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We present the development of a quadratic Spectral Neighbor Analysis Potential (q-SNAP) for
ferromagnetic cobalt and its applications to bulk phases, surfaces, and nanoparticles. Trained on
Density Functional Theory calculations using the Perdew-Burke-Ernzerhof (DFT-PBE) functional,
this machine-learned potential enables simulations of large systems over extended time scales across
a wide range of temperatures and pressures at near DFT accuracy. It is validated by closely re-
producing the phonon dispersions of hexagonal close-packed (hcp) and face-centered cubic (fcc) Co,
surface energies, and the relative stability of nanoparticles of various shapes. Thermal expansion and
the melting point of Co computed with this potential are close to experimental values. Furthermore,
this machine-learned potential goes beyond the capabilities of simpler N-body potentials by captur-
ing nuanced properties such as vacancy formation energies on nanoparticle vertices. This accuracy
and versatility make the potential suitable for a wide range of applications, including catalysis.

I. INTRODUCTION

Elemental cobalt is a ferromagnetic transition metal
that exists in two allotropic forms: at ambient condi-
tions, the most stable phase is α-Co, which crystallizes
in a hexagonal close-packed structure. At higher tem-
peratures, face-centered cubic β-Co becomes the most
stable form. Matter et. al. give a transition temperature
of 693 K [1]. Cobalt metal is a relatively hard material
with a melting point of 1768±1 K [2].

Cobalt is used in a wide range of applications includ-
ing wear-resistant high-strength alloys [3], Li-ion batter-
ies [4], magnetic recording [5], permanent magnets [6],
medical implants [7], dentistry [8], and radiotherapy [9].
In catalysis, Co is typically employed in the form of
nanoparticles [10].

In fact, nanoparticles have revolutionized the field of
catalysis with their unique size-dependent properties and
high surface-to-volume ratio [11]. These nanoscale ma-
terials offer unprecedented opportunities for accelerating
reactions, enhancing selectivity, and enabling greener and
more efficient processes, while minimizing the amount of
catalytic material.

In support of further development and optimization
of catalysts, accurate atomic-scale simulations are highly
valuable. Density Functional Theory (DFT) [12] is a pre-
ferred approach for systems featuring complex chemistry
in a great variety of structural environments. However,
these calculations are computationally demanding, lim-
iting time scale and model size to few hundreds of pi-
coseconds and atoms, respectively. Often, temperature
effects are omitted by focusing on structures with mini-

mum total energy. While a wealth of valuable informa-
tion has been gained from this type of static ground state
approaches, more realistic models are needed to include
dynamic effects, especially in catalytic processes involv-
ing nanoparticles.

Interatomic potentials such as those obtained with the
embedded atom method (EAM) [13] enable simulations
of systems containing hundreds of thousands of atoms
over time frames up to microseconds, but they are not
suited for complex chemistries and substantial variations
in the atomic environment. The rise of machine-learned
potentials (MLPs) has opened exciting novel avenues [14–
16]. Training these MLPs on data from ab initio calcula-
tions yields force fields usable at the same scales as em-
pirical potentials, while maintaining the generality and
accuracy of DFT.

Each of these new interatomic potentials is founded on
a descriptor of atomic environments and a model that
links them to local energies. Descriptors are mathemati-
cal entities invariant under translation, rotation, and per-
mutation of atoms of the same type. A diverse array of
descriptors exists, such as the bispectrum (BSO(4)) [17],
the Smooth Overlap of Atomic Positions (SOAP) [18],
and the Atomic Cluster Expansion (ACE) [19]. Like-
wise, models span from simple linear regression to multi-
layer neural networks [17, 19–22]. Thompson et al. [20]
demonstrated a linear relationship between bispectrum
descriptors and system observables (energy, forces and
stress), leading to the introduction of the Spectral Neigh-
bor Analysis Potential (SNAP). Later, they showed that
adding quadratic terms to the model (leading to a q-
SNAP) offers improved accuracy [23].
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In this article, we present the construction of a q-SNAP
for cobalt, dedicated to bulk, surface, and nanoparti-
cle modeling. To demonstrate its quality, we show that
it reproduces phonon dispersions and surface energies
of hexagonal close-packed (hcp) and face-centered cubic
(fcc) Co, as well as the relative stability of nanoparticles
of various shapes at the accuracy of DFT. Dynamical
properties including the α-β phase transition, thermal
expansion, and the melting point are predicted in remark-
able agreement with experimental values. Additionally,
we compare the capabilities of this q-SNAP with those
of one of the most widely used EAM potential for Co
[24] in predicting quantities that can be critical in catal-
ysis, such as surface energies and the vacancy formation
energies on nanoparticle vertices.

