and transformer models [21-23]. These
algorithms and models aim to leverage spatial
and temporal relationships through deep learn-
ing frameworks or manually devised association
rules. While deep learning frameworks can yield
remarkable tracking performance, their associa-
tion components require meticulous design and
can sometimes become intertwined with the foun-
dational architecture. Conversely, rule-based algo-
rithms offer greater flexibility and interpretability,

but they lag in performance when faced with
objects exhibiting irregular motion patterns.

Is there a simple decoupled module that can
effectively model spatio-temporal relationships in
principle to suit general tracking scenarios while
maintaining excellent tracking performance? To
answer this question, we first identify two straight-
forward yet highly effective rules that can be
applied to complex object motions. These two
rules are then formalized as contrastive regulariza-
tion terms for training a lightweight module that
doesn’t rely on object detection. This detector-free
module facilitates the provision of temporally and
spatially aligned features, aiding in the improve-
ment of data association.

The two proposed rules provide a broader and
contrastive perspective on the alignment of repre-
sentations, summarizing the spatial and temporal
relationships among targets as:

1. Representations of same target in consecutive
frames should be brought closer, while repre-
sentations of different targets should be pushed
farther apart.

2. Representations of regions originating from the
same target should be brought closer, whereas
they should be pushed apart otherwise.

The first rule ensures that same objects in con-
secutive frames are aligned to improve consistency
over time. This is based on the idea that the
appearance or position of an object doesn’t change
much between two successive frames. The sec-
ond rule focuses on aligning object parts across
different regions to enhance spatial consistency.
This is guided by the principle that parts of
the same category tend to have smaller differ-
ences between parts of different categories. When
considering the distance between representations
of different regions within the same object, it’s
akin to measuring differences within a category
(intra-class difference). On the other hand, the
distance between regions from different objects
represents differences between categories (inter-
class difference). As intra-class differences are
typically smaller, regions from the same object
should be brought closer in representation space,
while regions from different objects should be
pushed further apart. Please note that these two
rules are not applicable to all scenarios. In cer-
tain specific situations, such as tracking rapidly



moving objects, the first rule is no longer appli-
cable. Similarly, in cases involving tracking stage
actors dressed similarly, the second rule ceases to
be applicable. The above two rules are depicted in
Figure 1.

We apply these two rules as contrastive regu-
larization terms during the training of a module
called Representation Alignment Module (RAM).
The RAM is a versatile component due to its
lack of dependency on detectors, allowing it to
be seamlessly integrated into any tracker that fol-
lows the tracking-by-detection paradigm. It takes
the detector outputs as inputs, enhances the fea-
tures, and generates features that are aligned
either spatially or temporally, which are then used
for subsequent association steps. The RAM’s effi-
ciency lies in its simplicity, as it only requires a
single-layer transformer for encoding the aligned
features. Additionally, the training overhead and
memory requirements are minimal, as the training
solely relies on the target’s bounding boxes in the
video, rather than using complete video frames.
We refer to trackers that incorporate RAMs as
RATrackers.

The key to contrastive regularization lies in
creating proper sets of triplets. Hermans et al. [24]
confirmed that employing an appropriate triplet
generation strategy can unleash the tremendous
potential of triplets. Inspired by the successful
approach of ByteTrack [14], which employs bound-
ing boxes to achieve state-of-the-art performance,
we also utilize bounding boxes as the primary clue
for creating triplets. We reformulate the task of
creating these sets as a problem of target asso-
ciation based on bounding boxes. In this setup,
the target that corresponds to the anchor target
is treated as the positive sample, while the ones
that don’t match are treated as negative samples.
This target association problem has been exten-
sively addressed in existing literature and resolved
using conventional optimization techniques [25].

The contrastive regularization originates from
the matching relationship between bounding
boxes. Why can the new features improve the
performance of data association compared to the
original features? We explain this by looking at
how the RAM training process resists noise. Due
to limitations in traditional optimization meth-
ods like the greedy bipartite assignment algorithm
[26] or the Hungarian algorithm [27], the solutions
they provide for the target association problem

are occasionally not optimal. This results in mis-
matched bounding boxes. Triplets made from
these mismatches act as noisy samples and can
harm the training of RAM. However, because
RAM is trained using all triplets, it learns to dis-
regard the noisy ones and produce better features.
RAM’s ability to filter out noise enhances the
quality of aligned features compared to its base-
line. To achieve optimal performance, we consider
aligned features as complements to the origi-
nal features. During the association phase, we
integrate these aligned features by calculating a
weighted sum of affinity matrices.

The latest works such as QDTrack [28] and
MTrack [18] also use contrastive regularization
for improving association. QDTrack [28] adopts
quasi-dense human features for conducting con-
trast learning while MTrack [18] aggregates the
whole historical trajectory features. However, it is
more likely to include noisy triplets when more
candidates are employed, no matter in spatial
view as QDTrack [28] did or in temporal view
as MTrack [18] did. In comparison, we conduct
contrast learning on sparse and clean spatial and
temporal triplets so as to learn more reliable
contrastive regularization.

Our RAMs demonstrated effectiveness in
MOT dataset experiments and minimally
impacted the speed of backbone trackers. Addi-
tionally, we evaluated RATracker’s performance
by training it with triplets from detected bounding
boxes instead of annotated ones. The results indi-
cated that in unsupervised scenarios, our method
only marginally reduced the tracking performance
gain, suggesting its capability to enhance tracker
performance even without supervision.

The contributions of this paper are in three
folds:

® Two simple yet effective rules based on rep-
resentation alignment have been explored for
characterizing the spatial and temporal consis-
tency of targets in MOT. They can be for-
mulated as contrastive regularization terms for
training RAMs.

