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Path integral Monte Carlo (PIMC) and path integral molecular dynamics (PIMD)

provide the golden standard for the ab initio simulations of identical particles. In

this work, we achieved significant GPU acceleration based on PIMD, which is equiva-

lent to PIMC in the ab initio simulations, and developed an open-source PIMD code

repository that does not rely on any other third party library. Numerical experiments

show that for a system of 1600 interacting identical bosons in a harmonic trap, using

a single GPU and a single CPU, it only takes two hours to achieve satisfactory simu-

lation accuracy. With the increase of the number of identical particles, the advantage

of GPU acceleration over CPU becomes more obvious, making it possible to simu-

late tens of thousands of identical particles from first principles using a single GPU.

For example, for a system of 10000 non-interacting bosons, numerical experiments

show that it takes 23 hours to obtain a simulation that is highly consistent with the

exact results. Our study shows that GPU acceleration can lay a solid foundation for

the wide application of PIMD simulations for extremely large-scale identical particle

quantum systems with more than 10,000 particles. Numerical experiments show that

a 24GB GPU can simulate up to 40000 identical particles from first principles, and

the GPU acceleration leads to a roughly linear relationship between the computation

time and the number of identical particles. In addition, we have also successfully

implemented simulations for fictitious identical particle thermodynamics using GPU

to overcome the Fermion sign problem, which makes it promising to efficiently and

accurately simulate tens of thousands of fermions based on GPU.

a)Electronic mail: xiongyunuo@hbpu.edu.cn
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I. INTRODUCTION

Path integral Monte Carlo (PIMC) and path integral molecular dynamics (PIMD) for

the ab initio simulations of identical particles provide the golden standard for simulating

quantum systems1. However, for large-scale quantum systems with thousands of identical

particles, numerical simulations based on PIMD or PIMC generally require parallel comput-

ing on hundreds or even thousands of CPUs of a server cluster2; or even tens of thousands

of CPUs of a supercomputer3. This situation seriously hinders the wider application of

PIMC/PIMD in researchers’ simulation of large-scale identical particles. For extremely

large-scale quantum systems with tens of thousands of identical particles, even PIMC or

PIMD simulation on supercomputers is highly lacking. Based on PIMC/PIMD, efficiently

simulating systems with thousands or even tens of thousands of identical particles has be-

come an urgent and highly challenging problem to be solved. Once this problem is solved,

it will have unimaginable value for the ab initio simulation of large-scale and extremely

large-scale quantum systems, thus accelerating the development of quantum technology.

Especially for the countless researchers who do not have the opportunity to use a large

number of CPUs in supercomputers for parallel computing, the solution of this problem will

stimulate the generation and application of a large number of innovative ideas.

It is well known that GPUs provide an alternative to CPUs for scientific computing4,5, for

example, GPU acceleration is indispensable in large language models. GPUs also have some

applications in quantum physics, quantum chemistry, and materials science6–19. Consider-

ing the golden standard that PIMC/PIMD provides for ab initio simulations, it is a natural

question whether GPU can bring acceleration to PIMC/PIMD simulations. Unfortunately,

due to the challenges of using GPU for PIMC/PIMD simulations, researches and applica-

tions on using GPU to simulate identical particle quantum systems with PIMC or PIMD

have been highly lacking in the past two decades. In 2011, Quinn and Abarbanel20 studied

GPU acceleration for PIMC, but they did not explore the possibility of acceleration brought

by quantum systems, and only demonstrated the Hodgkin-Huxley neuronal model, which is

much simpler than identical particle quantum systems. Since GPUs are generally believed to

play a role mainly in matrix operations, the mainstream view is that GPU may not be suit-

able for the ab initio simulations of large-scale identical particle systems by PIMC/PIMD.

This situation has led to the fact that the role of GPUs in quantum physics-related fields is
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far from comparable to that in artificial intelligence.

