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Abstract: Since the implementation of the Materials Genome Project by the Obama administration in the United 

States, the development of various computational materials databases has fundamentally expanded the choices of 

industries such as materials and energy. In the field of thermoelectric materials, the thermoelectric figure of merit 

ZT quantifies the performance of the material. From the viewpoint of calculations for vast materials, the ZT values 

are not easily obtained due to their computational complexity. Here, we show how to build a database of 

thermoelectric materials based on first-principles calculations for the electronic and heat transport of materials. 

Firstly, the initial structures are classified according to the values of bandgap and other basic properties using the 

clustering algorithm K-means in machine learning, and high-throughput first principles calculations are carried out 

for narrow-bandgap semiconductors which exhibiting potential thermoelectric application. The present framework 

of calculations mainly includes deformation potential module, electrical transport performance module, mechanical 

and thermodynamic properties module. We have also set up a search webpage for the calculated database of 

thermoelectric materials, providing searching and viewing the related physical properties of materials. Our work 

may inspire the construction of more computational databases of first-principle thermoelectric materials and 

accelerate research progress in the field of thermoelectrics.  

 

 

 

 

 

 

 

 

 

 

School of Electrical and Electronic Engineering, Wenzhou University, Zhejiang, 325035, China. 

(hzshao@wzu.edu.cn) 



1. Introduction 

In 2011, the Obama administration of the United States officially proposed the "Material Genome 

Project", which utilizes high-throughput computing and experiments to obtain massive material data, 

combined with data analysis technology by artificial intelligence for new material development. The goal 

is to shorten the cycle of new materials development and applications, as well as reduce the costs for 

materials research and development, so that the United States can continue to maintain a leading position 

in manufacturing technology. In 2016, the US government released the "First Five Years of the Materials 

Genome Initiative: Accommodations and Technical Highlights" report, which pointed out that during the 

five years of the implementation of the Materials Genome Engineering program, federal research 

institutions such as the Department of Energy, the Department of Defense, the Natural Science 

Foundation, the National Bureau of Standards and Technology, and the National Aeronautics and Space 

Administration have invested over 500 million US dollars, establishing computational materials research 

and development centers including the National Network for Virtual High throughput Preparation 

(NIST&NREL) and the Center for Cross scale Material Design and Multi scale Materials Research 

(NIST, ANL, ARL), forming three major computational materials databases: the Materials Project (MP) 

[1], AFLOW [2], and OQMD [3,4], several auxiliary databases such as Materials Data Repository 

(MDR), Materials Resource Registry, Energy Materials Network, as well as databases related analysis 

tools. 

Shortly after the proposal of the Materials Genome Project by the United States, the European 

Science Foundation launched the Accelerated Metallurgy (ACCMET) program, which costs over 2 

billion euros, with the aim of keeping up with the pace of the United States. The European Commission 

funded the Horizon 2020 project NoMatD, led by the Max Planck Institute in German, for a period of 

three years in 2015. The project aims to use the "centralized data warehouse" method to involve various 

research groups and provide data related to computational materials science, with the aim of building a 

"Encyclopedia of Materials" and a tool for analyzing big data on materials. In the UK, the government 

has also implemented the e-science program, with its funding, to carry out high-throughput material 

computing simulations and the construction of material computing basic databases, such as eMinerals 

and the "Material Grid" project. The Swiss EPFL University has led the development of the European 

Materials Database AiiDA [5]. 