® A novel, detector-free and lightweight module
has been introduced for data association. This
module efficiently generates spatially and/or



temporally aligned features, seamlessly adapt-
able across multiple MOT tasks without sub-
stantial additional training or memory require-
ments.

® The results from experiments on MOT datasets
have confirmed that our proposed rules and
RAMs effectively improve the performance of
different trackers.

2 Related Work

As our method focus on improving the perfor-
mance in association stage using contrastive learn-
ing method, in what follows we elaborate on most
related works of data association and contrastive
learning.

2.1 Data Association

Data association plays a pivotal role in the field
of tracking. The conventional approach to accom-
plish data association involves affinity computa-
tion and bipartite graph matching, as established
by Munkres in his work [29].

During the affinity computation phase, three
key factors are typically taken into account for
linking trajectories and detections: motion [30],
bounding box information [14], and appearance
characteristics [8, 9]. The concept of motion as a
clue for association was initially introduced by the
SORT algorithm [30]. SORT utilized the Kalman
Filter [15] to predict motion in the subsequent
frame. Additionally, to capture complex and irreg-
ular motions, optical flow was integrated by Xiao
et al. [31]. To address challenges posed by sub-
stantial camera or object movements, various deep
learning-based techniques [10, 21, 32] were devel-
oped.To address more complex scenarios involving
nonlinear motion and target occlusion, OC-SORT
[33] use object observations to compute a vir-
tual trajectory over the occlusion period to fix
the error accumulation of filter parameters dur-
ing the occlusion period. MotionTrack [34] utilizes
the displacement of targets in the previous frame
and employs attention mechanisms to explore the
relationships of motion between targets. Bound-
ing box information was employed in the affin-
ity computation process by SORT [30]. Byte-
Track [14] proposed a two-stage matching strategy
exclusively based on bounding boxes to enhance
association performance. Appearance-based clues

were favored in the DeepSORT algorithm [1].
This approach utilized a Re-identification (Re-
ID) model to extract appearance features and
employed the cosine similarity metric for affinity
computation. A recent advancement, TransMOT
[35], harnessed a graph transformer to enhance
Re-ID features and attain an improved affinity
matrix. Some other notable methods like JDE [§],
FairMOT [9], and CSTrack [36] achieved enhanced
association results by utilizing appearance fea-
tures and bounding boxes in separate association
stages. STRN [13] leverage spatio-temporal rela-
tionships to enhance the original Re-ID features,
ailming to maximize the dissimilarity between
each target’s features. However, these techniques
focused on only one type of clue within each stage.

In the stage of bipartite graph matching, the
matching is determined using either the greedy
bipartite assignment algorithm as described in
Breitenstein et al.’s work [26] or the optimal Hun-
garian algorithm as outlined in Xing et al.’s work
[27].

A novel tracking-by-regression approach has
been introduced in recent studies, including meth-
ods like CenterTrack [10], Chained-Tracker [11],
TrackFormer [37], MOTR [22], MOTRv2[38] and
others. In this approach, instead of explicitly
associating the current matched bounding boxes
with previous trajectories, the bounding boxes of
the current frame are directly predicted based
on regression, effectively accomplishing the data
association implicitly.

2.2 Contrastive Learning

Due to its remarkable accomplishments in self-
supervised representation learning, contrastive
learning has gained widespread adoption across
various domains, including classification and
action recognition. Prominent examples include
the works by He et al. [39], Henaff et al. [40],
Tian et al. [41], and Wu et al. [42]. Further-
more, contrastive learning has recently found
application in the field of MOT. The pioneer-
ing work of QDTrack [28] introduced contrastive
learning to MOT, enhancing appearance features
through quasi-dense similarity learning. Subse-
quently, MTrack [18] elevated trajectory represen-
tation quality by incorporating complete historical
trajectory information and engaging in multi-view
trajectory contrastive learning.



Despite these impressive achievements in
tracking performance, these methods are suscep-
tible to incorporating more instances of noisy
triplets. Additionally, their effectiveness hinges on
the availability of annotated matching relation-
ships for facilitating contrastive learning.

3 Method

In this section, we first briefly introduce the overall
architecture of RATrackers, then elaborate on the
structure of RAMs that incorporate different rep-
resentation alignment rules, and finally introduce
the contrastive regularization for training RAMs.

3.1 Overview

The pipeline of RATrackers follows the tracking-
by-detection paradigm. The detector and associ-
ator are the same as the backbone tracker, and
the only difference lies in the RAM that assists
associator, as shown in Figure 2. The backbone
tracker can be any two-stage tracker that con-
forms to the TBD paradigm, such as FairMOT
[9], ByteTrack [14], CSTrack [36] and so on. The
RAM takes the target features as input, and out-
puts the aligned features. During the association
stage, reliable association is achieved by utilizing
the weighted sum of the affinity matrices derived
from aligned features and the vanilla features. The
rest association steps remain unaltered.

In what follows, letters with overbar indicates
the aligned features. For example, the human fea-
tures in frame ¢ are characterized by set H! =
{ht}i=1 2. K and the aligned human features are
denoted as set H?.

3.2 Representation Alignment
Module

The RAM architecture is a simple single-layer
transformer encoder that comprises fully con-
nected layers (FCs), a multi-head attention layer
(MHA), and a feed-forward network (FFN) as
shown in Figure 2(b). The FCs transform inputs
into higher-dimensional features, the MHA con-
ducts self-attention on these features, and the
FEN produces the resultant aligned features.
According to rules used for contrastive regulariza-
tion, RAMs can be divided into temporal RAM,
spatial RAM, and spatial-temporal RAM.

