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We theoretically study the 2D Su-Schrieffer-Heeger model in the context of Floquet topological insulators
(FTIs). FTIs are systems which undergo topological phase transitions, governed by Chern numbers, as a re-
sult of time reversal symmetry (TRS) breaking by a time periodic process. In our proposed model, the condition
of TRS breaking is achieved by circularly polarized light irradiation. We analytically show that TRS breaking
is forbidden in the absence of second order neighbors hopping. In the absence of light irradiation, we identify
a symmetry-protected degeneracy and prove the appearance of a flat band along a specific direction in the mo-
mentum space. Furthermore, we employ a novel method to show that the four unit cell atoms, in the absence of
irradiation, can be interpreted as conserved spin states. With the breaking of TRS via light irradiation, these spin
states are no longer conserved, leading to the emergence of chiral edge states. We also show how the interplay
between the TRS breaking and dimerization leads to a complex phase diagram. The validity of our findings is
substantiated through Chern numbers, spectral properties, localization of chiral edge states and simulations of
quantum Hall transport. Our model is suitable not only for condensed matter (materials), but also for cold gases
trapped in optical lattices or electric circuits.

I. INTRODUCTION

The study of topological phases represents a highly topical
branch of condensed matter physics that has attracted interest
from researchers across various expertise areas. In the early
1980s, when the Quantum Hall Effect [1, 2] emerged as one of
the most intriguing phenomena at the atomic scale, much of
the scientific community endeavored to explain how charged
particles could exhibit such exotic behavior (quantification of
Hall resistance) under a magnetic field. In the years that fol-
lowed, the study of topological phases transitioned from phys-
ical, insightful models and thought experiments[3] to a classi-
fication based on symmetry properties [4, 5]. Once the theo-
retical foundations were established, there was a surge in ef-
forts to discover, synthesize, and characterize new topological
materials. This led to a significant focus in the experimen-
tal research community on topological insulators (TIs) [6–13].
In more recent times, a notable historical landmark occurred
with the Nobel Prize awarded to David J. Thouless, F. Dun-
can M. Haldane, and J. Michael Kosterlitz for their ”theoreti-
cal discoveries of topological phase transitions and topologi-
cal phases of matter” [14].

Technically speaking, topological insulators (TIs) are ma-
terials that behave as common insulators in their bulk, while
hosting conducting states at their surfaces or edges, depend-
ing on the dimensionality of the system [14, 15]. Given the
robustness of the topological states against disorder [16, 17],
these special materials are considered the building blocks of
future technologies [18–23].

From a physical perspective, the Su-Schrieffer-Heeger
(SSH) 1D atomic chain [24, 25] serves as the most basic
model for understanding topological insulators. Developed to
explain the insulating behavior of polyacetylene, its simplic-
ity allows for analytical approaches and serves as a valuable
starting point or analogy for studying TIs.

Moving to the 2D class, we must mention the emblematic
TI, graphene [26–29], which was one of the first materials
predicted to realize a topological phase transition. However,

among other lattice models such as Lieb [30, 31] and Kagome
[32], the 2D SSH lattice structure [33–38] has made its way
recently. It consists of a planar generalization of the SSH
chain or, in other words, it may be seen as a number of recipro-
cally connected 1D SSH chains, giving rise to a square lattice.
Beyond the conceptual model, there are numerous possibil-
ities for materializing 2D SSH lattices, including condensed
matter systems [39], ultra-cold atomic gases trapped in opti-
cal lattices [40, 41] or electric circuits [42, 43].

In the physics of TIs, the symmetries play the crucial
role. The 2D TIs with time-reversal symmetry (TRS) are also
known as quantum spin Hall insulators, and they are protected
by the Z2 invariant [44]. When the topological phase transition
in a system is triggered by the breaking of the TRS, it is cate-
gorized as a Chern insulator. Over recent years, various meth-
ods have been proposed to induce such conditions [45]. What
makes this type of TI interesting to study is the emergence
of so-called chiral edge states in the energy gap of system.
These states are strongly confined to the edges and conduct
electricity without dissipation, thus sustaining the Quantum
Hall Effect. The hallmark of a topological phase in a Chern in-
sulator is its characterization by an invariant called the Chern
number, from which it derives its name. During the transi-
tion between phases, this invariant takes on integer values of
±1, ±2, ±3, ..., and is directly related to the quantization of
the Hall resistance. In the absence of a phase transition, when
the system is in a trivial (non-topological) phase, the Chern
number remains zero. The most common method for break-
ing the TRS in such systems involves subjecting them to a
magnetic field. However, in a groundbreaking paper, Haldane
introduced an alternative approach based on imaginary hop-
ping between second-order neighbors, employing the hexag-
onal (graphene) lattice as the foundational model [46], and
demonstrated the emergence of a non-trivial phase.

More recently, graphene has been utilized as a platform,
where it has been reported that circularly polarized light ir-
radiation breaks TRS, realizing the Haldane model and thus
inducing a topological phase [47–56]. Generally speaking,
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materials that undergo a topological phase transition as a re-
sult of circularly polarized light driving are included in the
class of Floquet topological insulators (FTIs), named after the
framework used to model their physics [57–60]. Since a FTI
in a topological phase has a non-zero Chern number, circularly
polarized light triggers a phenomenon known as the ’Quantum
Anomalous Hall Effect’ [61]. It is termed anomalous because
traditionally, the Hall effect is associated with the presence of
a perpendicular magnetic field.

In this paper, we investigate the 2D SSH model from the
perspective of FTIs. To achieve this aim, we introduce an in-
teraction model using a tight-binding approach to elucidate
the mechanism of topological phase transitions. Initially, we
show analytically that TRS breaking is unreachable in the ab-
sence of diagonal hopping between lattice atomic sites. Sub-
sequently, we explore the 2D SSH model in the absence of
light irradiation and identify a symmetry-protected degener-
acy that consistently maintains one of the three potential band
gaps closed. This symmetry, incorporating the time-reversal
operation, leads to the opening of the gap as circularly polar-
ized light breaks the TRS. Furthermore, we employ a novel
method to show that the four unit cell atoms, in the absence
of irradiation, can be interpreted as conserved spin states
throughout the Fourier space. However, with TRS broken by
light irradiation, these spin states are no longer conserved, and
this leads to the emergence of chiral edge states. Additionally,
the system may undergo a phase transition due to dimeriza-
tion, similarly to Peierls transition in SSH models [62]. In
our model, we distinguish two dimerization cases, depending
on the inter- and intra-cellular hopping parameters. We study
the topological phases by comparing these two dimerization
cases and highlight an intriguing interplay. That is, the sys-
tem is topologically restricted to always maintaining one of
its band gaps as trivial in one dimerization state, which closes
inducing a topological phase transition, when passing into the
other state. The phase diagram then gets very complex. We
corroborate our results with an analysis of spectral features
such as band gaps and the presence of chiral edge states, in
addition to Chern numbers. We also explore the localization
of topological states and show that they are confined to the
boundaries. Finally, we verify the topological characteristics
by simulating a 4-lead quantum Hall device.

The present paper is organized as follows: In Section II,
we revisit the 1D SSH model, briefly describing its emergent
topological properties, and introduce the dimerization con-
cept. In fact, Section II serves as a benchmark for our re-
search. In Section III, we elaborate the 2D SSH model and
formulate the circularly polarized light interaction Hamilto-
nian within the Floquet formalism. As well, we analytically
argue that the Floquet topological transitions are not allowed
in the absence of diagonal direction hopping. In Section IV,
we present the main results and give more physical insights
about the Floquet topological phases and dimerization, dis-
cussing also their interplay. We support the findings using an
ingenious interpretation of the 2D SSH lattice, which allows
one to approach the unit cell atoms as spin states. In Section
V, we discuss the implications of the light helicity reversal.
In Section VI, we summarize our work, reiterating the main

results and present the conclusions.

