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Biological environments at micrometer scales and below are often crowded, and experience incessant
stochastic thermal fluctuations. The presence of membranes/pores, and multiple biological entities in
a constricted space can make the damping/diffusion inhomogeneous. This effect of inhomogeneity is
presented by the diffusion becoming coordinate-dependent. In this paper, we analyze the consequence
of inhomogeneity-induced coordinate-dependent diffusion on Brownian systems in thermal equilibrium
under the Itô’s interpretation. We argue that the presence of coordinate-dependent diffusion under
Itô’s formulation gives rise to an effective diffusion potential that can have substantial contribution
to system’s transport. Alternatively, we relate this to the existence of an emergent force of entropic
origin that dictates the transport near interfaces.

Many biological systems operate at low Reynolds num-
bers, where viscous forces are of paramount importance.
Viscous/damping forces dominate over inertial forces and
govern the mechanics of many biological systems in this
regime [1–3]. Coordinate-dependent damping/diffusion
is recently identified to have crucial role to play in the
functioning of various biological systems [4–9] and a lot
remains to be explored. Earlier experiments by Faucheux
et al, and others have proven the existence of coordinate-
dependent damping [7, 8, 10] of a Brownian particle near
interfaces. Ample theoretical/computational studies have
been focusing on understanding systems with coordinate-
dependent diffusion/damping as opposed to the uniform
one [11–16] under varied circumstances.
Translocation of proteins across cellular membranes

is a central and essential process in biological systems.
Molecular chaperones are macromolecules present in cells
that assist these proteins to unfold, move across mem-
branes/channels, prevent protein aggregation and help
in maintaining proper functioning and health of the cell.
Broadly, three mechanisms have been proposed in the lit-
erature to explain chaperone-assisted translocation of pro-
teins: power-stroke, Brownian-ratchet and entropic-pulling
[17–27]. In the power-stroke mechanism, the linkage of
incoming protein with the chaperone and assistance from
ATP hydrolysis induces a conformation change within
chaperone that drives the protein in forward direction
through the channel/pore. The Brownian-ratchet mecha-
nism is a biased diffusion model effectively based on the
idea that while passing through a pore/channel, the large
size of the chaperone only allows the Brownian motion of
protein-bound chaperone in one direction.
On the contrary, the entropic pulling mechanism is a

thermodynamic description based on the idea that the
system would try to move in a direction so as to attain a
higher entropy configuration [28–30]. It is generally under-
stood in existing literature that, in chaperone-assisted pro-
tein translocation, the tethering of protein to chaperone
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in the vicinity of the pore/membrane corresponds to a low
entropy state. The chaperone-linked protein system via
collisions with the membrane/pore generates a net effec-
tive pulling force that takes it away from pore/membrane
to a region of more freedom in conformations. This con-
stitutes an effective force transitioning to a higher entropy
state.

Entropic-pulling of a meso-scale object from open space
to a narrower one is beyond any scope under homogeneous
diffusion making such a phenomenon counter-intuitive. In
the present paper, we are going to illustrate effects of a
new source of entropy arising out of coordinate-dependent
diffusion [31]. The presence of this entropy eventually
could give rise to an entropic-force which could drag
a Brownian particle or a mesoscopic object towards a
region of higher damping despite the region of higher
damping being a relatively constricted space. In general,
coordinate-dependent diffusion is a hydrodynamic effect,
where a Brownian particle experiences enhanced damping
near an interface or wall than that it undergoes in the
bulk. This makes the particle spend more time near a
wall compared to that in the bulk and this phenomenon
can be understood in terms of this new inhomogeneity-
entropy arising out of coordinate dependence of diffusion.
We demonstrate working of this entropic-force, in the
present paper, in two classes of phenomenon. These two
phenomena are (1) diffusion-diode and (2) chain-pulling
through a pore.

In the absence of coordinate-dependent diffusion, dif-
fusive transport is always driven by concentration gra-
dients. However, in the presence of diffusivity gradient,
the gradient can force a diffusive transport even against
concentration gradient. If one imagines that the concen-
tration gradient is representing a driving field for current
in the presence of coordinate dependent diffusion, then,
until this driving force overcomes the barrier of the dif-
fusion gradient it will not be able to cause substantial
transport in its direction. This, however, is not the case
when the concentration gradient and the diffusion gradi-
ent are in the same direction. The operating principle of a
diffusion-diode would be based on cooperation/opposition
of these two gradients and can be realized in the presence
of coordinate dependence of diffusion.
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In equilibrium, diffusivity and damping are inversely
related by fluctuation-dissipation relation. As a result,
diffusivity decreases near a wall due to increase in damp-
ing. This decrease in diffusivity creates a higher entropy
region near a wall compared to that in the bulk. There-
fore, there always be a tendency in the diffusive transport
of macro-molecules to make them get attracted towards
a wall/pore near which this entropy is higher.