The paper is organized as follows: in Section II, we
outline the methods employed, beginning with a brief re-
capitulation of the q-SNAP formalism, followed by the
approach used for fitting and testing the potential. In
Section III, we demonstrate the capabilities of the new
q-SNAP in terms of nanoparticle modeling. We start by
analyzing the relative stability of nanoparticles of differ-
ent shapes as a function of their size. Next, we compare
the predictive performance of the q-SNAP and EAM po-
tentials in determining surface energies and vacancy for-
mation on vertices. Subsequently, we showcase the pre-
dictive capability of q-SNAP by computing the cobalt
melting point through the melting of nanoparticles of
increasing size, emphasizing its suitability for dynamic
processes. Finally, we present our conclusions in Section
IV.

II. CONSTRUCTION OF THE POTENTIAL

A. SNAP formalism

An interatomic potential connects local descriptors of
the atomic environment of each atom to observables such
as the total energy of the entire system, forces on each
atom, and stress tensors. In the case of SNAP, bispec-
trum descriptors are used to represent the atomic en-
vironments. In this approach, the density of neighbor
atoms around a central atom i at location r < Rcut is a
sum of Dirac functions, δ, located in a three-dimensional
space:

ρi(r) = δ(r) +
∑

rii′<Rcut

fc(rii′)wi′δ(r− rii′) (1)

where rii′ is the vector joining the two neighboring atoms
i and i′, wi′ is a dimensionless coefficient used to differ-
entiate between atoms of different types (in our case, it
is always set to one since the q-SNAP is for pure cobalt)
and the function fc(r) ensures that the contribution of
each neighbor atom smoothly tends to zero at a cutoff
radius Rcut.

The density is then expanded in spherical harmonics

used as basis functions:

ρi(r) =

∞∑
j=0

j∑
m,m′=−j

uj
m,m′U

j
m,m′(θ, ϕ, θ0), (2)

where θ0 is a third polar angle used to map the radial
distance r as

θ0 = θmax
0

r

Rcut
. (3)

The coefficients uj
m,m′ are given by the inner product of

the neighbor density with the basis functions. However,
these coefficients are not invariant under rotation, ren-
dering this simple expansion in spherical harmonics not
directly applicable. This issue is resolved by introducing
a bispectrum of spherical harmonics, which is rotation-
ally invariant:

Bj1,j2,j =

j1∑
m1,m′

1=−j1

j2∑
m2,m′

2=−j2

j∑
m,m′=−j

(
uj
m,m′

)
(4)

Cjm
j1m1j2m2

× ujm′

j1m′
1,j2m

′
2
uj1
m′

1,m1
uj2
m′

2,m2
, (5)

where C are Clebsch-Gordan coefficients. These bispec-
trum descriptors are finally invariant under translations,
rotations and permutations. Jmax is a crucial parame-
ter that determines the number of distinct bispectrum
descriptors with indices j1, j2, j < Jmax. Increasing its
value enhances the detailed description of the chemi-
cal environment, at the expense of computational cost.
Moreover, it should be noted that excessively increasing
Jmax could lead to overfitting, a topic further discussed
in section II B 2.

Once all bispectrum coefficients are determined, they
are employed to compute the system’s observables. The
q-SNAP energy of an atom i is expressed as

Ei
q-SNAP(r

N ) = β ·Bi +
1

2

(
Bi

)T · α ·Bi, (6)

where Bi are bispectrum descriptors of atom i and α
and β two sets of coefficients that are optimized during
the fitting process using a regression. Linear SNAP only
deals with the linear part, focusing solely on optimizing
the β coefficients. The dimension of the vectors Bi is
related to Jmax. Forces and stresses are expressed as
first and second derivatives of the energy in equation 6
with respect to positions, respectively. Further details
about the q-SNAP formalism can be found in Refs. 20
and 23.

B. Fitting process

1. Training set

The training set is initially created by performing ab
initio calculations on a set of structures that represent
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cobalt in all relevant configurations. Four crystallo-
graphic phases are considered: hcp, fcc, bcc and ω. Unit
cells of these phases are deformed in all directions up to
1% strain. Supercells and surfaces are also constructed.
Various defects, such as interstitials and vacancies, are in-
troduced into selected supercells, while adatoms, vacan-
cies, and steps are incorporated into certain surface struc-
tures. Additionally, we generated icosahedra, truncated
octahedra, cuboctahedra, decahedra, hcp, and spheri-
cal nanoparticles, each containing up to a few hundred
atoms, with defects such as vacancies and adatoms also
included. Subsequently, all structures are subjected to
molecular dynamics simulations at temperatures up to
1200 K. Furthermore, also liquid structures are included.
The EAM potential developed by Pun et. al. [24] is
used to generate long trajectories with highly uncorre-
lated configurations. It has been found [21] that the
inclusion of highly out-of-equilibrium configurations in-
creases the robustness of the potential.