II. SSH MODEL REVISITED

The SSH chain represents one of the most important topo-
logical models, originally introduced to describe the elec-
tronic properties of polyacetylene. It consists of an infinite
bipartite atomic chain, as depicted in Fig. 1. The unit cell
(gray shaded area) contains two atoms, indexed as A (blue)
and B (red), respectively, separated from each other by lattice
constant a. The topological properties of the SSH model are
conferred by the existence of two distinct hopping parame-
ters: γ1 in each unit cell and γ2 between the unit cells. Given
its intrinsic simplicity, this system explains the fundamental
mechanism of topological phase transitions in a straightfor-
ward manner as an interplay between γ1 and γ2, as will be
discussed.

FIG. 1. SSH infinite chain. The unit cell (gray shaded area) contains
two atoms indexed by A (blue) and, respectively, B (red). Inside the
unit cell, the hopping parameter is γ1 and, respectively, between unit
cells, γ2. The lattice constant is a.

In Fourier space, the Hamiltonian of the system is given by:

H(k) =
(

ε γ1 + γ2e−ika

γ1 + γ2eika ε

)
, (1)

where ε represents the on-site energy.
The topological properties of the SSH chain are governed

by the Zak phase [63], which represents a Berry-like phase ac-
quired by the wave function after one cyclic evolution through
the Brillouin zone (BZ), defined as:

φZak = i
∫

BZ
⟨u(k)|∂k |u(k)⟩. (2)

In the integral (2), which is performed over the entire BZ,
|un(k)⟩ represents the periodic component of the Bloch wave
function |ψ(k)⟩ = eikx|u(k)⟩.

The inversion symmetry property of the Hamiltonian (1),
σxH(k)σx = H(−k), leads to the quantization of the Zak phase
as φZak = 0,±π [64–67]. Considering this effect, for φZak = 0,
the system lies in a trivial (non-topological) phase, and for
φZak = ±π, the system undergoes a transition into a topolog-
ical phase. Based on the Zak phase, the topological phase
diagram is presented in Fig. 2(a), which depicts φZak modulo
2π.

Now, we distinguish between two phases: the trivial phase
for |γ2| < |γ1| (black area) and the topological phase for
|γ2| > |γ1| (yellow area). Also, we generally associate the case
of |γ2| < |γ1| with one dimerization state and, respectively,
|γ2| > |γ1| with the other possible state. On the boundary of
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FIG. 2. Topological phases of the SSH chain. (a) Topological phase
diagram based on Zak phase: φZak mod 2π vs. |γ1| and |γ2|. The
system lies in a topological phase whenever |γ2| > |γ1|. (b), (c), (d)
Energy dispersion for the trivial phase [blue marker within (a), |γ2| =

0.5], phase transition (red marker, |γ2| = |γ1| = 1), and topological
phase (green marker, |γ2| = 1.5). The reference level is set at the
on-site energy ε. Insets show the eigenenergies for an SSH chain
containing N = 100 atomic sites, as schematized in (e). In the case
of the topological phase, two topological states arise inside the gap
(red dots). (f), (g), (h) Localization of A and B states corresponding
to (b), (c), and (d), respectively.

these two distinct phases, the Zak phase is not defined. In
what follows, we present the energy dispersion for the trivial
phase [blue marker within panel (a), |γ2| = 0.5], the topologi-
cal phase transition (red marker, |γ2| = 1), and the topological
phase (green marker, |γ2| = 1.5) in panels (b), (c), and (d), re-
spectively. The energy values are expressed with respect to the
on-site energy ε as the reference level. The phase transition
is fundamentally characterized by the energy band closing at
ka = ±π when |γ1| = |γ2|. In this scenario, the off-diagonal
coupling terms in the Hamiltonian (1) vanish, resulting in the
band closing at the non-bonding combination of A and B or-

bitals, namely at the on-site energy ε. The insets depict the
energy eigenvalues for a finite SSH chain containing N = 100
atomic sites, as schematized in Fig. 2(e). In the topological
phase, two energy values emerge in the gap, representing the
topological states (depicted as red dots). These states are pro-
tected by the chiral symmetry σzH(k)σz = −H(k). To high-
light this special property, using Eq. (55), we illustrate the
localization within the chain for both A and B states in panels
(f), (g), and (h), corresponding to the three cases presented in
panels (b), (c), and (d), respectively. In the trivial phase, the
atomic states are mainly localized in the middle of the chain.
As the system evolves towards the topological phase, in the
phase transition regime, the states become highly delocalized
in the bulk of the atomic chain. Finally, in the topological
phase, edge states emerge, with the A states confined to the
left edge of the system and the B states localizing at the right
edge.

The SSH chain topological transition governed by the Zak
phase has its origin in the so-called dimerization of 1D atomic
chains with one electron per atomic site and was explained by
Rudolf Peierls in 1930. Nowadays, it is called Peierls tran-
sition or Peierls distortion. In such systems, the condition
for a topological phase transition due to dimerization state
switching is achieved when the intra-cellular hopping param-
eter equals the inter-cellular one. In Fourier space, the transi-
tion always takes place at the non-bonding energy point.

III. 2D SSH MODEL. FLOQUET TOPOLOGICAL
TRANSITIONS

A. 2D SSH model

In this section, we briefly present the 2D SSH model. We
study a square lattice system, as presented in Fig. 3 (a), with
a unit cell (gray shaded area) containing four atoms [see Fig.
3 (b)]. The distance between the atoms is a. In our proposed
model, we distinguish three hopping parameters: γ1 inside
each unit cell, γ2 between the unit cells and γ3 between the
second order neighbor atoms (diagonal) only inside the unit
cell. The role of γ3 will become clear in the next section.

In Fourier space, the system is described by the following
Hamiltonian:

H(kx, ky) =
0 γ1 + γ2e−ikx γ1 + γ2e−iky γ3

γ1 + γ2eikx 0 γ3 γ1 + γ2e−iky

γ1 + γ2eiky γ3 0 γ1 + γ2e−ikx

γ3 γ1 + γ2eiky γ1 + γ2eikx 0

 . (3)

Here, for convenience, we have considered a zero on-site en-
ergy (diagonal elements) and set a = 1. The First BZ is de-
picted in Fig. 3(c) and the high symmetry points are Γ : (0, 0),
X : (π, 0) and M : (π, π).

For the case of γ3 = 0, the 2D SSH model behaves sim-
ilarly to the 1D SSH chain discussed in Section II. For in-
stance, considering γ1 = −1, we present in Fig. 4 the energy
dispersion on M-X-Γ-M direction in BZ, for three fundamen-
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FIG. 3. 2D SSH model. (a) The 2D SSH square lattice in real space.
The distance between the atoms is denoted by a. (b) The unit cell,
containing four atoms indexed by A, B,C and D. Inside the unit cell,
γ1 represents the hopping parameter between the first order neighbors
(horizontal and vertical) and, respectively, γ3, between the second
order neighbors (diagonal hopping). (c) First BZ.