Due to this same effect, a chain-like macro-molecule left
to meander under equilibrium thermal fluctuations would
eventually move from a wider region of space to a nearby
narrower one under the action of coordinate-dependent dif-
fusion. To our knowledge, possibility of occurrence of this
phenomenon has not been paid attention to due mostly to
not having considered the Itô-process as an equilibrium
scenario for coordinate-dependent diffusion. These are
novel phenomena possible under coordinate-dependent
diffusion which might hold the key for understanding
complex biological systems in a substantially new way.
The paper is organized in the following manner: the

first section revisits basics of an Itô-process using Fokker-
Planck equation and demonstrates how a force of entropic
origin emerges therein. Subsequently, we introduce a
simple model to demonstrate the working of a diffusion-
diode. This is followed by a section on entropic-pulling
based translocation of a chain-like molecule through a
pore. The paper is concluded by discussing implica-
tions of inhomogeneity-entropy arising due to coordinate-
dependent damping/diffusion in the context of biological
systems.

I. COORDINATE-DEPENDENT DIFFUSION

Stochastic modeling has played an eminent role in help-
ing biologists and physicists understand various natural
phenomena [32–35] like the directed motion of molecular
motors, the spread of epidemics, gene regulation etc. The
evolution of such stochastic systems are often understood
by expressing the dynamics as a partial differential equa-
tion in the presence of a thermal noise. In one spatial
dimension x, an Itô-process is governed by the following
Fokker-Planck equation [16, 36]:

∂

∂t
p(x, t) = − ∂

∂x
[ν(x)p(x, t)] +

∂2

∂x2
[D(x)p(x, t)].

where p(x, t) is the probability density of the particle

at position x and time t, ν(x) = F (x)
Γ(x) is the drift velocity

(coefficient) and D(x) is the diffusion coefficient. The de-
terministic (conservative) force on the particle being F (x),
the damping coefficient is denoted by Γ(x) which, in gen-
eral, is related to the diffusivity in the time-independent
case as Γ(x) = kBT

D(x) by the fluctuation-dissipation rela-

tion under local equilibrium conditions at temperature
T with kB being the Boltzmann constant. The Fokker-
Planck equation is a continuity equation for conserved

probability.

∂

∂t
p(x, t) = − ∂

∂x
J(x, t).

where J(x, t) is the probability current density, with
J(x, t) = ν(x)p(x, t) − ∂

∂xD(x)p(x, t). The first term
here corresponds to drift current density and second term
to diffusion current density [16, 31, 36–42]. Now, for a
stationary distribution in equilibrium Jeq(x) = 0 (con-
dition for detailed balance), the following equilibrium
distribution peq(x) results:

peq(x) = C
D0

D(x)
exp

(∫
dx

ν(x)

D(x)

)
.

Here C is a constant with dimensions of inverse length,
and D0 is a constant diffusivity away from any interface
to which D(x) converge as the Brownian particle makes
its excursion to the bulk region of allowed space.

This distribution is referred to as generalized/modified
Boltzmann distribution or Itô-distribution in [16, 41, 43,
44]. Now, the drift velocity ν(x) can be expressed in
terms of potential U(x) corresponding to a conservative
force and coordinate dependent damping Γ(x) as : ν(x) =
− 1

Γ(x)
∂
∂xU(x). The equilibrium distribution peq(x) thus

becomes [16, 41, 42, 45]

peq(x) = C
D0

D(x)
exp

(
−U(x)

kBT

)
. (1)

The presence of the coordinate-dependent diffusivity-
dependent amplitude D0/D(x), makes all the difference
and is responsible for the possibility of various interesting
processes in thermal equilibrium like bath-fluctuation-
driven spontaneous collective transport [45], rectified
transport of symmetry broken hetero-dimer [42, 46] etc.
The legitimacy of the distribution (1) as an equilibrium
distribution could be illustrated by rewriting peq(x) as

peq(x) = C exp

(
− 1

kBT

[
U(x)− kBT log

D0

D(x)