Additionally, we noticed that including small nanoclus-
ters ranging from 2 to 30 atoms improves the potential’s
robustness. Indeed, these clusters possess bispectrum de-
scriptors that significantly differ from those of any bulk
phase. In surface studies, this type of information is cru-
cial since molecular dynamics simulations at high tem-
peratures can easily lead to the presence of highly un-
dercoordinated atoms, such as adatoms. A training set
without these nanoclusters results in a q-SNAP that is
unable to model such systems, due to an extreme increase
in energy for some atoms of these special configurations.

Furthermore, we included a larger number of icosahe-
dra compared to truncated octahedra and hcp nanopar-
ticles, given their non-crystalline structure without any
equivalent in the bulk. Otherwise, they would have been
underrepresented in the training set, whereas it is often
the most stable morphology for transition metal nanopar-
ticles of a few dozen to a few hundreds atoms [25]. We
chose not to increase the representation of decahedra be-
cause they are inherently unstable for cobalt [26] and fall
outside the scope of our study.

The bispectrum descriptors are computed for all
these configurations and are labeled by energy, forces,
and stress obtained from ab initio calculations. Spin-

TABLE I. Details of the different classes used in the training
set. The first column describes the class, the second one gives
the number of atoms in the cells used for DFT-PBE calcu-
lations, and the three last columns correspond to the total
number of energies nE , forces nF , and stresses nS used for
the training/validation procedure.

Content Atoms nE nF nS

Unit cells 2-6 204/22 2640/252 1224/132
MD bulk 32-60 227/25 34110/3762 1362/150
Defaults 55-127 22/2 6300/450 132/12
Surfaces 10-288 99/11 37866/3846 594/66
Nanoparticles 2-308 394/43 127278/13134 2364/258

polarized single point energy calculations are per-
formed using the Vienna Ab Initio Simulation Package
(VASP) [27, 28] with the Perdew-Burke-Ernzerhof (PBE)
exchange-correlation functional [29] based on a general-
ized gradient approximation (GGA) [30], as integrated
in the MedeA materials modeling environment [31]. The
core electrons up to the 3p level were frozen and their in-
teractions with the remaining nine valence electrons were
described using the projector augmented wave method
(PAW) [32]. A plane-wave energy cutoff of 300 eV was
used and the k-spacing in the Brillouin zone was set to
0.2 Å-1 in the periodic directions, while only one k-point
was used for non-periodic directions. The Methfessel-
Paxton scheme [33] with a smearing width of 0.2 eV was
employed for the integration over the Brillouin zone. To
reduce the noise in the forces, an additional support grid
was used for the evaluation of the augmentation charges.
The SCF convergence criterion was set to 10-5 eV. To
avoid interactions due to the periodic boundary condi-
tions, a vacuum space of 15 Å was set in the non-periodic
directions of the cell. The ratios of energy vs. forces and
stresses in the training set are shown in Table. I for each
structure type.

2. Optimization of fitting parameters

Using the Machine-Learned Potential Generator
(MLPG) of the MedeA materials modeling environment
[31], the q-SNAP model [20, 23] was trained on the
data from DFT-PBE calculations using the least squares
method. To achieve the best fit, also the band limit
(2× Jmax) and the radial cutoff needed to be optimized.
To this end, a test set containing 10% of the training con-
figurations was extracted from the training set, and mul-
tiple q-SNAPs with different complexities were created.
For each q-SNAP, the root mean square error (RMSE)
between the training and test sets was computed. The
higher the complexity of the descriptors, the more the
RMSE on the training set will be reduced. However,
there comes a point where the error on the test set starts
to increase again [34]. The optimal complexity is thus
the one that minimizes the RMSE on the test set. For
cobalt with our datasets, a band limit of 8 (Jmax = 4)
and a radial cutoff of 5.0 Å are the optimal values. Dur-
ing the fit, weights on forces and stresses were 0.01 and
10-6 respectively. Fig. 1 shows the training and vali-
dation errors on energy and forces of the final fit. The
errors are detailed in Table II.