FIG. 4. Energy dispersion of a 2D SSH lattice on M-X-Γ-M direc-
tion, for γ1 = −1 and γ3 = 0. The inter-cellular hopping parameters
are (a) γ2 = −0.7 (trivial phase), (b) γ2 = −1 (topological phase tran-
sition) and (c) γ2 = −1.5 (topological phase). The insets show the
dispersion on M′-Γ-M direction.

tal cases: trivial phase [panel (a), γ2 = −0.7], phase transi-
tion [panel (b), γ2 = γ1 = −1] and topological phase [panel
(c), γ2 = −1.5]. The insets show the dispersion on M′-Γ-M
direction. The gap closing is realized by the uppermost and
lowermost bands in M(M′), while the inner bands close per-
manently on Γ and M(M′). At the phase transition, the gap
closing is realized in X and M(M′). An other important prop-
erty of the 2D SSH model is the occurrence of a completely
flat band centered on the non-bonding energy level (0 in our
present case), on the M’-Γ-M direction. This property will be
carefully investigated in Section IV. An in-depth presentation
may be found in Ref. [35].

B. TRS breaking: Floquet topological transition

In this section, we introduce an interaction model of 2D
SSH system with a circularly polarized light beam. We con-
sider the light (ℏω) propagating perpendicularly on the lattice
plane, as shown in Fig. 5. Our main purpose is to elucidate
the mechanism of TRS breaking which actually represents the
trigger of the Floquet topological transitions in the studied lat-
tice model.

The physics of the light driven system is modeled using
Peierls substitution. Generally speaking, within this approach,
each hopping parameter contained by the Hamiltonian (3) is
factorized by a time dependent phase term eiθ(t), where

θ(t) =
−e
h

∫
Γi→ j

A(t) · ds. (4)

Here, the integral is performed along the path Γi→ j which con-
nects the neighbor atoms i and j, A(t) represents the light vec-
tor potential and ds parameterizes the integration path. The
constant factors e and h represent the elementary charge and,
respectively, the Planck constant.

Going further, we explicit Eq. (4) considering the following
plane wave vector potential:

A(t) = A0

[
cos(ωt)ex + Λ sin(ωt)ey

]
, (5)

where A0 is a real constant amplitude, ω the light frequency,Λ
the helicity quantum number, ex and ey the unit vectors along
the x− and y−axis, respectively. Thus, we distinguish now
four Peierls phases between the first order neighbors (hori-
zontal and vertical hopping):

θL(t) =
eaA0

h
cos(ωt); (6a)

θR(t) =
−eaA0

h
cos(ωt); (6b)

θD(t) = Λ
eaA0

h
sin(ωt); (6c)

θU(t) = Λ
−eaA0

h
sin(ωt). (6d)

Eqs. (6a)−(6d) represent the phases acquired by the elec-
tron wave function corresponding to a left, right, down and,
respectively, up hopping on a first order neighbor atomic site.
For the case of second order neighbors hopping (on diagonally
placed atomic sites), we introduce the following terms:

θLD(t) =
eaA0

h
[cos(ωt) + Λ sin(ωt)] ; (7a)

θRD(t) =
eaA0

h
[− cos(ωt) + Λ sin(ωt)] ; (7b)

θLU(t) =
eaA0

h
[cos(ωt) − Λ sin(ωt)] ; (7c)

θRU(t) =
eaA0

h
[− cos(ωt) − Λ sin(ωt)] . (7d)

Analogously, Eqs. (7a)−(7d) represent the Peierls phases cor-
responding to a left-down, right-down, left-up and, respec-
tively, right-up second order neighbors hopping.
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Now, considering the matrix representation (3) and the Peierls phases (6a)−(6d) and (7a)−(7d), we formulate the light
driven 2D SSH time dependent Hamiltonian:

H(kx, ky; t) =


0 γ1eiθL(t) + γ2eiθR(t)eikx γ1eiθD(t) + γ2eiθU (t)eiky γ3eiζLD(t)

γ1eiθR(t) + γ2eiθL(t)e−ikx 0 γ3eiζRD(t) γ1eiθD(t) + γ2eiθU (t)eiky

γ1eiθU (t) + γ2eiθD(t)e−iky γ3eiζLU (t) 0 γ1eiθL(t) + γ2eiθR(t)eikx

γ3eiζRU (t) γ1eiθU (t) + γ2eiθD(t)e−iky γ1eiθR(t) + γ2eiθL(t)e−ikx 0

 . (8)

FIG. 5. 2D SSH square lattice under circularly polarized light irra-
diation (ℏω). The light is propagating perpendicularly on the lattice
plane.

Since the Hamiltonian (8) is periodic in time with the period
T = 2π

ω
, ω being the light frequency, we will make use of the

Floquet formalism, described in what follows. The starting
point is represented by the Floquet theorem [68, 69] which
assures that a time periodic Hamiltonian

H(t + T ) = H(t) (9)

admits eigenfunctions of the form

ψ(t) = e
−iWt
ℏ ϕ(t). (10)

In Eq. (10), W is so-called quasienergy and ϕ(t), the Floquet
function, having the same periodicity as the Hamiltonian (9):

ϕ(t + T ) = ϕ(t). (11)

Inserting the form (10) into the Schrödinger equation
H(t)ψ(t) = i∂tψ(t), we end with the following eigenvalue
equation for the Floquet Hamiltonian HF(t):

HF(t)ϕ(t) = Wϕ(t); (12)
HF(t) = H(t) − iℏ∂t. (13)

Further, we exploit the time periodicity properties (9) and
(11) to introduce the following Fourier representations for the

Hamiltonian and the Floquet function, respectively:

H(t) =
∞∑

n=−∞

e−inωtHn; (14)

ϕ(t) =
∞∑

n=−∞

e−inωtϕn. (15)

The corresponding inverse transformations are:

Hn =
1
T

∫ T

0
einωtH(t)dt; (16)

ϕn =
1
T

∫ T

0
einωtϕ(t)dt. (17)

Finally, using the Eqs. (12)−(17), we obtain the Floquet
system of equations: ∞∑

m=−∞

Hm−n + mℏωδmn

 ϕm = Wϕn;

n = −∞, ...,−1, 0, 1, ...,∞.

(18)

Note that the mathematical maneuver we have made to ob-
tain the system (18) eliminated the time coordinate degree of
freedom. Despite the system (18) contains an infinite number
of coupled differential equations, we may formulate effective
problems, truncating the system in a proper manner, as im-
posed by the energy scales. If the photon energy ℏω is large
enough compared to the band width, the system is well de-
scribed by the following high frequency Hamiltonian [70, 71],
resulted from (18):

HHF(kx, ky) = H0(kx, ky) + HINT(kx, ky); (19)

HINT(kx, ky) =
1
ℏω

[
H−1(kx, ky),H1(kx, ky)

]
. (20)

The first term H0(kx, ky) within Eq. (20) represents the
averaged Hamiltonian (8) over a period T . The second
term HINT(kx, ky) describes the virtual interaction process of
absorption-emission of one photon.
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Now, let us evaluate Hn(kx, ky), considering ea
ℏ
= 1. Performing the integrals (16), we are led to the following substitutions:

eiθL(t) → inJn(A0)eiΛnπ; (21a)

eiθR(t) → inJn(A0); (21b)

eiθD(t) → inJn(A0)eiΛnπ/2; (21c)

eiθU (t) → inJn(A0)e−iΛnπ/2; (21d)

eiθLD(t) → inJn(
√

2A0)e−iΛn3π/4; (21e)

eiθRD(t) → inJn(
√

2A0)e−iΛnπ/4; (21f)

eiθLU (t) → inJn(
√

2A0)eiΛn3π/4; (21g)

eiθRU (t) → inJn(
√

2A0)eiΛnπ/4. (21h)

Here, Jn(x) denotes the n−th order Bessel function of the first kind .
Taking into account each harmonic order n = 0,±1 and applying the substitutions (21a)−(21h), we find H0(kx, ky) and

HINT(kx, ky), having the following form:

H0(kx, ky) = J0(A0)