Nowadays, with the vigorous development of big data and artificial intelligence technology, the 

material genome project research characterized by high-throughput experiments, high-throughput 

computing, and artificial intelligence big data analysis is in full swing, and has shown astonishing 

advantages in many materials fields. The paper "Machine-learning-assisted materials discovery using 

failed experiments" published in Nature in May 2016 [6] showed that based on years of accumulated 

experimental data, various catalytic new materials can be discovered using artificial intelligence (AI) 

technology. This work indicates that AI will profoundly transform the research methods in the field of 

materials. The centuries long history of human scientific development has formed three research 

paradigms: experimental, theoretical, and computational. However, in the fields of complex systems such 

as biology, astronomy, and materials, there are very complex interactions involved, coupled with a large 

number of variables, which greatly limits the effectiveness of theoretical and computational research 



models and requires the combination of big data and AI as the "fourth paradigm". In 2017, AlfaGo 

defeated the human Go master, but Google disbanded the DeepMind team responsible for developing 

the program, and then formed an AI research and development team engaged in material genome 

engineering. At present, American high-tech companies including Apple, Google, IBM, Tesla, etc. are 

all laying out the use of AI for the research and development of new materials based on material genomics 

methods. The fourth paradigm of materials science requires the ability to generate and process massive 

amounts of data, thus obtaining massive amounts of material data has become a key aspect of the 

Materials Genome Project. With the improvement of computing power, the accumulation of material 

data based on high-throughput computing is receiving more and more attention, and its application in the 

research and development of new thermoelectric materials is expected to greatly accelerate its application 

process. 

The performance of thermoelectric materials is described by the figure of merit ZT, which can be 

expressed as follows: 

𝑍𝑇 =
𝑆2𝜎𝑇

𝜅𝑒+𝜅𝑙
   (1) 

Where 𝑆 is the Seebeck coefficient, 𝜎 is the conductivity, 𝑇 is the temperature, 𝜅𝑒  and 𝜅𝑙  is the 

thermal conductivity contributed by carriers and phonons, respectively. These parameters of 𝑆, 𝜎 and 

𝜅 are coupled with each other, and it is difficult to independently regulate them. For example, for 

semiconductor materials, increasing doping concentration can increase conductivity, while at the same 

time reducing the Seebeck coefficient and increasing carrier thermal conductivity. At present, the three 

major material databases, Materials Project, AFLOW, and OQMD, have data on several common 

physical quantities, including atomic and band structure, and other physical properties are also being 

added. However, thermoelectric performance of materials, due to their particularity and the complexity 

in calculating electrical and thermal transport properties, generally require a large amount of computation.  

Here we selects Materials Project as the structural source for constructing a thermoelectric material 

database. Specifically, we employed the atomic structure files POSCAR and CIF (currently 19952 

materials) in MP materials with id-number below 100000 through the Materials Project API as the initial 

materials for building present thermoelectric material database——Wenzhou TE. We have built 

deformation potential modules, elastic properties modules, and BoltzTrap electronic transport modules. 

And then, we collect data by Python scripts and display it on a web site, https://hezhu2024.github.io, for 

others to use. 

2. Methodology 

2.1. Clustering (K-means) 

At present, the excellent thermoelectric materials obtained in experiments are mainly 

semiconductors with narrow-bandgaps, then we choose bandgap as a major feature for material screening. 

At the same time, we selected free energy, volume, density, and average atomic energy as other features 

from the descriptors obtained from the MP database. They form five featured variables for the K-means 

clustering algorithm. 



Here is a brief introduction to the K-means principle [7]. K-means is a clustering algorithm that 

divides data into K classes. Firstly, K class random points are randomly generated, denoted as 

𝑂1, 𝑂2, ⋯𝑂𝑙 , ⋯𝑂𝐾 . Assuming that the j-th feature of the i-th data is represented as 𝑥𝑖𝑗 , the distance from 

the i-th data sample to the l-th class random point is: 

𝑑𝑖𝑙 = √∑(𝑥𝑖𝑗 − 𝑂𝑙𝑗)
2

𝑗=𝐽

𝑗=0

 (2) 

Among them, J represents a total of J features in the data. The random class point with the smallest 

distance represents the same class. After the first iteration, each data sample will be classified into a 

certain class. Then, we calculate the average value of each class of data as the new random class point. 