C. Validation on bulk and surface properties

We assessed the capability of the q-SNAP to accurately
reproduce results obtained from periodic DFT-PBE cal-
culations. To achieve this, numerous properties were
computed and analyzed. The computational methodolo-
gies employed to calculate these properties are detailed
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FIG. 1. (Color online) q-SNAP predictions on the training
observables compared with DFT-PBE for energies and forces.

below. DFT-PBE calculations were carried out using the
parameters outlined in section II B. For structure opti-
mizations, we used the conjugate gradient algorithm with
a convergence criterion of 0.02 eV.Å-1. The LAMMPS
molecular dynamics package [52] was employed to obtain
the results based on the q-SNAP. Structure minimiza-
tions were also performed using the conjugate gradient

TABLE II. Training and validation errors.

Type Group Unit MAE RMSE R2

Energy train meV.atom-1 2.3 4.3 1.0000
Energy test meV.atom-1 8.1 28.6 0.9999
Forces train meV.Å-1 30.9 54.2 0.9957
Forces test meV.Å-1 33.2 92.7 0.9933
Stress train bar 630 1434 1.0000
Stress test bar 5931 41992 0.9998

FIG. 2. (Color online) Surface energies calculated with the q-
SNAP and compared with those obtained by DFT-PBE and
EAM potential [24] values.

algorithm, with a convergence criterion of 10-3 eV.Å-1.
During the molecular dynamics simulations, a time step
of 2 fs was employed, and the Nosé-Hoover thermostat
and barostat were used with dampings of 200 and 2000
fs to control temperature and pressure, respectively.
Tables III and IV compare the experimental values of

hcp and fcc cobalt with those obtained with q-SNAP,
DFT-PBE and EAM [24]. The q-SNAP results shown in
these tables reflect the accuracy of the DFT-PBE level
of theory for calculations at T = 0 K. The EAM po-
tential was fitted to reproduce experimental data, typ-
ically measured at ambient temperature. This explains
the better agreement of the EAM results for structural
and elastic properties with experimental data compared
with the pure DFT-PBE results. However, fitting to spe-
cific experimental data runs the risk of introducing un-
controlled errors when using such a potential to compute
other properties such as the temperature of phase tran-
sitions or surface energies.
The surface energy of phase ϕ with Miller indices

(h, k, l) is expressed as

γϕ(hkl) =
Eslab − Ebulkϕ

× nslab

2A
(7)

were Eslab corresponds to the total energy of the slab
of area of A containing nslab atoms, and Ebulkϕ

to the
energy per atom of the minimized bulk cell of phase ϕ.
Slabs were constructed with a vacuum spacing of 15 Å
and a minimum thickness of 16 Å. As illustrated in Fig.
2, q-SNAP predicts surface energies for low index orien-
tations that are extremely close to the DFT-PBE values,
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TABLE III. Bulk properties of hcp Co.

Property Experiment DFT-PBE q-SNAP EAMa

a (Å) 2.507b 2.4902 2.4899 2.5187
c/a 1.623b 1.6160 1.6149 1.6103
C11 (GPa) 293c, 319.50d, 307.1e 386 366 311.9
C12 (GPa) 143c, 166.09d, 165.0e 151 174 146.9
C13 (GPa) 90c, 102.09d, 102.7e 114 118 119.6
C33 (GPa) 339c, 373.60d, 358.1e 403 425 359.4
C44 (GPa) 78c, 82.41d, 75.5e 97 74 91.7
Ef

v (eV) 1.4f, 1.38g 1.8222 1.49
Thcp−fcc (K) 690h, 695i, 700j 757 717a

a Ref. 24
b Ref. 35
c Ref. 36
d Ref. 37
e Ref. 38
f Ref. 39
g Ref. 40
h Ref. 41
i Ref. 42
j Ref. 43

TABLE IV. Bulk properties of fcc Co.

Property Experiment DFT-PBE q-SNAP EAMa

a (Å) 3.5447b, 3.568c 3.5103 3.5116 3.5642
C11 (GPa) 260d, 225e, 223f 302 328 275.7
C12 (GPa) 160d, 160e, 186f 173 201 158.9
C44 (GPa) 110d, 92e, 110f 149 138 108.2
Ef

v (eV) 1.34 - 1.91g 2.34h, 1.71h 1.7542 1.56
Tm (K) 1768i, 1770j 1695 +/- 15 1898a

a Ref. 24
b Ref. 44
c Ref. 45
d Ref. 46
e Ref. 47
f Ref. 48
g Ref. 49
h Ref. 50
i Ref. 51
j Refs. 42 and 43

with a maximum difference of 47 mJ.m-2 for γhcp(110),
whereas the EAM potential leads to much larger devia-
tions, up to 272 mJ.m-2 for the γfcc(111). Moreover, the
EAM potential finds that the hcp (001) surface is the
most stable instead of the fcc (111), and predicts that
γfcc(011) < γfcc(001) < γhcp(110). The disparity ob-
served between the EAM potential and the q-SNAP (and
DFT-PBE) likely arises from the decisions made during
the calibration of the EAM potential, primarily aimed
at accurately reproducing bulk properties, as mentioned
earlier. It should be mentioned, however, that the PBE
level of theory tends to underestimate surface energies of
transition metals [53].