Temporal RAM: The Temporal RAM
(TRAM) utilizes two fully connected layers to
embed inputs, incorporating current human fea-
tures H! and previous trajectory features C'~! to
generate temporally aligned features {H?!,C'} as
outputs. The final affinity matrix A7 for bipartite
graph matching is calculated by taking a weighted
sum of two affinity matrices. One of these matri-
ces is derived from the original features, while
the other comes from temporally aligned features.
Given coeflicient ar € (0,1), the final affinity
matrix A is computed as

Ap = aTS(Ht,Ct_l) + (1 — OéT)S(,}'_[t,C_t), (1)

where S(-,-) denotes the similarity function that
computes the similarities of two sets. Note that
similarity function varies with respect to the type
of input features. For example, when inputs are
coordinates of bounding boxes, the intersection
over union (IoU) metric is used. When inputs are
encoded features, the clipped cosine distance over
Lo-normed features is preferred.

Spatial RAM: The spatial RAM (SRAM)
operates by taking human features H! and mark
features M? as inputs, producing spatially aligned
features {H!, M'} as outputs. Owing to varia-
tions in individual clothing, there exists a distinct
region on each person’s body that carries identify-
ing information. The mark box serves the purpose
of isolating this unique information, yielding char-
acteristic features for establishing associations.
They can be generated either by detecting spe-
cially designed marks or by following predefined
guidelines, such as enclosing 60% of the area
around the center of the detection box. As the
aligned mark features M? are intricately linked
to the methodology used for generating the orig-
inal mark boxes M¢, the aligned human features
H' are more favorable for computing the affinity
matrix, a key component in establishing associa-
tions. The final affinity matrix Ag for bipartite
graph matching is obtained by taking a weighted
sum of the original affinity matrix and the affin-
ity matrix derived from spatially aligned features.
Given the coefficient ag € (0, 1), it is computed as

Ag =asSH,C )+ (1 —ag)S(H,HTY. (2)

Spatial-Temporal RAM: The spatial-
temporal RAM (STRAM) takes human features
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H?, mark features M’ and previous trajectory
features C*~! as inputs, and outputs the spatially
and temporally aligned features {H!, M* C'}.
The final affinity matrix Agp for bipartite graph
matching is computed as the weighted sum of the
spatial affinity matrix Ag and temporal affinity
matrix A7 with given coefficient A € (0,1) as

Agr = Mg + (1 — \) Az (3)

Note that the purpose of STRAM is to con-
currently incorporate spatial and temporal reg-
ularization in association. There are multiple
approaches to achieve this goal. We opted for
a straightforward yet efficient method, which
involves a weighted summation of SRAM and
TRAM. It’s worth considering that employing
more intricate fusion techniques might lead to
enhanced outcomes.

3.3 Contrastive Regularization for
Training
In this section, we elaborate on the triplet gen-
eration and contrastive regularization for training
RAMs under the guidance of the representation
alignment rules.
Temporal Rule: The primary challenge in
implementing the temporal rule is to establish

consistent correspondences between the same tar-
gets across consecutive frames. This task involves
solving an association problem, which can be
addressed through affinity computation and bipar-
tite graph matching. The entities to be associated
are the detected or annotated human bounding
boxes in the current frame and the previous frame.
To measure their similarity, the Intersection over
Union (IoU) metric is utilized.

To create triplets for training, the human
boxes in the previous frame are treated as anchors.
For a given anchor and its corresponding counter-
part in the current frame, if their IoU surpasses a
predefined threshold €;,,, the matching outcome
is considered reliable, and the counterpart is des-
ignated as the positive sample. All other human
boxes in the current frame are treated as negative
samples in this scenario. When the matching con-
fidence is lower, the anchor itself is treated as the
positive sample, and the remaining human boxes
in the current frame serve as negative samples.

Furthermore, it is also possible to use human
boxes in the current frame as anchors. The process
of generating triplets follows a similar procedure
as described above. In this case, we employ the
InfoNCE (Noise Contrastive Estimation) loss [39]
to establish contrast between samples. The con-
trastive loss derived from the initial set of triplets



constitutes the forward temporal loss, while the
loss from the latter set of triplets forms the back-
ward temporal loss. The overall temporal loss is
the combination of both forward and backward
temporal losses and can be calculated as outlined
below.

L =— Z log

va EHE

exp (v - Vi1 /7)

exp(va-vp ' /T)+ X exp(vavn/T)
v,,eﬁifl

exp (vq - v/T)

T L gt T ee

va EHIL on et

(4)
where 7 is the temperature hyper-parameter,
Uq, Up, Uy, are anchor feature, positive feature and
negative feature respectively. The set H, is the
negative feature set with respect to the anchor
feature v,.

Spatial Rule: The primary challenge in
implementing spatial rule is to establish connec-
tions between targets that belong to the same
object within a single frame. This challenge can be
addressed using affinity computation and bipar-
tite graph matching. In this context, the targets to
be matched are represented by human boxes and
mark boxes.

However, the conventional Intersection over
Union (ToU) metric is not suitable for measuring
similarity in this scenario. IoU struggles to differ-
entiate between a mark and two occluded human
bodies due to its heavy reliance on the size of
the bodies. This can lead to erroneous matches,
where the IoU of a foreground mark and a back-
ground human with a smaller body size might
exceed the actual ground truth, resulting in inac-
curate matches. To mitigate this issue, we have
observed that using the size of the mark as a
basis for normalization of the intersection pro-
vides greater reliability, as it remains invariant to
human occlusion. Consequently, we’ve introduced
a more robust metric called Intersection Rate (IR)
for computing the affinity matrix. The IR metric
quantifies the intersection of the mark box and the
human box relative to the mark box itself.