The new random class point can be represented as: 

𝑂𝑙𝑗 =
1

𝑁
∑𝑥𝑖𝑗

𝑖=𝑁

𝑖=0

 (3) 

among them, 𝑗 ∈ [1,2, … , 𝐽], 𝑙 ∈ [1,2, … , 𝐾]. 

Then we re-calculate these distances, and reclassify them. And such process is repeated until 

convergence achieved. And finally the data will be classified into K classes. In present work, we also 

standardize the data before classification. In order to illustrate how many categories are most reasonable, 

we could assume that the formula for the total loss as follows: 

𝐿𝑜𝑠𝑠 = ∑ 𝑑𝑖𝑙

𝑖=𝑛

𝑖=0

 (4) 

Where n represents the number of samples. This formula represents the sum of distances from all sample 

points to their random class points. When there is a significant inflection point on the line of Loss with 

respect to class K, the value of K at the inflection point should be considered as a reasonable classification. 

Through the K-means method, we divided the initial materials from MP into 5 categories. Their quantities 

are 6602, 5425, 3770, 2800, and 1355, respectively. 

2.2. Deformation Potential Theory (DPT) 

The deformation potential theory was proposed by Bardeen and Shockley [8] in the 1950s to 

describe charge transfer in non-polar semiconductors. The charge mobility can be expressed as 𝜇𝑥 =

𝑒𝜏𝑥/𝑚
∗, where the relaxation time for bulk materials could be written as follows [8,9]  

𝜏𝑥 =
2√2𝜋ℏ4𝐶𝑥

3(𝑘𝐵𝑇𝑚∗)
3
2𝐸𝐷𝑃𝑥

2
 (5) 

where 𝐶𝑥 = 𝜕2𝐸/(𝜕(∆𝑎𝑥/𝑎𝑥)
2𝑉0)  is the elastic constant, 𝐸𝐷𝑃𝑥 = ∆𝑉𝑖/(∆𝑎𝑥/𝑎𝑥) , ∆𝑉𝑖  is the 

deformation potential energy, which is the difference between the energy level of the i-th energy band 

and the energy level of the deep nuclear state, and 𝑚∗ = ℏ2/(𝜕2𝐸/𝜕𝑘2) is  the effective mass. 

 



2.3. Elastic and thermal properties 

We can obtain elastic properties, group velocity, Poisson's ratio, Debye temperature, Grüneisen 

coefficients, and lattice thermal conductivity, by after calculating the elastic constant of materials [10], 

which could be easily achieved for the high-throughput calculation.  

In the case of uniform deformation for a crystal, the generalized form of Hooke's law of stress-strain 

[11] is: 

𝑓𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜖𝑘𝑙 (6) 

where 𝑓𝑖𝑗 and 𝜖𝑘𝑙 is a homogeneous second-order stress tensor and a strain tensor, respectively [12]. 

𝐶𝑖𝑗𝑘𝑙  represents the fourth order elastic stiffness tensor. Using matrix representation, we can abbreviate 

the stiffness tensor 𝐶𝑖𝑗𝑘𝑙  of four suffixes to the stiffness tensor 𝐶𝑖𝑗  of two suffixes, which can be 

represented as follows: 

𝐶𝑖𝑗 =

[
 
 
 
 
 
𝐶11 𝐶12

𝐶21 𝐶22
    

𝐶13 𝐶14

𝐶23 𝐶24
    

𝐶15 𝐶16

𝐶25 𝐶26

𝐶31 𝐶32

𝐶41 𝐶42
    

𝐶33 𝐶34

𝐶43 𝐶44
    

𝐶35 𝐶36

𝐶45 𝐶46

𝐶51 𝐶52

𝐶61 𝐶62
    

𝐶53 𝐶54

𝐶63 𝐶64
    

𝐶55 𝐶56

𝐶65 𝐶66]
 
 
 
 
 

 (7) 

Similarly, the elastic flexibility tensor (𝑠𝑖𝑗 = 𝐶𝑖𝑗
−1) can be written as: 