A further test of the present q-SNAP is the computa-
tion of the thermal expansion of hcp and fcc phases us-
ing molecular dynamics simulations in the NPT ensemble

at atmospheric pressure between T = 298 and 1200 K.
5x5x5 and 4x4x4 supercells were employed for the hcp
and fcc phases respectively. The temperature was incre-
mented linearly in steps of 100 K with an equilibration
of 50 ps for each temperature. Only the cell angles were
fixed. As illustrated in Fig. 3, the q-SNAP results are
in very good agreement with the experimental data from
Ref. 41, showing that this interatomic potential repro-
duces well this property. The small underestimation of
the thermal expansion at elevated temperatures may be
in part due to the presence of vacancies in the experi-
mental samples while the simulations are preformed for
vacancy-free systems.

Phonon dispersions were computed using the phonon
module as available inMedeA [31], which uses the method
described in Ref. 54. The dispersions predicted by the
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FIG. 3. (Color online) Thermal expansion of hcp and fcc
cobalt measured experimentally (lines) and calculated with
the q-SNAP (marks). The blue solid line and squares repre-
sent the a lattice parameter of hcp cobalt, whereas the dashed
line and triangles refer to c. The red dash-dotted line and di-
amonds represent the lattice parameter of fcc cobalt.

q-SNAP are in very good agreement with those predicted
by DFT-PBE, as illustrated in Fig. 4 with the highest
frequencies being around 8 THz for the hcp phase, consis-
tent with experimental data [55] while the EAM of Pun
et. al. [24] predicts the highest frequencies to be nearly
11 THz.

An essential benchmark for assessing the efficiency of
the potential lies in the computation of the α-β phase
transition. Assuming that the entropic terms are solely
vibrational, the Helmholtz free energy F (T ) of a given
phase ϕ is defined as:

Fϕ(T ) = U(T ) + Evib,QC(T ) + ZPE − Svib(T )T (8)

where T is the temperature, U the total energy of the sys-
tem, Evib,QC the quantum contribution of the vibrational
potential energy, ZPE the zero point energy and Svib the
vibrational entropy. The computations of the three last
terms rely on the vibrational density of states DOS(ν),
determined via the Fourier transform of the integrated
velocity auto-correlation function [56, 57]. Supercells of
1000 and 1008 atoms for the hcp and fcc phases respec-
tively are equilibrated at a given temperature for 170 ps
within the NPT ensemble. Subsequently, the velocity
auto-correlation function is calculated during two simu-
lations of 25 ps in the NVE ensemble. The Helmholtz
free energy of both phases is computed using equation 8,
followed by polynomial fitting of the resultant curves to
determine ∆Ffcc−hcp(T ). As shown in Fig. 5, this func-
tion intersects zero at T = 757 K, demonstrating rather
good agreement with the experimental data, considering
that a shift of only 1.6 meV.atom-1 would yield a transi-
tion temperature close to the experimental value of 693

FIG. 4. (Color online) Phonon dispersion curves of hcp (top)
and fcc (bottom) cobalt, computed using DFT-PBE (solid
lines) and the q-SNAP (squares). Note that these results are
obtained in the P1 space group.

K [1]. Furthermore, there might be uncertainties also in
the experimental value.

The biphased cell method was used to estimate the
melting temperature of fcc Co. In the NPT ensemble,
following the procedure in [58], a 5x5x20 supercell was
equilibrated for 100 ps at 800 K, using NPT molecular
dynamics, with only the angles fixed. Subsequently, all
atoms with a fractional coordinate z greater than 0.5
were fixed. A 50 ps NPT molecular dynamics simulation
was performed at 3000 K to rapidly transform half of the
system into a liquid state. During this simulation, only
the z-direction of the cell was allowed to relax. Then,
while still keeping only the z-direction free, a third NPT
molecular dynamics simulation was conducted at the ex-
perimental melting point of 1768 K [2]. This simulation
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FIG. 5. (Color online) Difference in Helmholtz free energy
between the fcc and hcp phases of cobalt as a function of
temperature. The predicted phase transition temperature at
atmospheric pressure is T = 757 K (red dot).

lasted only 1 ps, which was sufficient to equilibrate the
density at the presumed melting temperature without re-
crystallization. Once this biphased cell was constructed,
NPT molecular dynamics simulations of 200 ps were per-
formed at various temperatures. All directions were al-
lowed to relax but the angles were fixed. The melting
temperature was determined based on the final state of
the final structure. All simulations were conducted at
atmospheric pressure. The q-SNAP predicts a melting
temperature of 1695 +/- 15 K, which is only 73 K below
the experimental value.