To generate triplets for spatial contrast, we
adopt the following approach: When the mark box
serves as the anchor, a human box that shares
an IR value surpassing a certain threshold ¢;, is
designated as the positive sample, while all other
human boxes become negative samples. Alterna-
tively, if the IR threshold isn’t met, the mark box

itself is designated as the positive sample, and all
human boxes are classified as negative samples.
The same process is mirrored when the human box
is utilized as the anchor.

The comprehensive spatial contrastive loss can
be calculated in the ensuing manner:

exp (hq - my/T)
_ 1
Ls Z o8 exp (hq -mp/T)+ > exp(hg-my/T)
hq€EH? mnEM%
B Z log exp (mq - hy/T)
Coexp(ma-hy/T)+ D exp (ma - ha/T)
Ma &M hn €HL,
(5)

where h, is the anchor human feature, m,,, m,, are
the negative and positive mark features respec-
tively, M! is the set of negative mark features
w.r.t. the anchor feature h,. Similarly, m, is the
anchor mark feature, hy,, h, are the negative and
positive human features respectively, H!, is the
set of negative human features w.r.t. the anchor
feature my,.

Spatial-Temporal Rule: The implementa-
tion of spatial-temporal rule simply replicates the
implementation of spatial rule and temporal rule
simultaneously. The overall contrastive loss can be
computed as

Lsr=Ls+ L. (6)

4 Experiments

We conduct extensive experiments over three pub-
licly accessible datasets including MOT17 [43],
MOT20 [44] and BDD100K [45]. We used the ID
score [46] and CLEAR MOT metrics [47] to eval-
uate the performance of the proposed method.
Throughout the experiments, we generated the
mark boxes by boxing out 60% of the area around
the center of the detection box. The input features
can either be bounding boxes characterized by
corner coordinates and box-size as (x,y, h,w), or
the Re-ID features extracted from some pretrained
modules like fastReID [48]. Unless specified oth-
erwise, our input features are assumed to be
bounding boxes.

Training Details: The experiments were car-
ried out using PyTorch and an NVIDIA GeForce
RTX 2080 Ti GPU. The training process involved
running for 50 epochs with a batch size of 5.
The chosen optimizer was AdamW [49], initial-
ized with a learning rate of 2 x 1073, which



decreased by a factor of 10 every 10 epochs. To
accommodate input sequences of varying lengths,
a strategy inspired by DETR [50] was applied.
Input sequences were standardized to a fixed
length of 110 for MOT17, 260 for MOT20 and 100
for BDD100K. This was achieved by appending
invalid bounding boxes with all zero coordinates.
Notably, these added boxes were disregarded dur-
ing loss calculations. The output dimension of the
fully connected layers was configured to be 128,
aligning with the approach.

Hyperparameters: During the course of the
experiments, parameters A\ = 0.5,7 = 0.1,¢;, =
0 were consistently configured. The selection of
parameters ag, ap, and €;,,, however, varied
based on the particular experiment being con-
ducted. In cases where the ByteTrack [14] back-
bone tracker employed two association stages,
parameters ag = ar = 0.2, €;o, = 0.9 were cho-
sen for the initial stage, and parameters ag =
ar = 0.3, €0, = 0.5 were employed for the sub-
sequent stage. In instances where only one asso-
ciation stage was utilized such as TransTrack[21],
parameters ag = ar = 0.3, €0, = 0.9 were
employed.

4.1 Effectiveness of RAMs
4.1.1 On Different Trackers

This evaluation encompasses five state-of-the-art
trackers employing RAMs: JDE [8], CSTrack [36],
TransTrack [21], ByteTrack [14] and OC-SORT
[33]. All of these trackers adhere to the tracking-
by-detection paradigm and involve the compu-
tation of affinity matrices for the purpose of
association. The experiment was carried out on
the MOT17 validation dataset.

Table 1 illustrates that integrating RAMs con-
sistently improves crucial performance metrics
such as MOTA, IDF1, and IDS across various
trackers. Among the trackers studied, CSTrack
[36] and JDE [8] utilize CNNs for feature extrac-
tion in association, while TransTrack [21] uses the
Transformer architecture for feature generation.
ByteTrack [14] directly employs bounding boxes,
and OC-SORT [33] refines them through a motion
prediction model. These findings emphasize how
RAMs enhance the performance of different track-
ers, irrespective of their specific backbone frame-
works, showcasing their versatile applicability.

Method | IDF1 1 MOTA 1 IDS |
JDE [8] 63.59 59.98 473
JDE+TRAM 67.30(+3.71)  60.31(40.33)  383(-80)
JDE+SRAM 66.75(+3.16)  60.29(+0.31)  372(-101)
JDE+STRAM 67.20(+3.61)  60.47(+0.49)  374(-99)
CSTrack [36] 71.82 67.96 340
CSTrack+ TRAM 73.56(+1.74)  68.52(+0.56)  260(-50)
CSTrack+SRAM 72.93(+1.11)  68.46(+0.5)  304(-36)
CSTrack+STRAM 73.70(+1.88)  68.63(+0.67)  291(-49)
TransTrack [21] 68.60 67.66 254
TransTrack+TRAM | 71.64(+3.04) 67.86(+0.2)  245(-9)
TransTrack+SRAM | 69.71(+1.11) 67.85(40.19)  250(-4)
TransTrack+STRAM | 71.14(4+2.54) 67.98(1-0.32) 238(-16)
ByteTrack [14] 79.07 76.49 165
ByteTrackt TRAM | 79.92(40.85) 76.82(+0.33) 145(-18)
ByteTrack+SRAM 79.90(+0.83)  76.82(+0.33) 139(-26)
ByteTrack+STRAM | 80.87(+1.8)  76.90(+0.41) 155(-10)
OC-SORT [33] 77.85 74.12 195
OC-SORT+TRAM | 78.09(40.24) 74.35(+0.23)  169(-23)