In this paper, we have successfully achieved GPU acceleration for large-scale and ex-

tremely large-scale identical particles based on PIMD, which is equivalent to PIMC in ab

initio simulations. For example, for 1600 weakly interacting bosons in a harmonic trap,

our numerical experiments show that using a single GPU (24GB GeForce RTX4090) and a

single CPU (Intel®Xeon®Gold 6226R 2.9G), it takes only two hours to obtain satisfac-

tory simulation results in terms of energy (0.2% error) and density distribution in a single

simulation. For tens of thousands of bosons, GPU acceleration has even more significant

value compared to massive CPU-based parallel computing based on PIMD. For example,

the 24GB GPU used in our numerical experiments can accelerate the ab initio simulation

of 40,000 identical bosons by 202 times.

Recently, fictitious identical particles21,22 have been playing a significant role in simu-

lating the thermodynamic properties of fermionic systems by overcoming the Fermion sign

problem23–27, which has been experimentally verified and confirmed by the National Igni-

tion Facility28 to play a key role in important quantum systems such as inertial confinement

fusion and red giants. Based on the ξ-extrapolation method, it has been demonstrated in

the latest breakthrough3,28–31 by Dornheim et al., to be a powerful tool for the ab initio

simulations of solid hydrogen and strongly compressed beryllium. Therefore, in this work,

we also consider the GPU acceleration of PIMD simulations of fictitious identical particles in

general, and find that it has the same GPU acceleration effect as identical bosons. This work

lays a solid technical foundation for researchers to widely adopt the ξ-extrapolation method

to study the thermodynamic properties of large-scale fermionic systems. Of course, the GPU

acceleration is also useful for the ab initio simulations of large-scale bosonic systems.

The organization of this paper is as follows. In Sec. II, we briefly introduce the pa-

rameterized partition function for fictitious identical particles based on the path integral

representation. In Sec. III, we present a GPU parallel computing scheme with implemen-

tation written in C and OpenCL for simulating fictitious identical particles using PIMD. In

Sec. IV, we present some simulation results for identical particles and the effect of GPU

acceleration. We compare the time costs of performing the same simulation on a single GPU

and a single CPU, and find that for large-scale quantum systems, the acceleration effect of

GPU is proportional to the number of particles. In Sec. V, we give a brief summary and

discussion.
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II. PARAMETERIZED PARTITION FUNCTION FOR FICTITIOUS

IDENTICAL PARTICLES BASED ON PATH INTEGRAL

REPRESENTATION

Recently, we have proposed fictitious identical particles21,22 to overcome the Fermion sign

problem, which opens up the possibility of efficiently and accurately simulating the ther-

modynamic properties of important fermionic systems3,28–31 from first principles. Fictitious

identical particles provide a unified mathematical framework for describing bosons, fermions,

and distinguishable particles. Therefore, in this work, we will consider the GPU computa-

tion and acceleration effect of fictitious identical particle thermodynamics in general. The

GPU acceleration presented here can be also directly applied to the ab initio simulations of

the thermodynamic properties of identical bosons.

In fictitious identical particle thermodynamics21,22, we introduce a real parameter ξ to

describe the fictitious identical particles. ξ = 1 represents bosons, ξ = −1 represents

fermions. ξ is a real number that can vary continuously. Fictitious identical particles with

ξ ̸= ±1 do not exist in the real world of elementary particles, but the thermodynamic

properties of fictitious identical particles can be studied mathematically.

We consider the following partition function:

Z(β) = Tr(e−βĤ). (1)

Here β = 1/kBT with kB the Boltzmann constant and T the temperature. The parametrized

partition function for single-component fictitious identical particles with a real parameter ξ

can be written as21,22,28–31

Z(ξ, β) ∼
∑
p∈SN

ξNp

∫
dr1dr2 · · · drN

〈
p{r}|e−βĤ |{r}

〉
. (2)

SN represents the set of N ! permutation operations denoted by p. The factor ξNp is due to

the exchange effect of fictitious identical particles. ξ = +1 for bosonic partition function,

while ξ = −1 for fermionic partition function. We adopt the symbol convention 00 = 1 here

so that distinguishable particles (ξ = 0) can also be included in the above expression. In

addition, {r} denotes {r1, · · · , rN}. Np is a number defined to be the minimum number of

times for which pairs of indices must be interchanged to recover the original order {r} from

p{r}.
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For the above parametrized partition function, we can decompose e−βĤ as follows:

e−βĤ = e∆βĤ · · · e∆βĤ . (3)

Here ∆β = β/P , which means that there are a total of P terms of e∆βĤ multiplied together.