])
, (2)

where interpretation of the above expression could be
that, the presence of coordinate dependence of diffusion
generates a diffusion potential UD(x) = −kBT log D0

D(x) ,

which corresponds to a force fdiff = − ∂
∂xUD(x) =

−kBT
d
dx logD(x). This force supports the motion in the

direction of decreasing diffusion. This is the Molecular-
kinetic/tree description in the context of the paper by
Sousa and Lafer [18]. Another way to interpret this is the
thermodynamic description [18, 31], where one interprets
the presence of position-dependent diffusion responsible
for the emergence of additional entropy. The term D0

D(x)

can be interpreted as the dimensionless density of states
arising in the presence of coordinate-dependent diffusion
[31]. The corresponding force fen(x) = −dF

dx = T dS
dx .

Here F corresponds to free energy. This in our case
means fent = −kBT

d
dx logD(x). This force is responsible

for the entropic-pulling mechanism.
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II. DIFFUSION DIODE

Consider a model consisting of N Brownian particles
confined inside a three-dimensional box in the presence
of a heat bath in equilibrium at temperature T . Brown-
ian particles interact with each other through excluded
volume interaction in the vicinity of one another. Over-
damped stochastic differential equations

dri
dt

=
Fi

Γi
+

√
2kBT

Γi
ηi(t), (3)

govern such a system where ri is the position coordinate
of ith particle. Fi is the instantaneous force amounting
to the total contribution of excluded volume interaction
and the confinement felt by the ith particle, in case it
tries to cross the boundary. kBT represents the thermal
energy scale of the heat bath at temperature T . Γi

is coordinate-dependent damping coefficient assigned
to the ith particle. Stochastic noise ηi(t) felt by ith

particle is a three-component Gaussian white noise
vector, which in Cartesian coordinate representation
is ηi(t) = ηxi (t)x̂ + ηyi (t)ŷ + ηzi (t)ẑ. Each component
represents Gaussian white noise of zero mean and a unit
strength. None of these components are cross-correlated
i.e. ⟨ηsi (t)⟩ = 0 and ⟨ηsi (t1)ηs

′

j (t2)⟩ = δijδss′δ(t1 − t2),
with i, j ∈ {1, 2, . . . N} and s/s′ ∈ {x, y, z}.

We set up a box in the first octant, with the origin (0,
0, 0) coincident on one of the corners. All distances are
measured from the origin. Length of the box in y and
z directions are equal by construction. We introduce a
global coordinate-dependence of damping in the box in
this model. This is achieved by dividing the box into
three cuboidal regions: R1, R2 and R3 along x-axis,
where regions R1 and R3 are geometrically identical.
The damping profile is such that the damping strength
is almost constant in R1, increasing in region R2 till it
reaches region R3, where it again saturates to another
almost constant value. The damping profile chosen is a
monotonically increasing, continuous, and differentiable
function.

We study two cases under such a scenario:- Case I: N
Brownian particles are randomly placed in R1 at the start
of the simulation, and Case II: N Brownian particles are
randomly placed in R3 at the start of the simulation.
We allow the system of particles to evolve numerically
as an Itô-process and compare the dynamics in both cases.

The excluded volume interaction between different par-
ticles i and j is modeled by repulsive harmonic potential
Vij .

Vij =


1
2κ(|ri − rj | − rl)

2 if |ri − rj | < rl,

0 if |ri − rj | ≥ rl,

FIG. 1: Set up of the model

where, κ measures the strength of repulsion, rl is the
proximity scale below which repulsion is felt by particles.
Suppose ϕi represents the net potential on the ith particle
due to other particles, then ϕi =

∑
j

Vij(1 − δij). δij is

the standard kronecker delta function. The correspond-
ing force felt is −∇riϕi. The confinement interaction
is modeled by a piecewise harmonic repulsive potential.
Suppose bi = {xi, yi, zi} and lb = {lx, ly, lz} constitute
ordered pairs, where elements of bi represent cartesian
components of ith particle’s position and elements of lb
represent edge-length of the box in x, y and z direction
respectively. The confining potential corresponding to
each component of bi and lb is denoted by Vbi .