𝑠𝑖𝑗 =

[
 
 
 
 
 
𝑠11 𝑠12

𝑠21 𝑠22
    

𝑠13 𝑠14

𝑠23 𝑠24
    

𝑠15 𝑠16

𝑠25 𝑠26
𝑠31 𝑠32

𝑠41 𝑠42
    

𝑠33 𝑠34

𝑠43 𝑠44
    

𝑠35 𝑠36

𝑠45 𝑠46
𝑠51 𝑠52

𝑠61 𝑠62
    

𝑠53 𝑠54

𝑠63 𝑠64
    

𝑠55 𝑠56

𝑠65 𝑠66]
 
 
 
 
 

 (8) 

The Voigt [13] Bulk modules can be calculated by   

𝐵𝑣 =
1

9
[(𝐶11 + 𝐶22 + 𝐶33) + 2(𝐶12 + 𝐶23 + 𝐶31)] (9) 

And the Shear modulus can be obtained by  

𝐺𝑣 =
1

15
[(𝐶11 + 𝐶22 + 𝐶33) − (𝐶12 + 𝐶23 + 𝐶31) + 3(𝐶44 + 𝐶55 + 𝐶66)] (10) 

The Reuss [14] Bulk and Shear modulus can be calculated by 

 

1

𝐵𝑟

= (𝑠11 + 𝑠22 + 𝑠33) + 2(𝑠12 + 𝑠23 + 𝑠31) (11) 

and  

15

𝐺𝑟

= 4(𝑠11 + 𝑠22 + 𝑠33) − 4(𝑠12 + 𝑠23 + 𝑠31) + 3(𝑠44 + 𝑠55 + 𝑠66) (12) 

In present work, we take the arithmetic mean of the boundaries between Voigt and Reuss Voigt-

Reuss-Hill (VRH) [15]: 



𝐵ℎ =
𝐵𝑟 + 𝐵𝑣

2
 (13) 

𝐺ℎ =
𝐺𝑟 + 𝐺𝑣

2
 (14) 

The longitudinal (𝑣_𝑙), transverse (𝑣_𝑡), and average (𝑣_𝑎) elastic wave velocities can be calculated by  

𝑣𝑙 = √
3𝐵ℎ + 4𝐺ℎ

3ρ
,   𝑣𝑡 = √

𝐺ℎ

ρ
,   𝑣𝑎 = [

1

3
(

2

𝑣𝑡
3 +

1

𝑣𝑙
3)]

−1/3

 (15~17) 

The Debye temperature (θ𝐷) is obtained by: 

θ𝐷 =
ℎ

𝑘𝐵

[
3𝑞

4π

𝑁ρ

𝑀
]
1/3

𝑣𝑎 (18) 

And the Grüneisen coefficient is calculated by: 

γ =
3

2
(

1 + 𝑣𝑝𝑜𝑖

2 − 3𝑣𝑝𝑜𝑖

) (19) 

Where 𝑣𝑝𝑜𝑖 = (1 − 2 (
𝑣𝑡

𝑣𝑙
)

2

)/(2 − 2 (
𝑣𝑡

𝑣𝑙
)

2

) is the Poisson's ratio. 

According to the Slack formula [16,17], the lattice thermal conductivity can be expressed as: 

𝑘𝑙 = 𝐴
𝑀̅θ𝐷

3 δ

γ2𝑛2/3𝑇
 (20) 

where 𝑀̅ is the average atomic mass, 𝜃𝐷 is the Debye temperature, 𝛿 is the volume of each atom, 𝑛 

is the number of atoms in the original cell, 𝛾 is the Grüneisen coefficient, 𝐴 is a constant of 3.1 ×

10−6, and T is the temperature. 