After inserting the appropriate unit operators for momentum and coordinates, based on

the path integral formalism and generalizing the recursive method in Ref.2, the discretized

partition function of Eq. (2) is found to be:

Z(ξ, β) =

(
mP

2πh̄2β

)PdN/2 ∫
e−β(V

[1,N ]
ξ

+ 1
P
U)dR1...dRN , (4)

where Ri represents the collection of ring polymer coordinates (r1i , ..., r
P
i ) corresponding

to the ith particle. P denotes the number of beads for a single particle. The system

under consideration has d spatial dimensions. V
[1,N ]
ξ considers the exchange effects of the

fictitious identical particles with parameter ξ by describing all the possible ring polymer

configurations. U is the interaction between different particles, which is given by

U =
P∑
l=1

V (rl1, ..., r
l
N). (5)

Here V denotes the interaction potential. The expression of V
[1,N ]
ξ is the key to consider

the exchange effects of fictitious identical particles, which is given by the recursive relation

shown in our previous paper32.

For a given temperature T (or β = 1/T ), in the bosonic sector (ξ ≥ 0), −β(V
[1,N ]
ξ + 1

P
U)

is a real number, so e−β(V
[1,N ]
ξ

+ 1
P
U) is a non-negative real function, which can be artificially

assigned the meaning of a probability distribution. Since the integral factor in Eq. (4) is a

function with NPd variables, we often have to use Monte Carlo importance sampling when

dealing with the above multiple integrals. For the importance sampling mentioned here,

we have two ways: one is the usual Monte Carlo importance sampling, which leads to the

development of PIMC33–40; the other is to use the molecular dynamics method, which is

called PIMD. In this work, we will develop GPU computing based on PIMD2,41–47, which is

equivalent to PIMC in ab initio simulations.

In this section, for the sake of simplicity, we take the case of spin polarization as an

example to illustrate. It is straightforward to generalize spin polarization to the case of

coexistence of different spins. The spin unpolarized case has been implemented in our open

source code.
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III. GPU-BASED PIMD SIMULATION SCHEME

Generalizing the idea for identical bosons2, the expression of V
[1,N ]
ξ in Eq. (4) is the key to

consider the exchange effects of fictitious identical particles, which is given by the following

recursive relation32:

e−βV
[1,N ]
ξ =

1

N

N∑
k=1

ξk−1e−β(E[N−k+1,N ]+V
[1,N−k]
ξ

). (6)

Here E[N−k+1,N ] is defined as

E[N−k+1,N ] =
1

2
mω2

P

N∑
l=N−k+1

P∑
j=1

(rj+1
l − rjl )

2, (7)

where rP+1
l = r1l+1 unless l = N where rP+1

N = r1N−k+1. The harmonic strings connecting the

ring polymers of different particles have the frequency ωP =
√
P

βh̄
.

The algorithm for PIMD simulation can be divided into several steps, each of which

may be parallelized to yield a speedup over the sequential implementation. As a first step,

we need to evaluate and store a number of quantities E[N−k+1,N ] which are used for later

calculations. It is easy to see that for N particles, the number of E[N−k+1,N ] to be evaluated

is O(N2), and calculating each one would take O(NP ) time, so a sequential evaluation of all

E[N−k+1,N ] takes O(N3P ) time. It is also easy to see that the evaluation of each E[N−k+1,N ]

is independent, so we can launch as many threads as there are E[N−k+1,N ] to evaluate each

one simultaneously leading to a speedup over the sequential evaluation.

Recently, a quadratic algorithm for identical bosons based on PIMD has been purposed

by Feldman and Hirshberg2, which eliminates the redundant calculations in E[N−k+1,N ] by

utilizing an iterative formula to calculate all E[N−k+1,N ]. A sequential implementation of this

quadratic algorithm only takes O(N2 + NP ) time, and thus it is superior to the straight-

forward calculations. In this paper our primary focus is on this quadratic algorithm and

its parallelization, so in the following we only discuss how to parallelize the quadratic algo-

rithm, while the original O(N3P ) algorithm is not discussed (a parallel implementation of

the original algorithm is still available in our open source repository however21).