OC-SORT+SRAM
OC-SORT+STRAM

78.07(40.22)  74.21(+0.09) 192(-3)
78.72(40.87)  74.38(+0.26)  164(-31)

Table 1: Results of applying RAMs to five popu-
lar trackers on the MOT17 validation set. T means
higher is better, | means lower is better

A IDF1 AIDS
A A

2. 0.44 |41.0
-IDFI MOTA -IDS
2.0 0.40 |39.5
1.8 0.36 |38.0
1.6 0.32 |36.5
1.4 0.28 |35.0
12 024|335
1.0 0.20 |32.0
i 1 1
0 0

SRAM TRAM STRAM
Fig. 3: The average performance of RAMs on var-
ious trackers in Table 1.

S

Figure 3 provides the average performance
of RAMs across various trackers. While individ-
ual metrics for TRAM might surpass STRAM
in specific backbone trackers as indicated in
Table 1, overall, STRAM consistently outperforms
both SRAM and TRAM. This indicates that, in
general, considering the performance of spatio-
temporal alignment regularization is superior to
solely focusing on single-branch regularization.

4.1.2 On Different Datasets

We validated the effectiveness of RAMs on
three datasets: MOT17 [43], MOT20 [44], and



\ MOT17-val \ MOT20-val

‘ BDD100K-val ‘ Average Performance

| IDF1t  MOTAt IDS| | IDF1t MOTA?

IDS| | IDF1t MOTAt IDS| | IDFIf MOTAf IDS|

Baseline 75.56  79.85 495 81.62  77.90
Baseline+ TRAM 76.34  80.51 478 | 81.73  78.08
Baseline+SRAM 75.94  80.50 480 81.74  T77.95
Baseline+STRAM | 77.14 81.14 479 81.86 77.92

913 54.95  45.11 32963 | 70.71  67.62 11457
898 55.54  45.41 31372 | 71.20  68.00 10916
897 55.13  45.16 32104 | 70.94  67.87 11160
896 | 55.90 45.55 30567 | 71.63 68.20 10647

Table 2: The performance of RAMs on multiple datasets. The best results are marked in bold

Benchmark ‘ Method

MOTAt IDF1f

HOTA} AssAt MT{ ML, FP| FN| IDS|

RelationTrack [51] 73.8 4.7 61.0 61.5 41.7 23.2 27999 118623 1374
CenterTrack [10] 67.8 64.7 52.2 - 34.6 24.6 18489 160332 3039
TraDeS [32] 69.1 63.9 52.7 50.8 36.4 21.5 20892 150060 3555
CorrTracker [52] 76.5 73.6 60.7 58.9 47.6 12,7 29808 99510 3369
CTracker [11] 66.6 574 49.0 45.2 32.2 242 22284 160491 5529
QDTrack [28] 68.7 66.3 53.9 52.7 40.6 21.9 26589 146643 3378
MTrack [18] 72.1 73.5 60.5 60.9 49.0 16.8 53361 101844 2028
TransCenter [53] 73.2 62.2 54.5 49.7 40.8 185 23112 123738 4614
MOT17 MOTR [22] 78.6 75.0 62.0 60.6 50.3 13.1 23409 94797 2619
TransMOT [35] 76.7 75.1 61.7 - 51.0 16.4 36231 93150 2346
TransTrack [21] 75.2 63.5 54.1 47.9 55.3 10.2 50157 86442 3603
TrackFormer [37] 74.1 68.0 57.3 54.1 47.3 104 34602 108777 2829
MeMOT [17] 72.5 69.0 56.9 55.2 43.8 18.0 37221 115248 2724
CSTrack [36] 74.9 72.6 59.3 57.9 41.5 17.5 23847 114303 3567
FairMOT [9] 73.7 72.3 59.3 58.0 43.2 17.3 27507 117477 3303
ByteTrack [14] 80.3 7.3 63.1 62.0 53.2 14.5 25491 83721 2196
MOTRv2 [38] 78.6 75.0 62.0 60.6 - - - - -
OC-SORT [33] 78.0 7.5 63.2 63.2 - - 15100 108000 1950
MotionTrack [34] 81.1 80.1 65.1 65.1 95.5 16.7 23802 81660 1140
ByteTrack+STRAM (ours) | 81.0 79.9 64.9 64.8 56.2 144 24459 81198 1383
TransCener [53] 58.5 49.6 43.5 37.0 48.6 14.9 64217 146019 4695
RelationTrack [51] 67.2 70.5 56.5 56.4 62.2 8.9 61134 104597 4243
MeMOT [17] 63.7 66.1 54.1 55.0 57.5 14.3 47882 137983 1938
MTrack [18] 63.5 69.2 55.3 55.7 68.8 7.5 96123 86964 6031
MOT?20 TransTrack [21] 65.0 59.4 48.9 45.2 50.1 13.4 27191 150197 3608
CSTrack [36] 66.6 68.6 54.0 54.0 50.4 15.5 25404 144358 3196
FairMOT [9] 61.8 67.3 54.6 54.7 68.8 7.6 103440 88901 5243
ByteTrack [14] 778 75.2 61.3 59.6 69.2 9.5 26249 87594 1223
MOTRv2 [38] 76.2 73.1 61.0 59.3 - - - - -
OC-SORT [33] 75.5 75.9 62.1 62.0 - - 18000 108000 913
MotionTrack [34] 78.0 76.5 62.8 61.8 71.3 95 28629 84152 1165
ByteTrack+STRAM((ours) | 77.9 77.3 63.3 62.8 703 9.6 24353 88867 1309

