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Temperature constraints are highly desirable in the experimental setup when seeking the syn-
thesis of new carbon structures. Fluctuations of the Dirac field result in temperature-dependent
corrections to the Helfrich-Canham formulation, which governs the classical elasticity of the mem-
brane in equilibrium state. Here, we examine the emergent shapes allowed by the effective model
up to quadratic order in Ricci curvature and discuss the constraints required to observe them. We
determine the mechanical stability conditions and provide a phase diagram characterized by the
appearance of a critical temperature Tc that distinguishes between carbon nanotube and fullerene
phases. The observation of minimal and developable surfaces is anticipated, respectively, at the
high- and low-temperature regimes.

Introduction. The rapid improvement in graphene
synthesis techniques has increased interest into the prob-
lem of how morphology relates to its properties [1, 2].
Graphene can be bent to form corrugated graphene,
folded to form fullerenes, rolled into carbon nanotubes,
and stacked in the shape of graphite, making it the
mother of graphitic materials [3]. The production of flat
graphene sheet is also subject to deformations; disloca-
tions introduce strain fields that lead to instabilities [4],
these stresses are then relieved by out-of-plane ripples
which manifest in the presence of the experimentally ob-
served nanobubbles [5]. Furthermore, the Dirac-like spec-
trum of the low energy excitations suggests the possibil-
ity of table-top experiments as a testbed for relativistic
quantum phenomena and vise-versa. In this way, the
coupling of massless Dirac fermions to the sample geom-
etry enables us to directly probe morphological effects.
Indeed, the emergence of pseudo-gauge fields from the
ripples in graphene modulated by curvature [6, 7] and
observed in the order of 300T [5] critically affecting the
sample’s electrical properties.

However, without an accurate tight-binding (TB) de-
scription for curved graphene, it becomes difficult to de-
termine the precise field theory for low energies that al-
lows us to model its properties. TB models for deformed
graphene are usually based on position-dependent hop-
ping integrals and a slightly deformed honeycomb lat-
tice [4]. Curved graphene, however, generally ceases to be
a crystal due to the changes in its structural lattice pro-
duced by the bending or stretching of graphene. Hence,
it is not obvious how to formulate a TB model that ac-
counts for the topological defects that make up curvature.
Consistently taking into account lattice gauge symme-
try of standard TB models leads to nonlinear modifi-
cations to the Dirac dynamics in curved space-time [8],
see [9, 10] for other views. Resolving the breaking of
translational symmetry in crystalline structures precedes
a proper, effective field theoretic formulation. On the
other, the perhaps more phenomenological approach of

the curved-space Dirac field theory is currently consid-
ered the simplest model for investigating the electronic
degrees of freedom in graphene membranes with corruga-
tions. In fact, up to fitting via Density Functional The-
ory (DFT), the low energy spectrum obtained from a TB
model for Gaussian bump graphene in a transverse mag-
netic field agrees well with the spectrum obtained using
the curved Dirac model with the same conditions [11].

Grounding to an experimental set-up demands knowl-
edge of the surface embedding and the response from
the electronic degrees of freedom confined to the mem-
brane at a given temperature. Actually, the self-assembly
formation of carbon surfaces like carbon nanotubes,
fullerenes, and carbon nanocones, among other curved
graphene surfaces, is a complex phenomenon. The known
experimental methods to produce these structures, like
arc discharge, thermal pyrolysis, and chemical vapor de-
position, among others, revealed an out-of-equilibrium
process for their formation [12, 13], which is out of the
known theoretical approach. However, after the complex
path to achieve a piece of the curved graphene surface at
an equilibrium temperature, the surface must be mechan-
ically stabilized, considering the Dirac fermionic degrees
of freedom. In fact, it has been shown that the relativis-
tic Dirac degrees of freedom result in the tendency of the
membrane to crumple [14], which seems to be consistent
with the experimental observation for the transformation
from graphene to fullerene [13]. The classical membrane
free energy is thus corrected by a significant quantum
contribution that critically affects its stability. Connec-
tion to curved graphene would also require inclusion of a
non-abelian gauge field to account for topological defects
[15], however, as a näıve model, one may ask what are
the experimental conditions at which a given structure
may be expected?. Basic notions of geometry and topol-
ogy have led to the prediction of positively curved car-
bon nano-structures with unique properties and synthe-
sized [16]. Negative curvature carbon materials, on the
other hand, although proposed for more than a decade
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prior the synthesis of graphene [17] have yet to be ob-
served in the laboratory. Despite great expectations, the
unknown mechanisms for its production and experimen-
tal synthesis have made its observation, uncertain.