0 γ1 + γ2e−ikx γ1 + γ2e−iky J0(

√
2A0)

J0(A0) γ3

γ1 + γ2eikx 0 J0(
√

2A0)
J0(A0) γ3 γ1 + γ2e−iky

γ1 + γ2eiky J0(
√

2A0)
J0(A0) γ3 0 γ1 + γ2e−ikx

J0(
√

2A0)
J0(A0) γ3 γ1 + γ2eiky γ1 + γ2eikx 0


; (22)

HINT(kx, ky) = iγ3

2
√

2J1(A0)J1

(√
2A0

)
ℏω


0 γ1 − γ2 cos

(
ky

)
−γ1 + γ2 cos(kx) 0

−γ1 + γ2 cos
(
ky

)
0 0 γ1 − γ2 cos(kx)

γ1 − γ2 cos(kx) 0 0 −γ1 + γ2 cos
(
ky

)
0 −γ1 + γ2 cos(kx) γ1 − γ2 cos

(
ky

)
0

 . (23)

H0(kx, ky) respects the TRS: H0(kx, ky) = H∗0(−kx,−ky).
On the other hand, the interaction term HINT(kx, ky) ,
H∗INT(−kx,−ky) breaks the TRS, therefore the virtual process
of absorption-emission of photons is responsible for the topo-
logical phase transitions triggered by the light irradiation.
However, obviously, this is valid only when γ3 , 0. Hence,
in our proposed model, the presence of second order neigh-
bors (diagonal) hopping is mandatory for Floquet topologi-
cal transitions. Contrastingly, the Hamiltonian remains time
reversal symmetric and the 2D SSH system lies always in a
trivial phase. In the absence of the diagonal hopping, the
only effect of light irradiation will be the renormalization of
the hopping parameters and, implicitly, of the spectrum band
width.

IV. RESULTS AND DISCUSSION

In this Section, we present the main results and give more
physical insights within the context of TRS breaking and TIs
realm. Since in the absence of light irradiation, the 2D SSH
model is endowed with some critical symmetries, we must
start the analysis keeping the light off. By analogy with the
SSH model described in Section II, we distinguish two dimer-
ization cases: one for γ2 < γ1 and, respectively, the other one

for γ2 > γ1. Then, we investigate the effect of light driving
separately for γ2 < γ1 and, thereafter, for γ2 > γ1. Our aim
is to highlight the topological properties of the circularly po-
larized light driven 2D SSH model, comparing the two above
discussed cases.

A. No light

First, in this Section, before discussing the Floquet topo-
logical transitions for some specific cases, we introduce the
second order neighbors hopping, in the absence of light irra-
diation. In this case, in Γ and M within the Fourier space, the
eigenvalues of Hamiltonian (3) read as follows:

E1(Γ) = E2(Γ) = −γ3; (24a)
E3(Γ) = 2 − 2γ2 + γ3; (24b)

E4(Γ) = −2 + 2γ2 + γ3; (24c)
E1(M) = E2(M) = −γ3; (24d)
E3(M) = −2 − 2γ2 + γ3; (24e)
E4(M) = 2 + 2γ2 + γ3. (24f)

Note that for both Γ and M, there exist two twofold degen-
erate energy levels with the value −γ3, see Eqs. (24a) and
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FIG. 6. (a) Energy values in Γ and M points vs. γ3, with γ2 = −0.7:
blue dots for Eqs. (24b) and (24c); cyan dots for Eqs. (24e) and
(24f); red dots for Eqs. (24a) and (24d). The red dots represent the
twofold degenerate energy levels where always two bands crosses.
(b), (c), (d): Energy dispersion on M-X-Γ-M direction for: γ3 = 0,
γ3 = −1.2 and γ3 = −2, respectively (as indicated by the background
colors). The red dots represent the degeneracy in Γ and M.

(24d). Consequently, two bands cross in these two high sym-
metry points at a value of −γ3. In Fig. 6(a), we present some
examples for a fixed γ2 = −0.7 and varying discretely γ3. The
blue dots correspond to Eq. (24b) and (24c), while the cyan
ones, to (24e) and (24f), respectively. The red dots represent
the twofold degenerate energy levels (24a) and (24d). In pan-
els (b), (c) and (d), we show the energy dispersion for γ3 = 0,
γ3 = −1.2 and γ3 = −2, respectively. See also the background
colors correspondence. For each case, the bands crossing is
marked by the same red dot.

The twofold degeneracy in Γ and M points is a consequence
of a so-called ”hidden symmetry”, as discussed in Refs. [72–
74]. The main idea is that a (twofold) degeneracy is attributed
to an antiunitary symmetry, expressed by an operator Υ with
its square Υ2 = −1, satisfying [Υ,H] = 0 in the degeneracy
points.

In our problem, in Γ and M, the normalized eigenvectors of
Hamiltonian (3) read:

|ψ1⟩ =
1
√

2

(
1 0 0 −1

)T
; (25)

|ψ2⟩ =
1
√

2

(
0 1 −1 0

)T
; (26)

|ψ3⟩ =
1
2

(
1 −1 −1 1

)T
; (27)

|ψ4⟩ =
−1
2

(
1 1 1 1

)T
. (28)

The degeneracy corresponds to Eqs. (25) and (26).
Further, extending the method presented in Ref. [74], we

define the following antiunitary operator:

Υ =
(
|ψ1⟩⟨ψ

∗
2| − |ψ2⟩⟨ψ

∗
1| + |ψ3⟩⟨ψ

∗
4| − |ψ4⟩⟨ψ

∗
3|
)
K , (29)

FIG. 7. Reflection of the unit cell with respect to its A-D diagonal
direction (doted line). The action of R interchanges the position of B
and C atoms.

where K represents the complex conjugation operator. Sub-
stituting Eqs. (25)−(28) into Eq. (29), we find the operator in
question in the following form:

Υ =


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 = −iσyK ⊗ σz = T ⊗ σz, (30)

where T = −iσyK denotes the time reversal operator. Next,
the following symmetries satisfied in the degeneracy points
may be easily verified:

[Υ,H(Γ)]|ψ1⟩ = [Υ,H(Γ)]|ψ2⟩ = 0; (31)
[Υ,H(M)]|ψ1⟩ = [Υ,H(M)]|ψ2⟩ = 0. (32)

Finally, following the proof presented in Ref. [74], tak-
ing into account the antiunitarity of Υ and Υ2 = −1, one may
straightforwardly argue that the symmetries (31) and (32) pro-
tect the twofold degeneracy in Γ and M.

Having elucidated the underlying physics of the twofold de-
generacy in Γ and M, in what follows, we focus our attention
on the flat band arising on Γ-M(M′) direction, which is still
present regardless of γ3 magnitude. Also, this spectral prop-
erty is given by an other symmetry, this time being the reflec-
tion of the unit cell with respect to its diagonal A-D or B-C
axis, as shown in Fig. 7. The transformation discussed here is
expressed by the operator

R =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (33)

acting on the state vector |ψ⟩ = (A, B,C,D)T . One may easily
prove that the Hamiltonian (3) obeys the following symmetry
on Γ-M(M′) direction (kx = ky = k):

[R,H(k, k)] = 0. (34)

To explain the occurrence of the flat band, we make use of
a more subtle interpretation of the system, formulating a new
effective problem. In this respect, taking into account the re-
flection symmetry discussed above, we rearrange the Hamil-
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tonian (3) in the following block-form:

H(kx, ky) =
(

h Γ(kx, ky)
Γ†(kx, ky) h

)
; (35)

h =
(

0 γ3
γ3 0

)
; (36)

Γ(kx, ky) =
(
γ1 + γ2e−ikx γ1 + γ2e−iky

γ1 + γ2eiky γ1 + γ2eikx

)
. (37)

Now, starting from the the stationary Schrödinger eq.
H(kx, ky)ψ(kx, ky) = E(kx, ky)ψ(kx, ky), one may reduce the
problem to the following effective Hamiltonian:

Heff(kx, ky) = h + Γ(kx, ky) (E · 12 − h)−1 Γ†(kx, ky). (38)

In Eq. (38), the symbol 12 denotes the identity 2 × 2 matrix.
The mathematical maneuver we have implied here is known
as decimation method, see Refs. [53, 75–77].