Vbi =



1
2κb

2
i if bi < 0,

0 if 0 ≤ bi ≤ lb,

1
2κ(bi − lb)

2 if bi > lb

The overall confining potential Vc =
∑
bi

Vbi . Thus, the

net force felt by ith particle due to excluded volume and
confinement effects is Fi = (−∇riϕi) + (−∇riVc).
The coordinate-dependent damping is modeled by a

hyperbolic tangent function in the simulations. The fol-
lowing functional form of damping experienced by ith

particle, is used in simulations:

Γi = A tanhβ(xi − x0) + (A+ 1),

where x0 is shifted origin and A is amplitude parameter,
where β is the measure of the steepness of the profile
in neighborhood of x0 and effectively is a measure of
region R2 in x direction. The last term in the above
expression of damping accounts for vertical shifting of
standard hyperbolic tangent function to ensure that
damping is always positive. We have chosen x0 to be
midpoint of length of three-dimensional box in x direction.
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The initial configuration in case I corresponds to
randomly placing all the particles in R1. This initial
placement sets up a particle concentration gradient that
favors particle motion through R2. Normal concepts of
diffusion would dictate that the particles would diffuse to
reach a uniform distribution. Coordinate dependence of
damping sets up a diffusion potential according to the
set diffusion gradient. This when evolved an Itô-process
induces motion of particles in the direction of decreasing
diffusivity (increasing damping) in accordance with
the Itô’s framework. The combined result of the two
processes is that the majority of particles diffuse to
region R3, and consequently, a steady state is reached
with higher concentration in R3.

Now, consider case II, where all the particles are
randomly placed in R3 at the start of the simulation.
This assignment creates a concentration gradient favoring
the motion of particles through R2 to R1 for normal
diffusion. However, the diffusion potential as per
Itô-process sets up a diffusion barrier to overcome to this
concentration-driven current. Consequently, a steady
state is reached at long times with most of the particles
staying in R3. This is a diode in reverse bias if one goes
by the conventional idea of considering diffusion being
driven by concentration gradient.

nf represents the ensemble-averaged number of parti-
cles reaching R3 starting from R1. It corresponds to case
I. Similarly nb denotes the ensemble-averaged number of
particles occupying region R3 given they start from R3

and it corresponds to case II. It is evident from Fig.2(a)
(case I) that when particles are initially placed in R1, the
majority of them reach R3 at long times. This is because
the inhomogeneity-induced diffusion potential sets up a
diffusion gradient which aids the concentration gradient
in the motion in this (forward) direction. The situation
is similar to forward biasing in a traditional diode by
assistance in forward motion. In case II as evident from
Fig.2(b), most of the particles can’t crossover to region
R2 because the inhomogeneity-induced diffusion potential
generates a diffusion gradient that opposes the motion
of particle from R3 to R2 (backward) direction. Simula-
tion details used here can be found in Appendix A and
Appendix B.

III. ENTROPIC PULLING OF A CHAIN

In this section, we consider a polymer chain confined
inside a three-dimensional funnel-like geometry in
contact with a heat reservoir in thermal equilibrium at a
temperature T . The polymer comprises N interacting
Brownian monomers. The shape of the funnel is shown
in Fig.3. It is useful to think of the funnel as divided
into three sections: R1, R2, and R3, all seamlessly linked
together. R1 is a hollow right circular cylindrical region
of radius R. R2 is a hollow truncated cone-shaped region

0 1000 2000 3000 4000 5000
t
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20

40
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n
f

width =4

width =3

width =2

(a) Case I
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70
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90

100

n
b

width =4

width =3

width =2

(b) Case II

FIG. 2: Occupation of particles in R3 shown for various
widths of R2 as a function of time displayed for (a) case
I and (b) case II. Widths of 4, 3, and 2 correspond to the

following values of β: 2.5, 3.3, and 5 respectively.

(or frustum of a cone) with big radius R and small radius
r. R3 is a hollow right circular cylindrical region of
radius r. All regions have equal length by construction.
We establish our reference point, the origin, at the center
of the rear circular base (radius R) of the funnel, which
marks the beginning of region R1. The positive direction
of z axis is a ray coincident with the axis of symmetry
of funnel emerging from origin towards other regions,
with x and y axis perpendicular to z axis. It is evident
from the nature of geometry of the funnel that curved
boundaries of regions R1, R3 lie at a constant radial
distance from z axis whereas for R2, this distance keeps
on decreasing with increasing z coordinate. Thus, this
geometry can be used to model the effect of the wall on
diffusivity/damping on the particle.