The efficient method to evaluate E[N−k+1,N ] works like this. First we have

E[v,v] = E
(v)
int +

1

2
mω2

P (r
P
v − r1v)

2, (8)

where

E
(v)
int =

1

2
mω2

P

P−1∑
j=1

(rj+1
v − rjv)

2. (9)
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We can then evaluate the rest of E[N−k+1,N ] iteratively as follows:

E[u,v] = E[u+1,v] − 1

2
mω2

P (r
P
v − r1u+1)

2 +
1

2
mω2

P (r
P
u − r1u+1)

2 +
1

2
mω2

P (r
P
v − r1u)

2 +E
(u)
int . (10)

A sequential evaluation of E
(v)
int takes O(NP ) time and applying the iterative formula takes

O(N2) time, so the overall complexity for the sequential program is O(N2 +NP ).

Now we can consider how to parallelize the above calculations. First, it is straightforward

to see that calculations for each E
(v)
int (and also E[v,v], where v = 1, ..., N) are independent

from each other, so we can launch N threads to parallelize the calculations, no synchro-

nization is required between different threads. Then we observe that evaluations of E[u−1,u]

(u = 2, ..., N) depend on E[v,v] from the previous step, but they can be calculated indepen-

dently from each other, so after we finished calculating E[v,v] we launch N − 1 threads for

E[u−1,u], no synchronization between threads is required in this case too. After that we can

see E[w−2,w] (w = 3, ..., N) depend on E[u−1,u] and we can launch N − 2 threads to paral-

lelize the calculations. We continue all the way up to E[1,N ], which terminates the iteration.

Since minimal synchronization is required for the parallel calculations it is expected that

the parallel scheme can provide an N times speedup over the sequential implementation for

moderate N .

Once we have all the E[N−k+1,N ], we define a set of potentials V
[u,N ]
ξ through the following

recursive relation:

e−βV
[u,N ]
ξ =

N∑
l=u

ξl−u1

l
e−β(E[u,l]+V

[l+1,N ]
ξ

), (11)

where V
[N,N ]
ξ = 0 and ξ is a real parameter characterizing fictitious identical particles.

The potential V
[1,N ]
ξ results from the discretization of kinetic energy term in Feynman path

integral for the partition function. We can see evaluating all potentials V
[u,N ]
ξ takes O(N2)

time. To parallelize over this part of the algorithm we make use of the standard reduce add

technique, which is a parallel routine to compute the sum over an array of elements
∑N

i=1 ai,

for moderate N it effectively reduces the complexity of summation from O(N) to O(logN),

and so we simply use reduce add on the summation in the above formula for V
[u,N ]
ξ , for each

u = 1, ..., N . This way the computational complexity for the parallel program would no

longer scales as O(N2) for moderate N . We also employ the same reduce add technique to

compute the interaction energy U which is a simple summation.

In order to carry out molecular dynamics simulation we must also compute gradient of

the potential for the force acting on each particle, which for V
[1,N ]
ξ is −∇rj

l
V

[1,N ]
ξ . If we
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calculate the term −∇rj
l
V

[1,N ]
ξ for each particle directly based on the formula for V

[1,N ]
ξ

it takes O(N2) time, and since there are NP particles in total the final computational

complexity is O(N3P ). Fortunately, in the quadratic algorithm proposed by Feldman and

Hirshberg2, an alternative and mathematically equivalent algorithm is used to compute all

the −∇rj
l
V

[1,N ]
ξ efficiently, a sequential implementation of this part only takes O(N2 +NP )

time.

The method works as follows. First we define a set of N2 connection probabilities

Pr[G[σ](l) = l′] for ξ ≥ 0 with the following equations.