As we have reformulated the problem, the Hamiltonian (38)
may be also understood as describing the B and C states, tak-
ing into consideration the presence of the other two A and D
atoms. Now, in order to evaluate the system on Γ-M(M′) di-
rection in Fourier space, we impose the condition kx = ky = k.
After performing all the simplifications, Eq. (38) reduces to

Heff(k, k) =
(

ζ ζ + γ3
ζ + γ3 ζ

)
; (39)

ζ = 2
E(γ2

2 + 1) + γ3 − 2γ2(E + γ3) cos(k) + γ2
2γ3 cos(2k)

(E − γ3)(E + γ3)
.

(40)

In the last step, to obtain the eigenvalues, we must solve the
characteristic equation

det
(
Heff(k, k) − λ · 12

)
= 0. (41)

Straightforwardly, may be verified that Eq. (41) translates as

(γ3 + λ) f (λ; E, k, γ2, γ3) = 0, (42)

where f represents a function of λ and depends also on the
other indicated parameters. It is not necessary to specify here
its form. However, it is obvious that one eigenvalue of the
effective Hamiltonian (39) is

λ = −γ3. (43)

Since it does not depend on kx and ky, Eq. (43) expresses
exactly the flat band which arises on Γ-M(M′) direction.

The decimation method we have involved, allows us to in-
terpret the 2D SSH tetraatomic unit cell as an effective bipar-
tite one, with a non-zero and k-dependent on-site energy. The
effective model thus elaborated is depicted in Fig. 8(a). As
can be observed here, the 2D SSH model is reproduced by the
two-component effective unit cell (gray shaded area). The ef-
fective unit cell, shown in Fig. 8(b), contains two composite
”atoms”, indexed by Ã and B̃, respectively. The ”atom” Ã is
formed by the old ones A and D, while B̃, by old B and C.

FIG. 8. Effective model. (a) The 2D SSH lattice is reproduced by
a bipartite unit cell (gray shaded area). (b) The effective unit cell
contains two composite ”atoms” indexed by Ã (formed by the old A
and D atoms) and B̃ (formed by the old B and C).

Analyzing Eq. (40), we find that for γ1 = γ2 in Γ and M
points of Fourier space [see Fig. 2(c)], the effective Hamilto-
nian (39) reduces respectively to

Heff(Γ) =
 8

E−γ3

8
E−γ3
+ γ3

8
E−γ3
+ γ3

8
E−γ3

 ; (44)

Heff(M) = h =
(

0 γ3
γ3 0

)
. (45)

The corresponding eigenvalues read:

E1(Γ) = γ3 − 4; E2(Γ) = E3(Γ) = −γ3; E4(Γ) = γ3 + 4;
(46)

E1(M) = E2(M) = γ3; E3(M) = E4(M) = −γ3. (47)

Since γ1 = γ2 is the condition for a topological phase tran-
sition due to dimerization state switching, we interpret Eqs.
(46) and (47) as follows: Eb = γ3 − 4 represents the bonding
energy having the minimum value and Enb = ±γ3, the non-
bonding energy. In this case, all the gaps must close in Γ and
M at Enb values. See for instance Fig. 9 for γ3 = −1.2, with
Eb = −5.2 and Enb = ±1.2.

B. Light irradiation: γ2 < γ1

Next, in this Section, we present the main results concern-
ing the Floquet topological transitions within the 2D SSH
model discussed in Section III, starting from the following
hopping parameters: γ1 = −1 and γ3 = −2. The photon
energy is fixed at ℏω = 4 and the light helicity is Λ = −1.
Throughout of the paper, the light vector potential amplitude
A0, which gives the driving intensity, will be expressed in
terms of h/(ea) constant. In this configuration, the circu-
larly polarized light driven 2D SSH system is described by
the Hamiltonian (19).

From the very beginning, we want to highlight two fun-
damental effects produced by the circularly polarized light.
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FIG. 9. Energy dispersion on M′-Γ-M direction, for the case of γ1 =

γ2 (topological phase transition condition). The gaps close in Γ and
M(M′) at non-bonding energy Enb = ±1.2. The bonding (minimum)
energy is Eb = −5.2, in Γ.

FIG. 10. Energy dispersion on M′-Γ-M direction for the case of γ2 =

−0.7 and A0 = 0.2. The energy band gap appearance and the flatness
breaking of the third band are more clearly revealed in the insets
which show a zoomed picture along Γ-M direction and, respectively,
in the vicinity of Γ.

Since the light irradiation breaks the TRS, as argued in Sec-
tion IIIB, the symmetries (31) and (32) are no longer satisfied,
given that Υ contains the time reversal operator T . Hence, the
two protected degeneracies will be lifted, giving rise to an en-
ergy band gap. Besides the TRS, the light irradiation breaks
also the spatial symmetries of the system, including also (34),
and, consequently, the flat band occurred in the absence of
light begins to disperse. These two effects generated by cir-
cularly polarized light actually represent the precursors of the
Floquet topological phase transitions. For instance, we show
in Fig. 10 the quasienergy dispersion for the case of γ2 = −0.7
and A0 = 0.2. The two effects in question are more clearly

shown in the insets which present a zoomed picture along the
Γ-M direction and, respectively, in the vicinity of Γ. In this
configuration, having three band gaps, the system is prepared
to undergo Floquet topological transitions.

We begin our analysis in terms of topological invariants,
namely Chern numbers. Since in our model, the circularly
polarized light breaks the TRS, in the case of an infinite sys-
tem, for each energy band there is assigned a possible non-
zero Chern number (Cn), where n represents the band index,
defined as follows:

Cn =
1

2π

∫
BZ
Ωn(k) · dk; (48)

Ωn(k) = ∇k × A(k); (49)
A(k) = i⟨un(k)|∇k|un(k)⟩. (50)

In Eq. (48), the integral is performed over the whole BZ
and Ωn(k) defined in Eq. (49), where ∇k denotes the nabla
operator within Fourier space, represents the Berry curva-
ture. Eq. (50) defines the Berry connection A(k) with |un(k)⟩
being the periodic component of the Bloch wave function
|ψ(k)⟩ = eik·r|un(k)⟩.

FIG. 11. Topological phase diagram. Summed Chern numbers C(n)

for all of the three gaps within the quasienergy band structure vs. A0.

Whenever the Fermi level (FL) lies inside an energy gap
(assumed to exist due to the presence of the light irradiation),
one may describe the topological phase of the system sum-
ming the Chern numbers for all bands below the FL. Thus,
the gap in which the FL lies is topologically described by the
following invariant:

C(n) =
∑

n∈occ

Cn, (51)

where the summation in performed over the all n occupied
bands (below FL).

In Fig. 11, we present the topological phase diagram, con-
sidering all of the three quasienergy gaps, with respect to A0.
As the A0 value continuously varies, we observe the excita-
tion of different topological phases, governed by an interest-
ing restriction. That is, there is impossible to induce topo-
logical phases for the whole three gaps at the same time. In
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other words, C(1) , 0, C(2) , 0 and C(3) , 0 condition is not
achievable simultaneously at a fixed A0. To explain this topo-
logical frustration, we make use again of the effective model
discussed in Section IVA (Fig. 8).