We introduce a confining potential on boundaries
to ensure that polymer stays inside the funnel. In the
model, we introduce two intra-polymer interactions: (i)
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nearest-neighbor monomer interaction and (ii) interaction
between all other pairs. The nearest neighbor monomers
feel attractive interaction above an equilibrium separa-
tion and an excluded volume interaction below it. All
other pairs of monomers interact via excluded volume
interaction in proximity to one another. We evolve the
system as an Itô process. The following equation of
motion describes the dynamics of i-th monomer under
Itô description.

dri
dt

= − 1

Γi
∇ri

[ ∑
j=i±1

VNN (|ri − rj |) +
∑
j

j ̸=i,i±1

VO(|ri − rj |)
]

− 1

Γi
∇riVB(ri) +

√
2kBT

Γi
ηi(t).

where i, j ∈ {1, 2, . . . N} are monomer indices and ri
denotes the position vector of ith monomer. rij = |rij | =
|ri−rj | is the magnitude of separation between ith and jth

monomer. Γi is the damping coefficient associated with
the ith monomer. VNN captures the interaction between
monomers directly linked to one other, while VO accounts
for the interaction between monomer that are not nearest
neighbour pairs. VB denotes the potential that restrains
the i-th monomer in the event it crosses funnel boundary.
ηi(t) signifies Gaussian vector white noise experienced by
i-th monomer possessing same statistical properties as
those elucidated in the diffusion diode section.

FIG. 3: Funnel [not drawn to scale]

The cross-sectional radius s in each region of the funnel
can be expressed as:

s(z) =



R if 0 ≤ z ≤ h,

r + (2h− z)(R−r
h ) if h ≤ z ≤ 2h,

r if 2h ≤ z ≤ 3h,

where h is each region’s length in z direction. The near-
est neighbor monomer interaction VNN is modeled by a

harmonic potential.

VNN (rij) =
α

2
(rij − rmin)

2,

where α is the spring constant, rmin is the equilibrium
separation and rij is the separation between nearest neigh-
bour’s i and j, where (j = i± 1). The excluded volume
interaction between the rest of monomer pairs is modeled
using Weeks–Chandler–Andersen (WCA) potential and
represented by VO.

VO(rij) =


4ϵ[σ

12

r12ij
− σ6

r6ij
] + ϵ if rij < 2

1
6σ,

0 if rij ≥ 2
1
6σ,

where, ϵ measures the depth of the standard L-J
potential well, σ is a length parameter and rij is the
separation between ith and jth monomer with j ̸= i, i± 1.

The position of ith monomer in three-dimensional space
can always be expressed in a cartesian coordinate system
by three independent cartesian coordinates, {ri} ⇐⇒
{xi, yi, zi}. The presence of cylindrical symmetry in the
funnel allows for a convenient representation of confining
potential at the periphery and above it, in cylindrical
coordinates, {ri} ⇐⇒ {ρi, ϕi, zi}. ρi symbolises the
radial distance of the ith monomer from z axis and ϕi

expresses the azimuth angle made by ith monomer on
x-y plane, where ρi =

√
x2
i + y2i and ϕi = tan−1( yi

xi
).

The funnel boundary consists of two types of surfaces: a
curved cylindrical surface, directed in a direction normal
to the z axis, and a plane circular surface towards the
rear ends of the funnel along the z axis. The confinement
interaction is defined separately for both surfaces but in
either case, is modeled by harmonic repulsion. Suppose
Φc and Φp signify the confining potentials that the
ith monomer experiences on overshooting the curved
cylindrical boundary and plane circular periphery of the
funnel, respectively.

Φc(ρi) =


0 if ρi < si,

κ
2 (ρi − si)

2 if ρi ≥ si.

Φp(zi) =



κ
2 (zi − 0)2 if zi ≤ 0,

0 if 0 < zi < 3h,

κ
2 (zi − 3h)2 if zi ≥ 3h.

where, κ is measure of strength of harmonic repul-
sion, si(zi) is the cross-sectional radius seen by ith
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particle corresponding to it’s z coordinate, zi. Thus,
the overall confining potential VB becomes, VB = Φc+Φp.

Having described the system, in the following section,
we show the effect of the presence and absence of
coordinate-dependent damping on the dynamics of
the polymer chain. We consider two cases. Case I
corresponds to the introduction of damping dependent on
z coordinate, Γi = A/si(zi), where A is a constant. Such
a choice provides uniform damping in regions R1 and R3

and a monotonically increasing damping as the polymer
moves in region R2 along increasing z direction. In Case
II , we consider a constant damping profile experienced
by the monomer throughout the funnel, Γi = A/R, which
equals a constant. We evolve both cases as an Itô process
using simulation and compare the dynamics at the end of
the simulation.