Table 3: Performance comparison with preceding SOTASs on the testing splits of the MOT17 and MOT?20
benchmarks under the private detection protocols. The best results are marked in bold and the subop-

timal results are annotated with underline

BDD100K [45]. MOT17 and MOT20 are popular
pedestrian tracking datasets, with MOT20 hav-
ing a higher density of pedestrians. BDD100K is
a large dataset used for vehicle tracking, compris-
ing 2000 training and testing scenes. To ensure a

fair comparison, we introduced a baseline tracking
method using YOLOVX [54] for object detection,
Kalman filtering for trajectory prediction, and
bounding boxes as the association features.



Table 2 illustrates that across various datasets,
the use of RAMs consistently enhances the per-
formance of the baseline method. Notably, there’s
a significant improvement in metrics for MOT17
and BDDI100K datasets compared to a more
marginal enhancement in MOT20. Additionally,
TRAM outperforms STRAM in terms of MOTA
in MOT?20, likely due to MOT20 containing denser
objects with higher chances of visual similarity,
potentially causing spatial alignment regulariza-
tion to be less effective. However, considering the
overall results, STRAM still outperforms both
single-branch TRAM and SRAM approaches.

4.1.3 On MOT Benchmarks

We use ByteTrack|[14] as the backbone tracker and
evaluate the performance of ByteTrack+STRAM
in the MOT17 and MOT20 benchmarks using a
private detection setup. We train STRAMSs sep-
arately using the training sets from MOT17 and
MOT?20. To evaluate performance, we submit the
tracking results from the test sets to the official
MOT Challenge evaluation platform.

Table 3 demonstrates ByteTrack+STRAM’s
impressive performance. On the MOT17 dataset,
it achieves significant scores of 81.0 MOTA and
79.9 IDF1. Even on the more complex MOT20
benchmark, it maintains strong results with
77.9 MOTA and 77.3 IDF1. Notably, both false
positive (FP) and false negative (FN) metrics
remain minimal for both MOT17 and MOT20.
This indicates that STRAM effectively reduces
incorrectly tracked boxes and successfully re-
establishes tracking for previously overlooked tar-
gets through associations. The exceptional per-
formance is credited to STRAM’s integration of
spatial and temporal rule-based contrastive regu-
larization terms.

4.1.4 Computational Complexity

We performed an experiment to assess computa-
tional complexity using a single NVIDIA GeForce
RTX 3090 Ti GPU. The outcomes are outlined in
Table 4. Because the RAM employs only a single-
layer transformer and the input sequence length
is typically short (equivalent to the number of
targets in each frame), the extra parameters and
computational load are minimal. This has a neg-
ligible impact on the real-time performance of the
original tracker.
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Method Params(M) Flops(G) FPS
FairMOT 16.5542 72.932 22.5
FairMOT+TRAM 16.6219 72.939 21.5
FairMOT+SRAM 16.6219 72.939 21.4
FairMOT+STRAM 16.6226 72.942 21.1
ByteTrack 98.9954 793.211 25.7
ByteTrack+TRAM 99.0677 793.218 25.0
ByteTrack+SRAM 99.0677 793.218 25.0
ByteTrack+STRAM | 99.0684 793.221 23.8

Table 4: Computational complexity results on
MOT17 test set

Type of RAMs | Input Feature | IDF1 1 MOTA 1 IDS |
Without RAM | - | 72.81 69.06 299
TRAM Bounding Box | 74.44(+1.63)  69.37(4+0.31)  272(-23)
: Re-ID 73.93(+1.12)  69.18(4+0.12)  250(-49)
SRAM Bounding Box 74.02(4+1.21)  69.13(40.07)  290(-9)
Re-ID 74.36(+1.55)  69.21(4+0.15)  267(-32)
STRAM Bounding Box 74.67(41.86) 69.38(40.32)  289(-10)
Re-1D 73.92(+1.11)  69.32(+0.26)  240(-59)

Table 5: Results of RAMs to different input fea-
tures with FairMOT][9] backbone on the MOT17
validation set. The best results are marked in blue

4.2 Ablation Study

4.2.1 Features for RAMs and Affinity
Computation

The contrastive regularization triplets are exclu-
sively derived from bounding boxes. However,
when utilized in RAMs and computing affinity
matrices, there exists flexibility in the types of
features employed. Our experiments on MOT17
validation set, testing diverse input feature types
in RAMs and affinity computation, showcase the
resilience of our proposed method across these
variations.

RAMs can intake appearance features such
as Re-ID features or bounding boxes. To imple-
ment the RAM module with appearance features,
we utilized FastReID [48] for extracting Re-ID
features. Table 5 demonstrates the performance
enhancements achieved by applying Re-ID fea-
tures or bounding box features to FairMOT with
RAMs. Notably, TRAM, SRAM, and STRAM
consistently contributed to a stable improvement
of at least 1 in IDF1, regardless of the input
feature types.