First, since the effective unit cell contains only two atoms
[see Fig. 8(b)], the second order neighbors hopping is no
longer obvious. On the other hand, within the effective model,
it becomes a new internal interaction process for ”atoms” Ã
and B̃. Hence, A and D states become a new internal degree
of freedom for atom Ã and, analogously, B and C for B̃. More-
over, a deeper analysis reveals the following symmetry, in the
absence of light:

[σx,Heff(k, k)] = 0. (52)

Therefore, within the atom Ã, A and D act as two well defined
spin states. Obviously, the same is valid for B and C within B̃.
Now, taking into consideration that generally the spin states
are related by time reversal operation, the TRS breaking due
to light irradiation will take place at ”atomic” level (inside Ã
and B̃), between A and D and, respectively, between B and
C. We anticipate now, that in a topological phase, where chi-
ral edge states will arise, the mixing between A and D; and

B and C states is topologically forbidden. In other words, in
a finite configuration, A and D states will be localized at op-
posite edges, having also opposite momentum directions and,
analogously, B and C. In Section IIIB, we have mathemati-
cally demonstrated that the presence of second order neigh-
bors hopping is mandatory for TRS breaking, but with no
much physical insight. Having in mind the interpretation of
the second order neighbors hopping as an internal interaction
process, we have now a deeper physical understanding con-
cerning the TRS breaking in a 2D SSH system and its under-
lying mechanism.

Second, going outside the ”atoms” Ã and B̃, which are con-
nected only by horizontal and vertical hopping, we do not ex-
pect any TRS breaking, regardless of light parameters such as
intensity, photon energy an so on. However, even if there will
not occur Floquet topological transitions, the system will un-
dergo a topological phase transition due to dimerization state
switching instead, governed by the interplay between γ1 and
γ2. Therefore, in the 2D SSH model, there will always be
reserved an energy gap where the possible topological transi-
tion due to dimerization should take place. Actually, this is the
reason why the simultaneously existence of three topological
gaps is forbidden.

FIG. 12. Quasienergy dispersion on M′-Γ-M direction for different hopping parameters and A0 magnitudes. (a), (b) and (c) show the topological
and spectral properties of each phase indicated by blue, green and, respectively, red marker in Fig. 11. The intra-cellular hopping parameter
is fixed at γ2 = −0.7. (d), (e) and (f) illustrate the dimerization state switching scenarios (topological phase transition), achieved for γ2 = γ1,
corresponding to (a), (b) and (c). The horizontal dashed lines represent the two non-bonding quasienergy values. The topological phases
characterized by the Chern numbers in Fig. 11 reflect in the quasienergy dispersion and the bands polarization. (a) The first and the third gap
reveal to be topological, according also to their invariants C(1) = C(3) = −1. The phase transition is realized inside the second (trivial) gap,
when γ2 = γ1, as shown in (d) where the bands which bound the second gap intersect in Γ and M(M′), at the non-bonding energy value. (b)
The first and second gap are topological, having their invariant C(1) = C(2) = +1. The third gap (trivial) is reserved for phase transition, as
shown in (e). (c) The second and third gap are topological with C(2) = C(3) = +1 and the phase transition occurs inside the first (trivial) gap, as
may be seen in (f).



11

The phase transition we are discussing about, will arise in-
side the gap which hosts the non-bonding quasienergy, that
is

Wnb = ±γ3J0

(√
2A0

)
. (53)

Eq. (53) may be deduced by analogy with the case of light
absence.

Having elucidated this topological property of the 2D SSH
model, we go further and investigate the corresponding spec-
tral properties, associated to three topological phases pre-
sented in Fig. 12 (blue, green and red markers).

First, we consider an infinite system. In order to describe
the energy bands from a topological point of view, we divide
the whole square structure in two sublattices, as a preliminary
step. Since we have argued that the atoms A and D play the
role of two different spin states and anticipated that they will
acquire a well-defined chirality after the TRS breaking, we are
lead to group A and B atoms in one sublattice, and, respec-
tively, C and D in the other. Then, we introduce the sublattice
polarization defined as

Psl =

(
|⟨A|A⟩|2 + |⟨B|B⟩|2

)
−

(
|⟨C|C⟩|2 + |⟨D|D⟩|2

)
|⟨A|A⟩|2 + |⟨B|B⟩|2 + |⟨C|C⟩|2 + |⟨D|D⟩|2

. (54)

Psl ∈ [−1, 1] expresses the sublattice population weight for
each quasienergy band, at a given point in BZ. For instance,
if Psl = 1 at a given point k in BZ, in the n-th energy band,
the contribution is given completely by A and B atoms. On
the other hand, if Psl = −1, there contribute C and D. At
the middle of these two extreme situations, if Psl = 0, the
contribution is equal on one hand from A and B and on the
other from C and D. In what follows, we identify the gaps
as ”first”, ”second” and ”third” from the lowest to the high-
est quasienergy. The first investigated topological phase is
for A0 = 1.5, see blue marker in Fig. 11. The quasienergy
dispersion is depicted in Fig. 12(a). The phase diagram sug-
gests that in this regime, the first and the third gap lie in a
topological phase. Specifically for a bipartite topological in-
sulator with TRS, in its topological phase, there arises a band
polarization (inversion) between the two bands which bound
the topological gap. Indeed, the sublattice polarization func-
tion confirms the occurrence of this topological behavior also
in our studied system, exactly for the first and the third gap.
Thus, as the bands polarization indicates, in ribbon configu-
ration, we anticipate the crossing of two pairs of chiral bands
in k = 0 and k = π, in Fourier space. The second gap, triv-
ial, is reserved for the topological phase transition. According
to our effective bipartite unit cell interpretation (the effective
model shown in Fig. 8), in the actual topological phase, one
of the the two non-bonding quasienergy levels Wnb ≈ ±0.3,
computed from Eq. (53), should be between the first and the
third gap (see horizontal dashed lines). The bands crossing
specific to the topological phase transition may be verified im-
posing γ2 = γ1. In Fig. 12(d), where we show the scenario
of the dimerization state switching (topological phase transi-
tion), one may observe the gap closing in Γ and M, at Wnb.

Next, we analyze the phase indicated by the red marker in
Fig. 11, where A0 = 3.5. We expect to find the first and the

second gap in a topological phase. Fig. 12(b) confirms and,
moreover, we see the specific localization of the non-bonding
energy inside the third, trivial, gap. In Fig. 12(e), the SSH
phase transition is shown. Interestingly, in this regime, the
two non-bonding energy values does no longer lie in the same
gap. Finally, in the phase corresponding to the red marker, we
would have to find in topological phase the second and third
gap and Wnb inside the first, trivial, gap. Fig. 12(c) shows this
topological configuration. Also, the topological phase transi-
tion is illustrated in Fig. 12(f).

FIG. 13. 2D SSH ribbon. The system is kept infinite on x−direction
(horizontal) and confined on y−direction (vertical). The unit cell
(gray shaded area) contains the sequence A, B,C,D, ...,D atoms in-
dexed by 1, 2, 3, 4, ..., 12.

Now, we investigate the topological properties of a 2D SSH
ribbon under circularly polarized light irradiation, with the
same parameters as above. We keep the system infinite on
x−direction (horizontal), thus kx is still a good quantum num-
ber and consider the lattice confined on y−direction. Since
the periodic boundary condition becomes impossible to apply
on y−direction, the old ky good quantum number is replaced
by an atomic index. For instance, in Fig. 13, we show a 2D
SSH ribbon, where the unit cell (gray shaded area) contains
the atoms sequence A, B,C,D, ...,D indexed by 1, 2, 3, ..., 12.