The initial state of the polymer in cases I and II is an
identical unfolded linear chain conformation coincident
on the z axis lying in R1 in all the ensembles. We
generate independent ensembles using a different random
seed and thus a different sequence of random numbers
for each ensemble in case I. For case II, we generate an
equal number of independent ensembles by using the
same random seed and the same corresponding sequence
of random numbers as for case I. After having fixed
the polymer to the same initial configuration, and the
same sequence of random numbers corresponding to a
given ensemble in both cases, we can distinctly see the
effect of the presence of coordinate-dependent damping
in case I and compare it with constant damping (absence
of coordinate dependence) as in case II. We examine
this by comparing the dynamics of ensemble-averaged
z center of mass of the polymer denoted by z̄. It is
evident from Fig.4(a), that due to the presence of
coordinate-dependent damping (case I), the polymer
moves from a wider region of R2 to its narrower region.
The presence of coordinate-dependent damping sets up
an entropy gradient that pulls the polymer from the
wider end to the narrow end of R2. However, in the
uniform damping case (case II), there exists no such
entropy gradient, so the polymer keeps diffusing around
in the wider region.

Now, we remove regions R1 and R3 and place the Brow-
nian polymer chain in a geometry that consists of only
region R2 in thermal equilibrium with a heat bath at
temperature T . The confinement potential is kept in-
tact. The damping is coordinate dependent, Γi =

A
si(zi)

,

where si(zi) = r + (h − zi)(
R−r
h ). The polymer is ini-

tialized in an unfolded linear configuration along the z
axis. We study three instances(or samples) in which we
systematically increase A, run the simulations and then
compare the dynamics of the ensemble averaged center
of mass of the polymer in z direction. As, the velocity
(current) is proportional to the gradient of diffusivity, a
smaller A, generates a smaller damping gradient which

corresponds to more steeper diffusivity gradient. This
is also clear from Fig.4(b) on comparison of the poly-
mer motion for different A′s. We found from the simu-
lation data that the ensemble-averaged center of mass
velocity (v) of the polymer in z direction changes with
variation in A. We found on analysis of the data that
vA=0.05 : vA=0.1 : vA=0.2 :: 3.9 : 2.1 : 1. As we increase
the number of ensembles, we expect this to match the
theoretical prediction of 4 : 2 : 1. Simulation details used
here can be found in Appendix A and Appendix C.

(a)
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A = 0.05
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A = 0.2

(b)

FIG. 4: Time evolution of the center of mass of polymer
chain, z̄ (a) compared in the presence (case I) and

absence (case II) of coordinate dependent damping (b)
compared in the presence of coordinate dependent
damping for various damping strengths as shown.
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IV. DISCUSSION

It is counter-intuitive in the context of diffusion to
think of diffusion creating concentration gradient. This
is counter-intuitive in the sense of normal (uniform) dif-
fusion processes, however, it turns out to be a general
phenomenon in the presence of diffusion gradients when
treated as an Itô-process. An Itô-process does not intro-
duce correlations in the thermal noise and the thermal
noise remains a white noise. Itô’s convention is essential
to keep thermal noise correlation free and not coloured
when diffusion is coordinate-dependent and the dynamics
is an over-damped one. Any coloured noise in the oper-
damped dynamics will break the thermal equilibrium of a
Brownian particle which is supposed to be always in ther-
mal equilibrium with the heat-bath at all the times. This
is because, the limit of the Brownian particle’s relaxation
time to equilibrium is taken to zero in the over-damped
case.
Thus, the Itô-process in the presence of coordinate-

dependent diffusion, which is quite ubiquitous, could po-
tentially explain new physics which might have the clue
to understand transport processes through constricted
regions and apparent anti-diffusion. In living systems,
such diffusion driven counter processes to the idea of
normal diffusion might hold the key to generally under-
standing structural transitions as well. There could exist
an effective attractive force driven by hydrodynamics near
interfaces of particles, in general, in classical regime is a
novel ingredient which has not been paid much attention
to in the literature. This is where exists the need to
explore such mesoscopic systems under Itô’s convention.
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APPENDIX A : BASICS OF AN ITÔ PROCESS

Consider the following overdamped Langevin equation
for the ith particle in presence of a force Fi, Gaussian noise
ηi(t) and coordinate-dependent damping Γi in equilibrium
with heat bath at temperature T :

dri
dt

=
Fi

Γi
+

√
2kBT

Γi
ηi(t).