In summary of this validation, the present q-SNAP ex-
hibits excellent accuracy in reproducing a broad range of
static and dynamic properties of both bulk and surfaces
of hcp and fcc cobalt, thus highlighting its robustness and
reliability. The agreement with experimental data such
as the melting point demonstrates that the underlying
level of ab initio theory, namely DFT-PBE, provides a
remarkably good description of the interatomic interac-
tions in this system.

III. APPLICATION TO NANOPARTICLES

In the following analysis, our objective was to assert
the accuracy and robustness of the present q-SNAP in
describing the structure and energetics of nanoparticles.
This capability holds substantial importance, particu-
larly in the context of catalysis, where accurate predic-
tions are crucial for understanding and optimizing cat-
alytic processes.

Atoms involved in chemical reactions exist in states far
from their equilibrium, adopting configurations of high
energy. In heterogeneous catalysis, these reactions take

FIG. 6. (Color online) Stability of nanoparticles of different
shapes as a function of their size at 0 K.

place on surfaces or nanoparticles, where the reactants
adsorb on specific sites, which can be an adatom or any
other surface pattern with reactive surface atoms [59]. In
fact, surface atoms, especially on nanoparticles, dynam-
ically participate in catalytic reactions [60].
As a result, it is crucial to accurately characterize these

surfaces and adsorption sites to predict the catalyst’s sur-
face state as a function of temperature.
In this part, we will show the capabilities of the present

q-SNAP in modeling cobalt nanoparticles, both statically
through the relative stabilities of different nanoparticle
shapes and the vacancy formation on vertices, and dy-
namically by examining the melting process.

A. Morphological stability at T=0 K

In terms of the relative stabilities among different
shapes, the present q-SNAP predicts the icosahedron
to be the most stable shape up to 4000 atoms, after
which the hexagonal close-packed (hcp) shape becomes
the most stable. This is consistent with experimental ob-
servations of icosahedra for small nanoparticles [61] and
hcp structures for larger ones [62]. The truncated octahe-
dron is more stable than the hcp up to 1900 atoms. The
decahedron and cuboctahedron are considerably less sta-
ble, with a difference of 0.5 to 1 eV.atom-1 compared to
the three shapes mentioned before. Their curves of ener-
gies vs. size are nearly parallel, intersecting smoothly at
1300 atoms, where the cuboctahedron becomes more sta-
ble than the decahedron. We used the parameter ∆, as
introduced in Ref. [25], to depict the relative stabilities



8

in Fig. 6. This choice offers a clearer distinction between
the various transitions compared to merely plotting lin-
ear regressions. The parameter ∆ is defined as

∆(N) =
E(N)−Nϵcoh

N2/3
, (9)

where, E(N) is the total energy of a nanoparticle con-
taining N atoms, and ϵcoh the cohesive energy of bulk
hcp cobalt, which is taken to be -7.04 eV.atom-1.
Farkaš and de Leeuw [26] used DFT-PBE to minimize

nanoparticles of different shapes up to 1000 atoms. They
determined the relative stabilities of larger systems using
a linear extrapolation. Their predictions are compara-
ble to the results of the present explicit calculations, but
there are noticeable differences: Farkaš and de Leeuw [26]
predict the icosahedron to be the most stable shape up
to 5500 atoms, followed by the hcp structure for larger
nanoparticles. The present work predicts the transition
at 3880 atoms. In Ref. [26] the transition between the
truncated octahedron and hcp occurs near 500 atoms
while the present results give 1879 atoms. In Ref. [26]
the curves of the decahedron and cuboctahedron are sep-
arated by minimal differences in energy, but do not in-
tersect while the explicit q-SNAP computations predict
a transition at 1315 atoms, as can be seen from Fig. 6.

For comparison, the EAM potential [24] predicts the
icosahedron to be the most stable shape up to 2666
atoms, with the transition between the truncated octa-
hedron and hcp occurring near 387 atoms, which is con-
sistent with the present results. However, the stability of
the cuboctahedron is closer to that of the icosahedron,
truncated octahedron, and hcp than to that of the dec-
ahedron. For small nanoparticles below 400 atoms, the
EAM predicts the cuboctahedron to be even more stable
than hcp, in disagreement with DFT-PBE calculations
and the present q-SNAP results.