As predicted, in a ribbon, inside the topological gaps, there
will arise pairs of chiral edge states. In the first case (blue
marker), the chiral edge states occur inside the first and third
gap, which have been identified in a topological phase, see
Fig. 14(a). According to the value of the topological invari-
ants C(1) = C(3) = −1, inside each gap will arise only one
pair. The topological signature of the two quasienergy bands
in question resides in their polarization. As one may observe,
the positive direction momentum band is populated by C and
D states, while the negative momentum direction band, by A
and B. As well, since both invariants possess the same sign,
the chirality of the topological states is the same for both gaps.
Since besides the polarization, an other important topologi-
cal signature is represented by the strong confinement of the
topological states at the edges of the system, there will arise
conduction channels with opposite direction, localized at the
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FIG. 14. 2D SSH ribbon quasienergy dispersion corresponding to: (a) blue, (b) green and, respectively, (c) red marker in Fig. 11. (a) The first
and third gap are topological, according to their invariant C(1) = C(3) = −1. Inside each of the two topological gaps, there arise pairs of edge
states. The positive momentum band is populated by C and D states, while the negative momentum direction band, by A and B. (b) The first
and second gap are topological, having the invariants C(1) = C(2) = +1. In this case the chirality of the topological states reverses. (c) The
second and third gap are topological, with C(2) = C(3) = +1. The chirality of the topological states is the same as in (b). The non-bonding
energy lies inside the trivial gap for all the three cases.

systems extremities. This property will be investigated a lit-
tle bit later. In Fig. 14(b), we show the energy dispersion
corresponding to the second discussed topological phase (red
marker). In this case, the phase is characterized by C(1) =

C(2) = +1. Consequently, also in this regime, inside each
topological gap (first and second) will arise only one pair of
chiral bands. On the other hand, since the sign of the topo-
logical invariants is reversed, the chirality of the edge states is
also reversed. Other way to say, at the edges of the system, the
localization will not be affected, but, instead, the momentum
direction will be inverted. However, this topological effect is
obvious inside the topological gap, where one may observe
that, unlike in the previous case, the positive momentum di-
rection chiral band is populated by A and B states, while the
negative momentum direction band, by C and D.

Finally, the third phase regime (red marker), see Fig. 14(c),
characterized by C(2) = C(3) = +1, also confirms our expecta-
tions, according to the phase diagram and the analysis of the
infinite system [Fig. 12(c)]. As well, in the ribbon configura-
tion, the non-bonding energy lies inside the trivial gap.

For a further description of the Floquet topological phases
of 2D SSH model, we intend to extend a little the above dis-
cussion. In order to highlight the fundamental characteristics
of the found topological states in our system, we make use of
the local density of states function (LDOS), defined as

LDOS =
−1
π

Im[G(i, i, EF)], (55)

where G(i, i, EF) represents the Green’s function of the system
Hamiltonian, i is the atomic index and EF the value of FL.

We chose, for instance, the first analyzed phase (blue
marker) and consider the FL at EF = 1.1. The results are de-
picted in Fig. 15(a) for a ribbon with a unit cell containing a

number of 32 atoms. The distribution of the LDOS values, for
each A, B,C and D state, highlights the strong confinement of
the topological states at the ribbon edges. As well, this anal-
ysis confirms our prediction that the mixing between A and
D states is topologically forbidden, as a consequence of TRS
breaking inside the composite ”atoms” Ã and B̃ within the ef-
fective model represented in Fig. 8. The same is valid for B
and C states. The inset sketches the formation of the conduc-
tion channels at the system extremities. According to Fig. 13
and the LDOS, at the bottom of the system, the conduction
channel will transport A and B states, in the negative direction
(from right to left). Analogously, at the top, the conduction
channel will transport C and D states in the positive direction.
Moreover, if we cut the ribbon on its infinite direction (finite
sheet configuration), the chiral edge states will confine at the
all four edges. In Fig. 15(b), we show the LDOS for a sheet
formed by 40 × 20 atoms.

Finally, we simulate a Hall transport experiment, based on
Landauer-Büttiker formalism. See Fig. 16(a) for the device
design. We consider a 2D SSH finite lattice which has four
leads attached, whose role is only to inject and collect charge.
The leads are considered to be formed by a number of semi-
infinite identical atomic chains which do not interact each
other. For instance, we apply the potentials V1 and V2 on lead
1 and, respectively, lead 2 and measure the Hall resistance be-
tween lead 3 and lead 4. See Appendix A for a brief derivation
of the Hall resistance RH .

In Fig. 16, panels (b), (c) and (d), we present RH in terms
of h/e2 constant, with respect to EF , for the three topological
phases analyzed above (blue, green and red markers in Fig.
11). The range of EF is appropriately chosen to keep only
the relevant results. The most obvious Hall Effect is for the
first case [panel (b)], where two RH plateaus are well defined
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FIG. 15. LDOS for a (a) 2D SSH ribbon and, respectively, (b) for a
2D SSH sheet. The system is in the topological phase indicated by
the blue marker in Fig. 11. (a) The FL is considered at EF = 1.1,
hence inside the third gap of the quasienergy dispersion shown in Fig.
14(a). At the bottom edge of the system, are localized A and B states,
while at the top edge, B and C, respectively. The inset represents a
sketch of the conduction channels formed at the edges of the ribbon.
The upper channel transports B and C states in the positive direction,
while the lower, A and B states in the negative direction. (b) The
system contains 40 × 20 atomic sites.

at RH = −1, corresponding to the first and the third gap of
the quasienergy dispersion shown in Fig. 14(a) (topological
gaps). Contrastingly, the next two cases [panels (c) and (d)]
are not showing the intuited behavior, according to the Chern
numbers in Fig. 11. As may be seen, only one gap has pure
topological states [first gap in (b) and third in (c)], while in-
side the second one, the topological states are mixed with the
bulk ones. Thus, the Hall Effect is quenched for any EF value
inside those gaps. However, the Quantum Hall Effect may
be activated even in this situation, by inserting lattice defects
in order to localize the bulk states, giving rise to a so-called
Topological Anderson Insulator [78–80].

C. Light irradiation: γ2 > γ1

In this Section, we approach the case of γ2 > γ1. We con-
sider that restricting ourselves to phase diagram, ribbon dis-
persion and Hall transport is enough to compare to the previ-
ous situation. The results presented here are obtained setting
γ2 = −1.5, keeping all the other parameters at the same value.

FIG. 16. Quantum Hall transport. (a) Hall device design. The 2D
SSH lattice has four leads attached, formed by a number of non-
interacting semi-infinite identical atomic chains, having the role only
to inject and collect charge. (b), (c), (d) Quantum Hall transport
simulation using Landauer-Büttiker formalism, for the case of blue,
green and, respectively, red marker in Fig. 11. Only (b) shows the
two intuited RH plateaus, according to the corresponding Chern num-
bers of the two topological gaps. In (c) and (d), there is formed only
one plateau, given that inside one of the two gaps, the edge states are
mixed with the bulk ones.

Fig. 17(a) shows the phase diagram, which is obviously
more intricate than the previous one (Fig. 11). Moreover,
we may have several examples where the three invariants are
simultaneously non-zero, which, as discussed, for γ2 < γ1, it
is a forbidden configuration.