2.4. Methods for the first-principles calculations and transport properties 

In the process of building a thermoelectric material database, first-principles calculations are done 

by the Vienna Ab initio Simulation Package (VASP)[18,19]. The calculation of electricity transportation 

requires the use of the Boltztrap program package [20]. In order to minimize computational costs while 

ensuring data reliability, during optimizing calculations, we set the plane-wave energy cutoff to be 1.4 

times the maximum ENMAX of POTCAR of composed elements, the electronic energy convergence to 

be 10−4 eV, the force convergence for ions to be 10−2 eV/Å, and the density k-mesh to be 0.04×2π Å-1. 

All the processed are controlled through Shell scripts. Data collection and calculation are 

implemented by Python scripts. These codes are home-made.  

3. Capabilities and workflow 

3.1. The application of K-means on datasets from MP 

From Figure 1a, it can be seen that the number of points with obvious inflection is 6, which means 

that the initial structures can be divided into 6 categories. Considering the reasonable distribution of the 

average-bandgap values, we ultimately divided it into 5 categories. The featured distribution map and 



various information of K-means are shown in Figures 1c-g. The average value of bandgap for the first 

class is merely 0.025eV, so this class of material contains many metals. The second class with average 

bandgap value of 0.14eV mainly composed of semiconductors with narrow bandgaps. The third, fourth, 

and fifth categories are mainly composed of semiconductors and insulators with wide bandgaps. As a 

starting point, we focused on calculating the physical properties of candidate material sets for the first 

and second categories.  

 

Figure 1. The application of K-means on MP databases: (a) The line chart of Loss for K-class; (b) the 

classification data and relaxation screening results of the initial structures under K-means; (c-g) the average 

distribution of 5 features for each K-means class. 

3.2. Computational framework and relaxation process 

After getting the structural file, we firstly perform structural relaxation and static calculation. 

Structural relaxation refers to the optimization process of atomic positions and lattice constants. We 

employed VASP software for the first-principles calculations. Actually several mainstream databases 

such as AFLOW, MP, OQMD, etc. are also calculated using VASP software. 

For the first and second types of materials obtained through K-means initial screening, there are 

more than 12000 materials, many of which contain too many element types and numbers of atoms in the 

primitive cell. In present work, we firstly calculate the material system with a relatively simple structure. 

Therefore, a computational control process is employed during the structural relaxation to further screen 

them, and resulting in a total of more than 3000 materials with relatively simple structures in the first 

and second types. Nevertheless, conducting structural relaxation for so many materials is a 

computationally demanding task. In order to accelerate the calculation, we wrote several shell scripts to 

control the process of structural relaxation. The flowchart is shown in Figure 2. 



 

Figure 2. Flowchart for constructing thermoelectric material database. 

After performing relaxation calculations on the data of the first and second classes of materials, we 

screened 1915 and 1656 materials, respectively, for further calculations, as shown in Figure 1b. In the 

first class, there are remained 3111 materials with atomic numbers greater than 10 or element types 

greater than 4, and other 1576 materials unrelaxed structures which are hard to get convergent relaxation 

in our present setup calculations. In the second category, there are also 2451 materials with atomic 

numbers greater than 10 or element types greater than 4, and 1318 materials that are difficult to be relaxed. 

After the relaxation calculation process, the convergent structures are saved for further calculations.  

Then we perform the calculations of the parameters of deformation potential theory. Firstly, we 

performed an anisotropic property judgment on the material, and then we performed static calculations 

on the deformed structures in various directions.  

3.3. Analysis of results of deformation potential theory (using Si as an example) 

The deformation potential method considered acoustic phonons as the main scattering sources for 

electrons. The relaxation time obtained by ignoring the contributions of optical phonon branches and 

other scattering mechanisms could be larger than the real one, but the calculation of deformation potential 

is relatively simple, easily employed in high-throughput calculations. The coefficients for applying 

deformation to the lattice vector are {0.98, 0.99, 1.00, 1.01, 1.02} of relaxed volumes, respectively. Such 

calculations could ensure the reliability of fitting with the second-order function for the elastic constant 

and the first-order function for the elastic potential energy. Taking Si as an example, as shown in Figure 

3. 