B. Vacancy formation energy on vertices

Vacancy formation energies provide a sensitive test for
the quality of interatomic potentials. To this end, a com-
parison was made between results from q-SNAP and the
EAM potential as a function of the nanoparticle’s size,
focusing on the vertices of nanoparticles.

The vacancy formation energy is defined as

∆Eform,vac = Etot,vac + (N−1 − 1)Etot,clean (10)

where Etot,clean is the total energy of the pristine
nanoparticle without a vacancy, Etot,vac is the total en-
ergy of the nanoparticle with a vacancy, and N is the
number of atoms in the pristine nanoparticle [63].

According to both potentials, the vacancy formation
energy decreases with an increasing number of atoms.
The EAM potential predicts that forming a vacancy on
a nanoparticle’s vertex is always favorable, except for
very small truncated octahedra and hcp nanoparticles,

FIG. 7. (Color online) Vacancy formation energy on a ver-
tex of icosahedra, truncated octahedra and hexagonal close
packed nanoparticles according to their size. Results obtained
with q-SNAP and EAM are drawn in solid and dashed lines,
respectively. The green dotted line corresponds to the sizes
where the EAM potential predicts the edge to be shifted in
order to fill the vacancy, as illustrated in Fig. 8.

FIG. 8. (Color online) Hexagonal close-packed nanoparticle
(587 atoms) minimized by the q-SNAP (left) and the EAM
potential (right). Both q-SNAP and DFT-PBE predict mi-
nor deviations relative to the initial state (with one vertex
removed from the minimized nanoparticle), wherein atoms
surrounding the vacancy tend to move away from it. Con-
versely, the EAM potential predicts an edge shift to fill the
vacancy.

whereas the q-SNAP predicts this behavior only for hcp
nanoparticles containing more than 323 atoms, as shown
in Fig. 7. For all sizes and shapes, the present q-SNAP
predicts that the atoms surrounding the vacancy leave
more space for it, while the EAM potential predicts the
surrounding atoms to fill the vacancy. For hcp nanopar-
ticles up to 967 atoms, the EAM potential even predicts
that the entire edge is shifted to fill the vacancy, as illus-
trated on the right hand side of Fig. 8. For larger sizes,
the edge does not shift, as predicted on the whole range
according to the q-SNAP and for the hcp nanoparticle
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FIG. 9. (Color online) Vacancy formation energy on vertices
of icosahedra, hexagonal close-packed and truncated octahe-
dra of 147, 153 and 201 atoms respectively, calculated using
DFT-PBE (dark blue), the q-SNAP (blue) and the EAM po-
tential [24] (light blue).

of 153 atoms according to DFT-PBE. The two types of
minimizations are represented by two distinct curves in
Fig. 7. In addition, Fig. 9 illustrates the excellent agree-
ment between the q-SNAP and DFT-PBE predictions for
small nanoparticles.

C. Melting

In atomistic simulations, it is possible to calculate the
melting temperature of a material using the biphased cell
method, as described above. It has also been demon-
strated, both experimentally [64] and computationally
[65], that it is possible to estimate the material’s melting
temperature by melting nanoparticles of varying sizes.
As the size increases, the nanoparticle’s melting temper-
ature tends to that of the bulk. This phenomenon is
described by the Gibbs-Thomson relation [64]:

Tm,NP = Tm,b

(
1− C

D

)
, (11)

where Tm,NP is the melting temperature of the nanopar-
ticle with diameter D, Tm,b is that of the bulk, and C is a
constant depending on the considered material. Thus, as-
suming the nanoparticle to be spherical, we deduce that
the nanoparticle’s melting temperature is inversely pro-
portional to N− 1

3 , where N is the number of atoms in
the nanoparticle:

Tm,NP = Tm,bulk − aN− 1
3 , (12)

where a = Tm,bulk × C
(
π
6

) 1
3 .

FIG. 10. (Color online) Heat capacities as a function of tem-
perature for five truncated octahedra of increasing size. The
maximum of the peak corresponds to the melting tempera-
ture.

FIG. 11. (Color online) Linear fit (solid line) of truncated oc-
tahedral cobalt nanoparticles melting temperatures (squares)

as a function of N−1/3, where N is the number of atoms. It
leads to a bulk melting point of 1785 K, with a R-squared
coefficient of 0.999.