For l′ ≤ l

P r[G[σ](l) = l′] = ξl−l′ 1

l

1

e−βV
[1,N ]
ξ

e−β(V
[1,l′−1]
ξ

+E[l′,l]+V
[l+1,N ]
ξ

), (12)

while for l′ = l + 1

Pr[G[σ](l) = l + 1] = 1− 1

e−βV
[1,N ]
ξ

e−β(V
[1,l]
ξ

+V
[l+1,N ]
ξ

), (13)

for other cases

Pr[G[σ](l) = l′] = 0. (14)

Each element of the G matrix can be computed independently, and it is trivial to par-

allelize this part of the algorithm. Once we have all Pr[G[σ](l) = l′], we compute the

gradients −∇rj
l
V

[1,N ]
ξ as follows. For exterior beads (particles with indices j = 1 or j = P ,

for all l = 1, ..., N), we have

−∇r1
l
V

[1,N ]
ξ = −

N∑
l′=1

Pr[G[σ](l′) = l] ·mω2
P (2r

1
l − r2l − rPl′ ), (15)

and

−∇rP
l
V

[1,N ]
ξ = −

N∑
l′=1

Pr[G[σ](l) = l′] ·mω2
P (2r

P
l − rP−1

l − r1l′). (16)

It is easy to parallelize over this part by doing the calculations for all l simultaneously, an

N times speedup over the sequential routine is expected for moderate N . For interior beads

(particles with indices j = 2, ..., P − 1, for all l = 1, ..., N) we have

−∇rj
l
V

[1,N ]
ξ = −mω2

P (2r
j
l − rj+1

l − rj−1
l ). (17)

Again we can do the calculations for all N · (P − 2) particles simultaneously, leading to a

substantial speedup over the sequential implementation.
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Finally, we need to consider the interaction energy term:

U =
P∑

j=1

V (rj1, ..., r
j
N). (18)

If pair interactions are included in V (rj1, ..., r
j
N), the total computational complexity for

calculating U would be O(N2P ) (since O(N2) time is required for each individual V ), which

constitutes the most time consuming part of the simulation. Fortunately, V (rj1, ..., r
j
N) is

just the classical interaction energy between N particles with coordinates (rj1, ..., r
j
N), so

any parallel implementation for classical molecular dynamics may be applied directly to

calculate U and its gradients. In our implementation we chose to calculate the contribution

from each individual pair for the pair interaction simultaneously, which can achieve an N

times speedup over the sequential program for moderate N .

Fictitious identical particles

Parametrized partition function

Path integral Recursive formula

Parametrized partition function represented by 
a large number of classical beads 

Establishing thermal equilibrium using 
massive Nosé-Hoover chains

Molecular dynamics sampling

Estimators for various physical quantities

Simulation results

GPU

Ab
 in

iti
o 

si
m

ul
at

io
ns

 o
f l

ar
ge

-s
ca

le
 id

en
tic

al
 p

ar
tic

le
s

FIG. 1. Shown is the technical roadmap of GPU computing based on PIMD in this work.

In Fig. 1, we summarize the technical roadmap of GPU computing based on PIMD in

this work. This concludes our discussion of the efficient parallel algorithm for PIMD, all of
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the code implementing our scheme written in OpenCL48 are available in our open source

repository. In the following we put our specific implementation to test and we observe that

the computational time scales roughly linearly with number of particles N for moderate N ,

instead of quadratically as with the sequential implementation, which verifies the expectation

that our parallel algorithm can lead to an N times speedup over the sequential algorithm.

We also note that the memory usage of our program scales as O(N2), which may limit the

scale of the system that can be simulated depending on the amount of available memory in

a specific device.

IV. RESULTS

A. Ideal Bose gas in a two-dimensional harmonic trap

The Hamiltonian operator for a spinless ideal Bose gas in a two-dimensional harmonic

trap is given by:

Ĥ = −1

2

N∑
j=1

∆j +
1

2

N∑
j=1

r2j . (19)

We adopt the conventional convention h̄ = kB = m = ω = 1 here.

In our simulations, P = 72 is used by default unless otherwise specified. The total MD

(molecular dynamics) steps are expressed as (a+ b), where a represents the MD steps taken

in the process of establishing thermal equilibrium, and b represents the MD steps taken

after establishing thermal equilibrium to simulate thermodynamic properties by molecular

dynamics sampling. This paper aims to demonstrate GPU acceleration and give technical

solutions, so it does not seek to find the optimal ratio between a and b. For specific quantum

systems, we need to independently rely on experience or numerical experiments to determine

the optimal ratio between a and b. In this work, we simply choose the way of a = b.