 

Figure 3. Schematic diagram of second-order fitting elastic constant 𝐶𝑥 and first-order fitting of elastic potential 

energy 𝐸𝐷𝑃 for Si. 

After calculating the deformation potential parameters, we could get the relaxation time of carriers 

by combing the effective masses. 

Table 1. Calculated deformation potential parameters, effective mases and relaxation time of carries for Si. 

 Carrier 𝑬𝑫𝑷𝒙 (𝐞𝐕) 𝑪𝒙(𝟏𝟎𝟏𝟏𝐉𝐦−𝟑) 𝒎∗/𝐦𝟎 𝝉𝒙(𝐟𝐬) 

Si Electron 3.44 1.52 0.46 1141.9 

Hole 7.91 1.52 2.48 21.6 

3.4. Energy band and effective mass calculation 

There are many methods to obtain the band structure of a material. Here we compare three feasible 

schemes. The first scheme is VASP high symmetry point energy band calculation, the second one is 

using BoltzTrap2 [20] to fit the band structure, and the third one is using maximally-localized Wannier 

function to interpolate the VASP results [21]. Considering the accuracy and efficiency, the second 

scheme is chosen in our high-throughput calculations. As shown in Table 2, three schemes for Si are 

presented.  

Table 2. Band results of Si under three schemes. 

 VASP Boltztrap Wannier90 

Bandgap (eV) 0.61 0.59 0.71 

𝑚𝑐
∗1/𝑚0 0.97 0.46 0.55 

𝑚𝑣
∗2/𝑚0 2.63 2.48 2.03 

User time (s) 8.048 1.057 6.103 

Cores of Cpu 10 10 10 

1 𝑚𝑐
∗ is effective mass of conduction band. 

2 𝑚𝑣
∗  is effective mass of price band. 



The bandgap of Si in the MP database is 0.61eV, which is consistent with VASP calculation. The 

bandgap error calculated by Boltztrap is within 5%. Meanwhile, the effective mass of Si calculated by 

Boltztrap is smaller than that of the VASP scheme, indicating that the calculated relaxation time will be 

larger, as shown in Table 1, where the relaxation time of electrons is 1141.9𝑓𝑠. The energy band of Si 

by three schemes is shown in Figure 4. From Table 2, it can be seen that the Boltztrap calculation for 

band structure is most efficient, then it can help to accelerate the high-throughput calculation. 

 

Figure 4. The band structure of Si by three schemes: VASP, Boltztrap, and Wannier interpolations. 

 

Figure 5. The effective mass of Si by the Boltztrap scheme. 

To facilitate high-throughput calculation, we use the formula 𝑚∗ = ℏ2/(𝜕2𝐸/𝜕𝑘2) to calculate 

the effective mass. The effective masses of Si by the Boltztrap scheme is shown in Figure 5. A series of 

effective masses of conduction and valence bands were obtained near the high symmetry points of Г and 

X. We selected the maximum values of 0.46𝑚0 and 2.48𝑚0 as the effective masses for the conduction 

band and valence band, respectively. In addition, our program is designed to automatically determine 

whether the band is degenerate and calculate the effective mass for each degenerate band. We note here 

that the reason for selecting the maximum effective mass is that the deformation potential overestimates 

the relaxation time. By selecting the maximum effective mass, the relaxation time can be effectively 

reduced to compensate for the shortcomings of the deformation potential theory. In high-throughput 

calculations, the program also selects representative effective masses for other materials such as the Si. 