In this paper, we investigate the role played by Dirac
field thermal fluctuations on the effective spatial geom-
etry of a Dirac material. We provide an effective shape
equation for extremal configurations and the general con-
ditions that such configurations represent an equilibrium
configuration. Based on a näıve model for graphene
membrane, we discuss the characteristic scale of some
of the carbon structures observed in the lab as well as
the temperatures at which these should be observed.

2D fermionic membranes. Commonly the space-time
geometry used in 2D materials is modeled using a 2 + 1
stationary space-time pseudo-Riemannian metric given
by ds2 = −v2F dt2 + gabdx

adxb, where vF is an effec-
tive velocity associated to the 2D Dirac material, e.g.
in graphene vF is the Fermi velocity, and the spatial
component of the metric, gab represents the Riemannian
metric associated with the geometry of a 2-dimensional
surface Σ, where a, b = 1, 2 are the local indices of the
surface. The material sheet is embedded in 3D Eu-
clidean space and thus an extrinsic description for the
sheet geometry is required. The embedding functions
are introduced through the mapping X : D ⊂ R2 →
Σ ⊂ R3, where D is a certain open set. In addition, it
has been suggested that the Helfrich-Canham free en-
ergy [18], used in the biophysical context to describe
soft membranes [19], may be used as geometric model
for graphene [20] capturing the sheet’s bending energy.
This model is given in terms of the energy functional
H [X] =

∫
d2x

√
g
[
α
2K

2 + κGR+ σ
]
, where K = gabKab

is the mean curvature, being gab the inverse metric tensor
and g the metric determinant. R is the Ricci curvature,
related to the extrinsic curvature by the Gauss-Codazzi
equation, R = K2−KabK

ab which by Gauss “egregium”
theorem, depends solely on the metric tensor gab. The
energy functional consists of three terms: the first term
is the bending energy, being α > 0 the bending rigidity;
the second term is the Gaussian bending energy, being
κG the Gaussian bending stiffness; and the third is a sur-
face energy term, where σ > 0, called surface tension in
the soft matter literature, is a Lagrange multiplier to fix
the overall area of the membrane [19]. In this sense, α
and κG are the only phenomenological parameters of our
model. Furthermore, for a compact surface Σ, the second
term

∫
d2x

√
gR is a topological invariant known as the

Euler characteristic χ(Σ).
Now, the Dirac fields confined to the surface may in

principle, provoke modifications to the geometry of the
membrane through thermal fluctuations on the fermion
gas in the material. To determine an estimation of these
effect in the geometry, we pose a correction to the elastic
bending energy, Heff [X] = H [X] + δHfermion [X], where
δHfermion [X] = − gvgs

β logZ (β, g) is the effective action

from the Dirac field, being the factor gv the valley and
spin degeneracy gs (in case of graphene), and β is the in-
verse of the thermal energy kBT , where kB is the Boltz-
mann constant and T is the temperature. Also, Z (β, g)
is the Dirac field partition function,

Z (β, g) =

∫
DΨ†DΨe−

∫ β
0

dτ
∫
Σ
d2x

√
gΨ†(∂τ+H)Ψ, (1)

where H = −iℏvF γ0γa∇a, with ∇a = ∂a+Ωa, the spino-
rial covariant derivative and Ωa is the spin-connection.
Note that the operator ∂τ + H coincide with the Dirac
operator in 2 + 1 using the imaginary time x0 by call-
ing τ = −ix0/(ℏvF ), thus it is not difficult to show
that ∂τ + H = −ℏvF γ0

[
iγ0∂0 + iγa∇a

]
= ℏvF γ0 /D,

where the massless Dirac operator /D = −iγµ∇µ. In-
dices µ, ν = 0, 1, 2 are the local indices of the product
manifold S1 × Σ.
Effective free energy for a 2D Dirac material. To cal-

culate the functional integral (1), let us perform a usual
decomposition in Fourier modes, details and conven-
tions can be found in the Supplemental Material. Since
the Dirac field is decomposed in Grassmann variables
{ψn(x)}, it is known that Fermionic path integral can
be carried out directly as