In Fig. 2(a), we present the energies for different numbers of bosons at β = 6 after a

single simulation. For such a temperature T = 1/6, we can well consider the system to be

in the ground state due to h̄ω >> kBT . The black line E = N in the figure represents the

analytical result of the ideal Bose gas in the ground state. The blue dots in the figure are

the energy simulation results of (5×103+5×103) MD steps, and the red dots are the energy

simulation results of (104 + 104) MD steps. The simulated energy given by the red dots is

highly consistent with the exact ground state energy, with a deviation of about 0.3%. There
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FIG. 2. Fig. (a) shows the energy simulation results based on GPU for different numbers of identical

bosons. We calculated for (104+104) MD steps and (5×103+5×103) MD steps respectively. The

red and blue dots are the energy results of PIMD simulation using GPU under different MD steps,

and the black line represents the ground state energy E = N . The red and blue dots in Fig. (b) are

the actual calculation time in hours of the MD steps corresponding to Fig. (a). The black solid line

in Fig. (b) is a quadratic fit, and the fitting function is t(N) = −0.565+0.00156N+7.36×10−8N2,

which is roughly linear.

is an obvious deviation between the blue dots and the exact ground state energy, which is

due to the insufficient MD steps and the failure to establish thermal equilibrium. We notice

that for the red dots, once thermal equilibrium is established, the statistics of 104 MD steps

can give an accurate enough energy simulation result. The reason is that although the MD

steps used for statistics are not large, due to the huge number of particles, it is equivalent to

significantly improving the statistical data that can be used for energy simulation compared

to the case of dozens of bosons. Therefore, once large-scale or extremely large-scale identical

particles can be processed, the advantages of GPU in both computational efficiency and

simulation accuracy can be greatly exploited due to the increase in statistical data.

In Fig. 2(b), we present the actual simulation time on the computer for different numbers

of identical bosons. We use a GPU with 24GB of graphics memory (NVIDIA GeForce
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RTX4090) and a single CPU (Intel®Xeon®Gold 6226R 2.9G) to perform the calculation.

The red dots represent the time consumed for (104 + 104) MD steps, and the blue dots

represent the time consumed for (5 × 103 + 5 × 103) MD steps. We note that for a system

of 1600 ideal bosons in a harmonic trap, it only takes a little over two hours to achieve

satisfactory simulation accuracy. For a system of 1600 ideal bosons, Feldman and Hirshberg

used a cluster of servers (each with two Intel Xeon Platinum 9242 CPU®2.30GHz, 386GB

RAM, and a total of 96 cores) for this case and took 9 days to complete 3× 106 MD steps.

Our time for 3 × 106 MD steps using the same P = 36 as in the article2 is 10 days, which

is comparable. Of course, this comparison is not strictly meaningful, because the numerical

experiment in the paper2 used massive CPU parallel computing based on LAMMPS, while

we used massive Nosé-Hoover chains49–53 to establish the thermal equilibrium for molecular

dynamics and the code was completely independently written. This could also be one reason

why we achieved satisfactory simulation results with much fewer than 3×106 MD steps. It is

worth noting that at present, people have not yet implemented GPU acceleration in PIMD

based on LAMMPS, so we cannot compare with LAMMPS in terms of GPU acceleration.

From Fig. 2(b), we can see that the GPU computation time is roughly linear with the

number of particles N , while Feldman and Hirshberg2 summarized the computation time as

∼ N1.6 for the case of less than 1000 bosons. It is a pity that for the case of more particles,

Feldman and Hirshberg did not give the relationship between the time required for parallel

computing and the number of particles N for the case of more than 1000 particles, due to the

limitation of the communication speed between CPUs when using a large number of CPUs

for parallel computing. In any case, based on the GPU acceleration here, our numerical

experiments clearly show that a single GPU can be used to perform numerical simulations

of more than 10,000 identical bosons, while the paper by Feldman and Hirshberg2 did not

give a simulation demonstration of such a extremely large-scale bosonic system.

In Fig. 3, we present the normalized density distribution and the analytical result of the

ground-state density distribution (black solid line) ρ(r) = exp[−r2]/π, where r =
√
x2 + y2.