 



3.5. High-throughput electrical transport properties(Boltztrap) 

Boltztrap is a program package calculating the semi-classic transport coefficients, based on a 

smoothed Fourier interpolation of the bands. Electrical transport properties such as Seebeck coefficient, 

electronic conductivity, and electronic thermal conductivity can be obtained at different temperatures 

and doping concentrations. The Boltztrap program has an input interface for VASP files, which can meet 

the needs of present high-throughput processes. After completing static calculations, the Boltztrap 

module can be performed. Meanwhile, Boltztrap based on Python can be well embedded into our high-

throughput Python data processing scripts, which are written for quickly obtaining the calculated 

quantities such as Seebeck coefficient, electronic conductivity, and electronic thermal conductivity. 

Combined with the lattice thermal conductivities estimated from the elastic properties calculations, we 

could obtain the ZT values for the materials. We listed the top ten semiconductor materials with ZT 

values in Table 3. 

Table 3. Top 10 semiconductor materials sorted by ZT value. 

id Element 𝜿𝒍(𝑾𝑲−𝟏𝒎−𝟏) 𝑺(𝝁𝑽

/𝑲) 

𝝈(𝒌𝑺

/𝒎) 

𝜿𝒆(𝑾𝑲−𝟏𝒎−𝟏) ZT Type 

10653 ['Sr', 'Te'] 2.0851 787.901 92496.65 1235.61 13.917 p 

28110 ['Rb', 'Pt', 'I'] 0.2467 685.479 417.93 5.12 10.972 n 

9319 ['Ba', 'Pr', 'Pt', 'O'] 5.3682 440.822 2528.83 8.06 10.970 p 

30055 ['Rb', 'Br', 'O'] 2.0237 523.638 17534.51 149.09 9.544 n 

28651 ['Cs', 'Ir', 'Cl'] 0.2638 378.607 115.54 0.30 8.702 n 

14017 ['K', 'Sb'] 0.8422 411.902 1559.21 10.39 7.065 n 

168 ['Sn', 'Se'] 0.0451 492.515 12.98 0.12 5.581 p 

3060 ['Cs', 'Pt', 'I'] 0.2562 958.567 6.39 0.07 5.410 n 

4783 ['Ba', 'Pr', 'O'] 10.8090 402.637 2925.30 17.09 5.097 p 

30373 ['Rb', 'Au'] 1.9033 557.953 354.34 4.92 4.843 p 

3.6. ZT value and BE value 

As an example for the application of our database, we associate thermoelectric ZT values with the 

electronic quality factor. By 𝑆 and 𝜎, the electronic quality factor 𝐵𝐸  can be defined by [22]: 

𝐵𝐸 = 𝑆2σ [
𝑆𝑟

2𝑒𝑥𝑝(2 − 𝑆𝑟)

1 + 𝑒𝑥𝑝[5 − 5𝑆𝑟]
+

𝑆𝑟π
2/3

1 + 𝑒𝑥𝑝[5(𝑆𝑟 − 1)]
] (21) 

where 𝑆𝑟 = |𝑆|𝑒/𝑘𝐵. As shown in Figure 6, the 𝑍𝑇 values of most materials are positively correlated 

to its electronic quality factor 𝐵𝐸𝑇/𝜅𝐿, so the 𝐵𝐸𝑇/𝜅𝐿 values can also serve as another criterion for 

judging excellent thermoelectric materials.  



 

Figure 6. Thermal power quality factor 𝐵𝐸𝑇/𝜅𝐿 and maximum 𝑍𝑇𝑚𝑎𝑥 at 300K. 

4. Conclusions 

In this work, we builds a thermoelectric material database——Wenzhou TE. We designed several 

modules to obtain the electronic and heat transport parameters for materials, including structural 

screening, deformation potential, elastic constant, and Boltztrap electrical transport performance 

calculations module. And we write several Python scripts to collect data and process results. Furthermore, 

we built a webpage for the first-principles calculated thermoelectric materials database 

(https://hezhu2024.github.io), which could be used for searching and viewing the physical properties of 

materials. Subsequently, we will continue the construction of the database to include more materials, and 

based on this, one can easily use these data for data mining and thermoelectric material development. 
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