This equation is numerically evolved using the Euler-
Maruyama scheme. In this paper, we solve this equation
by considering it as an Itô process. The Itô process cor-
responds to utilizing a correlation-free (non-anticipating)

noise. This means while numerically evolving the dynam-
ics, at every time step (∆t) of evolution, the particle’s
position at the start of the interval ∆t determines the
damping/diffusivity. Thus when considered as an Itô pro-
cess, the following Euler-Maruyama updation prescription
is used:

ri(t+∆t) = ri(t) +
Fi{ri(t)}
Γi{ri(t)}

∆t+

√
2kBT∆t

Γi{ri(t)}
N (0, 1),

Here ∆t is the discretized time step by which particle’s
position is updated after each iteration. Fi{ri(t)}
and Γi{ri(t)} respectively denote the net force and
damping coefficient of ith particle at time t. N (0, 1) is a
three-dimensional Gaussian distributed random variable
vector with zero mean, unit standard deviation, and zero
cross-correlation.

We implement the following methodology for our simu-
lations:

(1) Initialise the system.

(2) Evaluate the net force and damping associated with
each particle.

(3) Generate Gaussian distributed random variables
with the above mentioned desirable properties and
then update the position of each particle using the
Itô process discretization prescription.

(4) Go back to step (2) and repeat.

APPENDIX B : DIFFUSION DIODE

Initialization in the Diffusion diode section corresponds
to assigning random positions to particles inside their re-
spective regions (R1 and R3 for cases I and II, respectively)
at the start of the simulation. In the simulations, new
random seeds and different uncorrelated sequences of ran-
dom numbers are used to generate Gaussian-distributed
random variables. We run the simulation till a steady
state is reached. Thermal energy kBT and distance pa-
rameter rl are our reference scales for energy and length
in simulation.
We fix kBT = 1, rl = 0.5 and number of particles

N = 100, with repulsion strength parameter set to
κ = 1000. The box dimensions chosen are lx = 14,
ly = lz = 5. To model the damping profile, we chose
A = 4.5 and x0 = 1

2 lx = 7. We use discretized time step

∆t = 5× 10−4 to evolve equation (3). We consider three
different damping profile parameters, which corresponds
to changing β keeping other damping parameters A and
x0 fixed. We simulate this for both cases (I and II).
The choice of β decides the width of R2 in x direction.
The following values of β’s are chosen: 2.5, 3.3, and
5.0, corresponding to R2’s widths (in x direction) 4,
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3, and 2 respectively. Each simulation is run for 107

iterations with successive data recorded every 100
iterations. We generate 100 ensembles for each case for
a fixed β and perform an ensemble average to obtain
quantities of interest. nf and nb are the quantities
of interest here, obtained by averaging over 100 ensembles.

APPENDIX C : ENTROPIC PULLING OF A
CHAIN

The polymer is initialized in an identical unfolded
linear chain conformation (coincident on z axis lying in
R1 at the start of the simulation) in all the ensembles
for cases I and II. We generate 50 ensembles for cases
I and II. kBT and rmin serve as fundamental energy
and length benchmarks in our simulations. Both are

normalized to unity, kBT = 1 and rmin = 1. The polymer
consists of N = 25 monomers. The geometric parameters
defining the funnel geometry are R = 3, r = 2, h = 27.5.
Interaction parameters are set at α = 100, ϵ = 1.5,
σ = 1.5, κ = 1000 and A = 0.05. Discretised time step
∆t = 10−6 is employed and the simulations is run for
3× 108 iterations with monomer positions recorded every
103 iterations.
Now when we remove regions R1 and R3 and place
the polymer chain in a geometry that only consists
of R2, we use following parameters: R = 3, r = 2,
h = 200, interaction parameters are set at α = 100,
ϵ = 1.5, σ = 1.5, κ = 1000, and time step of ∆t = 10−6

is employed. The damping is coordinate dependent,
Γi = A

si(zi)
, where si(zi) = r + (h − zi)(

R−r
h ). The

simulations is run for 108 iterations with monomer
positions recorded every 103 iterations. We generate 200
ensembles for each value of A and evaluate z̄ .
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