Association Features ‘ IDF1 1 MOTA 1t IDS |
Bounding Box 79.55 77.65 333
Bounding Box + STRAM 81.01(+1.46)  77.94(+0.29)  267(-66)
Re-1ID 70.43 73.27 447
Re-ID + STRAM 77.95(+7.52)  75.25(+1.98)  370(-77)
Bounding Box + Re-ID 79.07 77.73 223
Bounding Box + Re-ID + STRAM | 81.82(42.75) 78.21(+40.48)  203(-20)

Table 6: Results of ByteTrack [14] to various asso-
ciation features on the MOT17 validation set with
and without STRAM

The robustness of our proposed method
across diverse association features is delineated in
Table 6. Utilizing ByteTrack[14] as the backbone
tracker, we evaluated its tracking performance
using various association feature combinations,
with detection score thresholds set at 7p:4n, = 0.6
and 7jo, = 0.1. The results in Table 6, focusing on
two association stages employing the same type
of feature, consistently indicate that incorporating
STRAM enhances tracking performance, irrespec-
tive of whether IoU, Re-ID, or a combination of
both is considered. This underscores the adapt-
ability of RAM in improving various association
features.

4.2.2 Embedding Dimension

We conducted an experiment focusing on the
output dimension of the FC layers within the
STRAM. The backbone tracker used for this
experiment was ByteTrack[14]. The results are
summarized in Table 7. We achieved the high-
est values of 80.87 for IDF1 and 76.90 for MOTA
when the output dimension was set to 128. Con-
versely, the lowest value of 154 for IDS was
observed when the output dimension was set
to 1024. There was only marginal improvement
in tracking performance with increasing dimen-
sions. Consequently, for consistency, we main-
tained an embedding dimension of 128 throughout
the experiments detailed in the paper.

4.2.3 Hyperparameters

The objective of STRAM is to seamlessly inte-
grate both spatial and temporal regularization
within associations. There exist diverse methods
for achieving this integration. In our study, we
adopted a straightforward yet useful technique
involving a weighted summation of SRAM and
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Embedding Dimension ‘ IDF11 MOTA 1+ 1IDS|
64 80.18 76.81 157
128 80.87 76.90 155
256 80.26 76.85 162
512 80.67 76.63 164
1024 80.16 76.77 154

Table 7: Exploring STRAM performance across
various FC layer embedding dimensions on
MOT17 validation set

7776 80.2
77.72 80.1
77.68 80.0
77.64 79.9
77.60065020406081.0 280002040608 1.0
MOTA 4 IDF1 1
84.84 260
84.81
276
84.78
272
84.75
000204060810 2°%00020406081.0
MOTP 1 DS |

Fig. 4: The impact of hyperparameter A on
STRAM’s performance.

TRAM. However, it’s conceivable that employ-
ing more intricate fusion methods could yield
even more promising results. Our experimentation
extended to the exploration of various combina-
tion coefficient A, as depicted in the Figure 4. In
order to strike a balance among all performance
indicators, a coefficient of 0.5 was ultimately
determined as the optimal choice.

4.2.4 Association Stages

ByteTrack [14] employs a two-stage association
process, comprising a primary stage dedicated to
linking high-confidence tracks with detections and
a subsequent stage focusing on pairing residual
tracks with low-confidence detections. As outlined
by [14], our configuration for ByteTrack estab-
lishes the detection score thresholds as T4, = 0.6
and 7o, = 0.1.



Stage 1 Stage 2 ‘ IDF1 1 MOTA t IDS |
ToU ToU 79.55 77.65 333

IoU + STRAM ToU 81.01(41.46)  77.94(+0.29) 267(-66)
ToU ToU + STRAM 79.70(40.15) 77.77(+0.12) 328(-5)
IoU + STRAM IoU + STRAM 80.18(+0.63) 78.00(40.35)  245(-88)
Re-ID Re-ID 70.43 73.27 447

Re-ID + STRAM  Re-ID 77.95(+7.52) 75.25(+1.98) 370(-77)
Re-ID Re-ID + STRAM | 71.73(+1.3) 74.01(+0.74) 409(-38)
Re-ID + STRAM  Re-ID + STRAM | 79.91(+9.48) 77.12(+3.85) 301(-146)

Table 8: Results of ByteTrack+STRAM across
the two association stages on the MOT17 valida-
tion set

Results obtained from the MOT17 dataset,
employing two features across the two association
stages, are presented in Table 8. During the initial
association stage, the inclusion of IoU+STRAM
yields a noteworthy 0.29 increase in MOTA, a
substantial 1.46 enhancement in IDF1, and an
impressive reduction of 66 IDS instances when
contrasted with utilizing IoU alone. Correspond-
ingly, when Re-ID+STRAM is applied, there is
a substantial boost of 1.98 in MOTA, an impres-
sive 7.52 surge in IDF1, and a notable decrease
of 77 IDS instances compared to utilizing Re-ID
exclusively. These findings unequivocally affirm
the potency of STRAM in enhancing association
performance, given that the bulk of detections are
associated in the primary stage.

Moving on to the secondary association stage,
despite STRAM receiving uncertain detections
due to occlusion and motion blur, it adeptly gen-
erates appropriately aligned and complementary
features. This is attested by the competitive per-
formance of IoU+STRAM when juxtaposed with
IoU alone and the superior performance of Re-
ID4+STRAM in comparison to Re-ID exclusive in
this specific stage.

4.3 More Comparison
4.3.1 Qualitative Comparison

We conducted two qualitative experiments on the
MOT17 dataset. One compared the results of
ByteTrack [14] with and without RAM, while the
other compared our RATracker with the typi-
cal rule-based method ByteTrack [14] and deep-
learning based method DeepSORT [1].