This relationship is valid for large nanoparticles. In
fact, experiments have shown that this relation does not
hold for small nanoparticles [25, 66]. With a higher num-
ber of surface atoms compared to the bulk configuration,
their behavior significantly deviates from that of the infi-
nite system, making it unlikely that a straightforward ex-
trapolation of macroscopic values will accurately predict
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their properties. Thus, this study exclusively considers
nanoparticles with sizes greater than 1000 atoms.

Above 693 K, bulk cobalt adopts a face-centered cubic
structure. Therefore, to avoid shape effects and to be
consistent with the determination of the melting temper-
ature using the biphased cell method, the nanoparticles
used in this study are perfect truncated octahedra con-
taining 1289, 2406, 4033, 6266, and 9201 atoms, which
correspond to the magic numbers of that shape. These
nanoparticles are equilibrated at 900 K, then heated up
to 2000 K with an overall heating rate of 0.08 K.ps-1, in
intervals of 5 K at constant temperature lasting 62.5 ps
each. For these calculations, the system evolves through
Langevin dynamics. The melting temperature corre-
sponds to the maximum of the first derivative of the en-
ergy with respect to temperature, which was well defined
in all cases, as shown in Fig. 10.

Extrapolation to infinitely large particles using the
linear fit of the nanoparticles’ melting points, as illus-
trated in Fig. 11, yields a bulk melting point of 1785
K, a mere 15 K higher than the experimental melting
point. This outcome underscores the present q-SNAP’s
exceptional ability to accurately capture the dynamics
of cobalt nanoparticles. It implicitly also demonstrates
that the DFT-PBE level of theory captures the free en-
ergy difference between solid and liquid Co remarkably
well.

IV. CONCLUSION

In this article we presented the development, valida-
tion, and capabilities of a q-SNAP to predict static and
dynamic properties of bulk Co, its surfaces, and nanopar-
ticles.

The training set consisted of a total of 1049 cobalt
structures, encompassing diverse crystallographic lattices
with varying degrees of deformation, submitted to molec-
ular dynamics at various temperatures and pressures, as
well as surfaces and nanoparticles deliberately displaced
from their equilibrium states to capture a wide range of
atomic environments.

While the computational cost associated with obtain-
ing the training set may seem significant, it is quickly
offset by the new capabilities gained once the q-SNAP
is operational. This potential enables simulations of
several dozens of nanoseconds, involving thousands of
atoms, while closely maintaining the precision of DFT-
PBE. The present q-SNAP reproduces remarkably well
atomic vibrations (phonon dispersions) compared with
results from DFT-PBE calculations, thus enabling accu-
rate predictions of quantities such as thermal expansion,
the hcp-fcc phase transition temperature, and the melt-
ing point. The values obtained for these properties with
q-SNAP are in remarkable agreement with experimen-
tal data, thus implicitly validating the accuracy of the

underlying DFT-PBE level of theory.
Given its precise reproduction of DFT surface energies,

one expects its aptitude in correctly modeling nanopar-
ticles, which indeed is demonstrated in the present work.
It accurately reproduces static properties such as the rel-
ative stability of nanoparticles of different shapes as a
function of their size. Calculations of the vacancy for-
mation energy on vertices of nanoparticles and related
subtle structural changes demonstrate the high sensitiv-
ity of the present q-SNAP. Its robustness is further illus-
trated by accurately extrapolating melting temperatures
of nanoparticles to the bulk value as a function of the
number of atoms.
This diverse range of capabilities positions the q-SNAP

as a promising tool for catalysis applications, particu-
larly due to its versatility in accommodating additional
elements of various types—an advantage not shared by
EAM potentials, which are restricted mostly to metals.
The DFT calculations of the training set use a spin-

polarized Hamiltonian. In all of the present configura-
tions, the spins are ordered ferromagnetically. This fa-
cilitates the correlation between the structural environ-
ment and SNAP descriptors, which lack explicit informa-
tion on magnetic moments. For other transition metals
with lower Curie temperatures, such as iron, accounting
for magnetic ordering becomes important. The develop-
ment of machine-learned potentials including magnetism
has been demonstrated for pure Fe [67]. The extension
to systems with multiple magnetic elements is a field of
ongoing and leading research.
It is important to note that the present q-SNAP was

specifically constructed to model hcp and fcc cobalt,
along with their surfaces and nanoparticles in various
structures. Caution must be exercised when employing
machine-learned potentials to simulate systems signifi-
cantly different from the training set.
In conclusion, the present work demonstrates that cur-

rent machine-learned potentials are able to reach near
DFT accuracy at the speed of conventional interatomic
potentials, accurately capturing subtle dynamic effect
such as the structure, energetics, and dynamics of sur-
face atoms on nanoparticles.
The newly developed potential used in the present

work can be downloaded from Ref. [68].
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