The red dots and blue dots in the figure are the simulation results of the density distribution

for (104 + 104) MD steps and (5× 103 + 5× 103) MD steps, respectively. By comparing the

red dots and the black solid line, we prove again that using GPUs for PIMD simulations

can efficiently obtain highly accurate thermodynamic properties of large-scale identical Bose

systems.
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FIG. 3. Shown are the GPU calculation results of PIMD for different numbers of identical bosons

in a two-dimensional harmonic trap without interaction. The number of bosons corresponding to

Figs. (a)-(d) are 1600, 5000, 10000, and 20000, respectively. In each figure, the black solid line

is the analytical result of the normalized ground-state density distribution, and the blue dots are

the simulation results for (5 × 103 + 5 × 103) MD steps. The simulated energy and total time

consumption are shown in blue font. The red dots in each figure are the simulation results for

(104+104) MD steps, and the simulated energy and total time consumption are shown in red font.

For this bosonic system, the exact ground-state energy is E = N .

It is not surprising that PIMD can be used to accurately simulate the thermodynamic

properties of identical bosons in large-scale Bose systems. In general, the relative fluctua-

tion of a physical quantity p is 1/
√
M , where M is the number of MD steps used in the

sampling. It is worth noting that for energy and density distribution, when simulating a

large number of identical particles, the number of particles N can also contribute to the

simulation accuracy. This is because when we obtain thermodynamic properties such as en-

ergy and density distribution through sampling, using a large number of particles can better
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suppress fluctuations. When the particle number N is considered, the relative fluctuation

of the physical quantity p becomes 1/
√
MN . This is why in the above simulation, only

104 MD steps of molecular dynamics sampling can obtain satisfactory results. This is good

news for PIMD simulations of large-scale and extremely large-scale identical bosons, leading

to a fairly satisfactory simulation accuracy for 1600 non-interacting bosons in a numerical

experiment that took over two hours.

B. Identical bosons with Gaussian interaction in a two-dimensional harmonic

trap

We now consider the following quantum system of identical bosons with Gaussian inter-

action:

Ĥ = −1

2

N∑
j=1

∆j +
1

2

N∑
j=1

r2j +
1

2

N∑
i ̸=j

g

πs2
e−|ri−rj |2/w2

. (20)

We take 1600 identical bosons as an example to carry out GPU calculations. In Fig. 4,

we present the density distribution for the interaction parameters (g = 0.01, s = 0.5) and

the temperature T = 1/6. The number of beads we choose is P = 72. The black solid

line in the figure is the ground-state density distribution of the ideal Bose gas, and the

red dots, blue dots, yellow dots and black dots are the simulation results of the density

distribution obtained after using different MD steps. We note that at (104+104) MD steps,

the convergence and sufficient statistical data can be guaranteed. Since the blue dots and

yellow dots in the figure are highly coincident, many blue dots are covered by the yellow

dots. In the inset of Fig. 4, we present the energy simulation results and the relationship

between the total different MD steps. Since we consider the repulsive interaction here, the

interaction leads to a wider density distribution compared to the ideal Bose gas. Similarly,

the interaction also leads to an increase in the total energy compared to the ideal Bose gas.

In Fig. 5(a), the energy simulation results for different P are presented at (104 + 104)

MD steps. We note that P = 72 can guarantee convergence. In Fig. 5(b), we present

the relationship between the actual calculation time and P . We note that there is a linear

relationship between the calculation time and P . The simulation of large-scale Bose systems

can play a role in suppressing fluctuations, so all the results in this section are the energy

and density distribution obtained from a single simulation. This paper demonstrates the
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FIG. 4. For 1600 interacting bosons, the density distribution simulation results for different MD

steps are shown in the figure after choosing P = 72. The black solid line in the figure is the density

distribution of the ideal Bose gas. In the inset, we show the relationship between the energy

obtained from the ab initio simulation and the total MD steps.

convergence based on the example here, which does not mean that the selected MD steps

and P are applicable to all cases. In actual research, we need to verify the convergence of

MD steps and P for each case. In order to further improve the simulation accuracy, it is

also an important method to do multiple simulations independently and then average them

in some quantum systems.