The results of the first experiment conducted
on three MOT17 scenarios, namely MOT17-05,
MOT17-09, and MOT17-11, can be observed in
Figure 6. The visualization showcases two sets
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ByteTrack DeepSORT

Ours

#Framel59 #Framel72 #Framel83
Fig. 5: Comparison of rule-based, deep learn-
ing, and our methods on MOT17 validation set.
Notable tracking errors emphasized.

of results: the upper rows depict the tracking
results using ByteTrack alone, while the lower
rows exhibit the results obtained through Byte-
Track+STRAM. It’s worth noting that ambient
bounding boxes are disabled to enhance the visi-
bility of the targets.

Across all these scenarios, instances of occlu-
sion are prevalent. In the tracking results gen-
erated by ByteTrack on its own, there are
instances where the issue of identity switch-
ing arises. However, this problem is effectively
addressed in the tracking results produced by
ByteTrack+STRAM. This indicates that the inte-
gration of RAMs holds promising potential for
ensuring stable tracking performance, particularly
in scenarios with occlusions.

The findings from the second experiment are
displayed in Figure 5. In scenarios where occlu-
sion is notably prominent, both rule-based and
deep learning-based methods face challenges in
effectively establishing connections between tar-
gets before and after the occlusion. To ensure
precise results, it becomes imperative to include
additional temporal and spatial regularization on
features, as showcased in our proposed approach.

4.3.2 Feature Comparison

We employ t-SNE as a visualization tool for Re-ID
features extracted from targets within trajectories



MOT17-05 #Frame590

MOT17-09 #Frame446

MOT17-11 #Frame735

MOT 17-11 #Frame748

MOT17-09 #Frame450

] (X"
MOT17-11 #Frame753

Fig. 6: ByteTrack vs. ByteTrack+STRAM. The upper rows feature ByteTrack’s standalone tracking
results, while the lower rows display the enhanced results from ByteTrack+STRAM. The ambient bound-
ing boxes are deactivated for prioritizing target clarity.

generated by RATracker. Our experiment focuses
on two randomly selected scenes from the MOT17
dataset, where we choose 20 trajectories at ran-
dom for visualization. The backbone tracker we
utilize is JDE [8]. To assess the quality of cluster-
ing, we employ the Davies—Bouldin index (DBI)
[55], where a lower DBI value indicates more
cohesive clusters.

The visualization outcomes are depicted in
Figure 7. Each row in the figure represents results
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from a distinct random scene within MOT17. The
colors represent individual trajectories, and points
of the same color correspond to associated tar-
gets. Our observations reveal a notable distinction:
points situated in the right column, generated by
employing JDE+STRAM, exhibit greater cluster-
ing compared to those in the left column. This
outcome is in alignment with the reduced DBI
value attained by utilizing JDE+STRAM. Fur-
thermore, the MOTA from association outcomes
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JDE: (1.77,40.3) JDE+STRAM: (1.51,41.1)
Fig. 7: Visualizing Re-ID features via t-SNE:
results on MOT17 scenes. Rows represent random
scenes, while colors depict trajectories. Associ-
ated targets share the same color. Metrics (DBIY,
MOTAT) shown in brackets alongside each row.

using JDE4+STRAM surpasses that of using JDE
alone. This improvement indicates that trajecto-
ries with more closely clustered targets bear a
stronger resemblance to ground truth data. Evi-
dently, this insight validates our adherence to
representation alignment rules, highlighting the
likelihood of targets within ground truth trajec-
tories sharing similarities, thus reinforcing the
robustness of our approach.

4.3.3 Supervised vs Unsupervised

Our RAM can undergo training using not only
annotated data but also utilizing the real-time
tracker’s output to further enhance the tracker’s
performance during operation. Essentially, our
method involves introducing constraints that
ensure both temporal and spatial consistency
during the tracking association phase. This is
achieved through the contrastive regularization
that benefits from the noise-resistant characteris-
tics of the encoder training process, as discussed
in the introduction section. This regularization
incorporates a certain level of uncertainty, specif-
ically derived from the output of the running
tracker.

We validated this concept through an experi-
ment. Initially, we executed the pre-trained Byte-
Track once on the MOT17 validation dataset to
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[ Original ~ W@ Supervised WM Unsupervised
77.00 82
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80.87
76.85 81 50.52
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Fig. 8: Results of STRAM trained by anno-

tated boxes (supervised) and by the outputs of
pretrained ByteTrack [14] (unsupervised) on the
MOT17 validation set.

obtain the initial tracking results. Subsequently,
we trained the STRAM using triplets generated
from these tracking results. We then evaluated the
performance of ByteTrack combined with STRAM
(ByteTrack+STRAM) on the same MOT17 vali-
dation dataset. For comparative purposes, we also
trained another STRAM using triplets based on
annotated bounding boxes.

Figure 8 illustrates the performance com-
parison between STRAMSs trained with anno-
tated boxes (supervised) and those trained using
the post refinement configuration (unsupervised).
Although the unsupervised STRAM exhibits a
slight decrease in performance compared to its
supervised counterpart, it still surpasses the orig-
inal tracker across all significant evaluation met-
Ti1Cs.

5 Conclusion

In this work, we have investigated two simple
yet effective rules aimed at enhancing the MOT
performance. These two rules encapsulate the con-
cepts of spatial and temporal consistency among
targets, acting as a form of contrasting regular-
ization. Leveraging these rules, we have developed
a streamlined encoding module termed RAM.
This module serves to produce supplementary
association features that complement the exist-
ing ones. Experiments conducted on the MOT17,



MOT20 and BDDI100K datasets have demon-
strated that our proposed RAM is able to enhance
the performance of various state-of-the-art track-
ers. Remarkably, this improvement persists even
in scenarios where annotated data is not readily
accessible.
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