Fig. 17(b) illustrates the quasienergy dispersion for a rib-
bon, corresponding to the black marker in Fig. 17(a), namely
for A0 = 3.4. The spectrum is quite similar with Fig. 14(b)
which is computed for A0 = 3.5. However, in the present
case, the third gap is topological, hosting two pairs of chiral
bands. Comparing Figs. 14(b) and 17(b), we conclude that the
dimerization state switching triggers a new topological phase
governed by a Chern number C(3) = +2. This new phase tran-
sition occurs inside the third gap [see also Fig. 12(e)]. Now,
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we have simultaneously all the three gaps topological, even if
the second one mixes edge with bulk states.

Finally, we simulate the Hall transport. As in the case of
Fig. 16(c), the RH = +1 plateau, corresponding to the first
gap, is present and very well defined. As EF rises, reaching
the second gap, the Hall conduction is still absent as a con-
sequence of edge and bulk states combination. Specific to
our topological configuration, in the Hall resistance diagram,
an RH = +

1
2 plateau arises, given the existence of the chiral

edge states inside the third gap. This plateau represents the
signature of the new topological phase induced as a result of
dimerization state switching.

V. FINAL REMARKS: LIGHT HELICITY REVERSAL

Since the trigger of the Floquet topological phase transi-
tions is the circularly polarized light, it is worth discussing
also its helicity reversal case Λ → −Λ. The clue resides
in Eqs. (7a)−(7d). Thus, reversing the sign of Λ is similar
to changing θLD → θLU and θRD → θRU , or in other words,
changing y → −y. Hence, reflecting the whole system about
its longitudinal axis, the particles chirality will be reversed,
see Fig. 18 which is the counterpart of Fig. 14(a), for Λ = +1.
In this case, A and B edge states will have a positive momen-
tum, while C and D, a negative one. Recall Fig. 15(a). From
a transport perspective, this is equivalent to reversing the con-
duction channels and, consequently, the Hall resistance and
Chern numbers transform as RH → −RH and, respectively,
C(n) → −C(n).

VI. SUMMARY AND CONCLUSIONS

In this paper, we investigated the topological properties of
a 2D SSH system from the perspective of FTIs. TRS break-
ing was achieved through circularly polarized light irradia-
tion. Additionally, besides the topological phases governed
by Chern numbers, the system may also undergo a topologi-
cal phase transition due to dimerization state switching. This
transition is generally specific to SSH systems and is indepen-
dent of light driving.

Our aim in this research was to fundamentally describe the
interplay between TRS breaking and dimerization. We began
our work by revisiting the well-known 1D SSH chain, high-
lighting its most important topological properties to serve as
a benchmark for interpreting our results. Next, we introduced
the 2D SSH lattice model, which allows for diagonal hopping
between second-order neighbors. After formulating the 2D
SSH Hamiltonian and utilizing Peierls substitution, we devel-
oped a model for interaction with circularly polarized light.

One significant finding was that TRS breaking, and implic-
itly, a topological phase transition, is not allowed in the ab-
sence of diagonal hopping. Moreover, this result was fully
supported analytically.

Further, we performed a comprehensive numerical analy-
sis to investigate the fundamental properties of the studied
model. Initially, we examined the scenario without light,

FIG. 17. Topological properties for the case of γ2 > γ1. (a) Topolog-
ical phase diagram. Here, we have examples where the three invari-
ants are simultaneously non-zero, situation forbidden for γ2 < γ1. (b)
Ribbon quasienergy dispersion for the phase indicated by the black
marker in (a), A0 = 3.4. All the three gaps host chiral edge states,
even though the second one combines edge with bulk states. (c) Hall
transport simulation. The first RH = +1 plateau corresponds to the
first gap within (b). The second gap does not have an associated
plateau, since there exists a combination of edge with bulk states.
The RH = +

1
2 plateau is associated with the third gap and it repre-

sents the signature of the new topological phase induced as a result
of dimerization state switching.

which served as our starting point. We showed that the de-
generacy points at Γ and M are protected by the invariance
under the action of the anti-unitary operator Υ (30) [Eqs. (31)
and (32)], and that the reflection symmetry (34) guarantees
the flat band appearance along the Γ-M direction.

Employing the decimation method, we proved that the
lattice could be interpreted as being formed of ’composite’
atoms, in which previous atoms are arranged in groups of two.
The newly formulated model proved to be invariant under the
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FIG. 18. The counterpart of Fig. 14(a), for Λ = +1. The particles
chirality is reversed, as may be observed from the bands polarization:
A and B states will have a positive momentum, while C and D, a
negative one.

action of σx, allowing us to interpret the four atomic states (A-
D and B-C) as conserved spin states, effectively serving as an
internal degree of freedom for the two ”composite” atoms of
the effective unit cell. Given that the spin states are related by
time reversal operation, we inferred that TRS breaking occurs
between A and D states and similarly between B and C. Con-
sequently, we anticipated that in a topological phase where
chiral edge states arise, the mixing between A(B) and D(C)
is topologically forbidden. In other words, one edge of the
system will host A and B states, while the other, C and D,
respectively.

Next, we introduced light irradiation to break the TRS and
computed the topological phase diagram based on Chern num-
bers. We have thus found an interesting property. For γ2 < γ1,
it is impossible to induce a phase in which all the three Chern
numbers are non-zero and have interpreted this behavior in
terms of the effective model of bipartite unit cell. By im-
posing γ2 = γ1, we demonstrated that a gap is always re-
served for a topological phase transition due to the dimeriza-
tion state switching, occurring at the non-bonding energy, as
typically observed in SSH systems. Additionally, we high-
lighted the specific sublattice polarization of the topological
bands in both infinite and ribbon configurations. Using the lo-
cal density of states (LDOS) function, we confirmed the pre-
diction that A(B) and D(C) states are separately localized at
the system edges, giving rise to conduction channels with op-
posite chirality in a topological phase. Furthermore, we dis-
cussed the implications in terms of quantum Hall transport,
particularly the formation of RH plateaus.

Finally, we explored the case of γ2 > γ1. Here, we demon-
strated that the phase diagram becomes more intricate and pro-
vided examples of simultaneous non-zero Chern numbers. For
such a topological phase, we presented the quasienergy dis-
persion, and in the quantum Hall transport, a new RH = +

1
2

plateau represents the signature of the new topological phase

induced by the dimerization state switching. Moreover, we
explored the scenario of light helicity reversal Λ → −Λ, re-
sulting in the switching of particle chirality.

The most significant findings from our research are that:
(i) TRS breaking is not achievable in the absence of second-
order neighbors (diagonal) hopping, and (ii) there exists an
interplay between TRS breaking and dimerization, reflected
in the values of the Chern numbers C(n).
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Appendix A: Landauer-Büttiker formalism

If we consider a potential V1 − V4 applied between lead 1
and lead 4 and measure V2−V3 between lead 2 and lead 3, the
Hall resistance reads

RH =
V2 − V3

I1
, (A1)

where I1 is the current which flows at terminal 1. Leads 2 and
3 are probes, thus I2 = I3 = 0. Setting V4 = 0, the Ohm’s law
reads:

G

V1
V2
V3

 =
I1

0
0

 ; (A2)

G =


g12 + g13 + g14 −g12 −g13

−g21 g21 + g23 + g24 −g23
−g31 −g32 g31 + g32 + g34

 ,
(A3)

where G denotes the conductivity matrix with gi j, the conduc-
tivity function between i and j leads. Eq. (A2) may be also
translated as V1

V2
V3

 = R

I1
0
0

 , (A4)

where R = G−1 represents the resistance matrix. Finally, com-
puting the inverse of (A3), the Hall resistance is defined as

RH =
g24g31 − g21g34

det(G)

(
h
e2

)
, (A5)

where h/e2 is the resistance quantum.
Within the Landauer-Büttiker formalism, gi j is numerically

computed using the Green’s functions method [81].
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