C. GPU simulation speedup

When measuring the acceleration brought by GPUs, a common metric is to compare it

with the speed of a single CPU. In Fig. 6, we present a comparison of numerical exper-

iments performed on a single GPU (NVIDIA GeForce RTX4090) and a single CPU (In-

tel®Xeon®Gold 6226R 2.9G). The example compared here is the case of non-interacting

particles in a two-dimensional harmonic trap.

As shown in Fig. 6, the GPU acceleration is significant, and it can be observed that after

more than 200 particles, the acceleration is roughly proportional to the number of particles.
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FIG. 5. Fig. (a) shows the energy obtained from the PIMD simulation for different numbers of

beads P for 1600 interacting bosons. Fig. (b) shows the actual calculation time based on GPU

for different P under the same (104 +104) MD steps. The calculation time and P satisfy a perfect

linear relationship.

The reason for this is that the simulation time on a single CPU is roughly proportional

to N2, while after GPU acceleration, the simulation time is roughly proportional to N .

This clearly demonstrates the significant advantages of GPUs in the ab initio simulation of

large-scale and extremely large-scale quantum systems.

D. Fictitious identical particles with Gaussian Interaction in a

two-dimensional harmonic trap

In our previous work32, based on the new recursion formula for the partition function

of identical bosons by Feldman and Hirshberg2, we have extended this new technique of

recursion formula to fictitious identical particles to overcome the Fermion sign problem and

simulate the thermodynamics of large-scale Fermi systems. For fictitious identical particles,

we introduce a continuously varying real parameter ξ to characterize the fictitious identical

particles, ξ = 1 for identical bosons, ξ = 0 for distinguishable particles, and ξ = −1 for

fermions.
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FIG. 6. The figure shows the speedup of a single GPU compared to a single CPU for different

numbers of bosons in the case of non-interacting bosons.

For the case of N = 4, β = 1, g = 3, s = 0.5 with Gaussian interaction (Eq. (20)), in Fig. 7

we compare the results calculated with GPU acceleration and those given in the article21

without GPU acceleration. The two are highly consistent, which indicates that there is no

error in the algorithm and code in our research with GPU acceleration. For the sake of

comparison, as in the previous work21, here we averaged the energy of three independent

simulations; in addition, P = 12 and the total MD steps are 5 × 106. We should note that

for the case of very few particles, we need a large amount of data generated by 106 MD steps

to obtain results with sufficiently small fluctuations. In comparison, we find in this work

that when the number of particles is in the thousands, as long as thermal equilibrium can

be established, the data generated by 104 MD steps can obtain accurate simulation results.

Since the topic of this paper is not to overcome the Fermion sign problem, we only use this

simple example here to verify the correctness of the code and make it easy for researchers to

independently repeat and verify the results here. Accelerating the thermodynamic calcula-

tion of fictitious identical particles with GPU and simulating the thermodynamic properties

of Fermi systems is a future work worth focusing on.

V. SUMMARY AND DISCUSSION

In summary, we have successfully implemented GPU acceleration of thermodynamics of

fictitious identical particles in PIMD. With a single GPU, one can now have the capability
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FIG. 7. The blue dots in the figure are the energies of fictitious identical particles simulated by

GPU in this work, and the red dots are the simulation results of our article21 using CPU based on

the partition function of the same fictitious identical particles.

that only server clusters or even supercomputers could have. In particular, for the ab

initio PIMD simulations of more than 10,000 identical particles, this work opens up a new

technical implementation scheme. This work provides opportunities for countless researchers

to conduct extensive ab initio simulation studies of extremely large-scale quantum systems.

Once parallel computing is performed with a large number of state-of-the-art GPUs, ab initio

exact numerical simulations of millions or even more identical-particle quantum systems will

become a reality in the future. Due to the rapid development of fictitious identical particles

in overcoming the Fermion sign problem to simulate large-scale fermionic systems, we have

also implemented GPU simulation of the thermodynamics of fictitious identical particles

here. In a series of groundbreaking works3,28–31 by Dornheim et al., including experimental

verification of the National Ignition Facility28, supercomputers were used to simulate the

thermodynamics of fictitious identical particles when using the ξ-extrapolation method to

simulate the thermodynamics of large-scale Fermi systems to a high-precision. This work

opens up another way for the ab initio simulations of Fermi systems of the same scale based

on GPU. The code and data of this study are openly available in GitHub54.
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