Z =
∏
n∈Z

detH

{(
iωnγ

0 + /DE

)}
(2)

where ωn are the fermionic Matsubara frequencies and
/DE = γ0Ĥ = iγa∇a is an Euclidean Dirac operator, and
H is the Hilbert space associated with spinorial functions
on the curved surface Σ. Since we are using the signature

(−1, 1, 1) one has that
(
γ0
)†

= −γ0 and (γa)
†
= γa,

thus the operator iωnγ
0+ /DE is self-adjoint. Now, using

the identity log detH O = TrH logO and recalling that
log λ = −

∫∞
0

ds
s e

−λs up to a divergent constant, (2) may
be rewritten as,

logZ = −1

2

∫ ∞

0

ds

s

(∑
n∈Z

e−ω
2
ns

)∫
Σ

dA K (s, x, x) , (3)

where dA = d2x
√
g is the surface area element and

K(s;x, x′) =
〈
x
∣∣e−Ds∣∣x′〉 the Heat-Kernel of the op-

erator D = (ℏvF )2 /D
2
E on Σ [21, 22]. To compute logZ

let us focus on its integrand. The Heat-Kernel may be
expanded in geometric invariants Ek as

K(s;x, x) =
1

4π

∑
k≥0

(sℏ2v2F )k−1tr(Ek), (4)

with tr being the pseudo-spin trace. The first coefficients
Ek on a manifold without boundaries are local O(2) in-
variant quantities [21]. In 2D, the Ricci scalar curvature
R is the only independent component of the Riemann
tensor Rabcd = Rga[cgd]b, allowing us to evaluate Ek in
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terms of R,

E0 = 1, E1 = − 1
12
R,E2 = − 1

120

(
∆gR+

1

2
R2

)
. (5)

Eq. (3) may be locally expanded according to (4), re-
casting the Matsubara sum in terms of the Jacobi theta
function ϑ4, logZ becomes

−1

2

∫ ∞

0

ds

s
ϑ4

[
iℓ2T
4πs

]∑
k≥0

sk−
3
2

(4π)3/2ℓ−1
T

∫
Σ

dA tr(Ek), (6)

where ℓT = ℏvF /kBT corresponds to the effective ther-
mal wavelength. The zero temperature limit may be re-
covered from (6) noting that ϑ4 → 1, consistent with
the findings at [23]. Hence, from (6) defining the Heat-
Kernel expansion coefficients at finite temperature as
ak(x; ℓ

2
T /s),

−1

2

∫ ∞

0

ds

s

∫
S1×Σ

dV

(4π)3/2

∑
k≥0

ak(x; ℓ
2
T /s)s

k− 3
2

the coefficients are now be related to those at zero tem-
perature as ak(x; ℓ

2
T /s) = (ℏvF )ϑ4[iℓ2T /4πs]tr(Ek) with

the Jacobi function carrying the temperature depen-
dence. The divergent part of the effective action is con-
tained in s → 0. At this limit, however, the expan-
sion coefficients are exponentially suppressed, behaving
as their zero temperature counterpart. Thus, finite tem-
perature does not modify the divergent structure so the
same counter-terms suffice for renormalization. To cap-
ture the IR divergence in (6) we introduce a UV cutoff
Λ−2 and integrate up to some constant s0 which may be
taken to be arbitrary small. As argued above, at s → 0
the coefficients are those at zero temperature allowing for
the explicit integration of s. Disposing of the s0 term,
the divergent part reads,

− 1

ℓT

∫
Σ

dA

(4π)3/2

[3/2]∑
k=0

tr(Ek)
Λ3−2k

2k − 3
, (7)

leading to a counter-term effective Lagrangian density
c1Λ

3+c2RΛ with the constants c1,2 determined from (7).
Rescaling s → ℓ−2

T s the renormalized free energy be-
comes,

Fren [X] =
1

2β

∑
k≥0

grenk ℓ2k−2
T

∫
Σ

dA

4π
tr(Ek), (8)

with grenk constants determined by the Mellin transform
of the Jacobi theta function,

grenk :=
1√
4π

∫ ∞

0

ds sk−
5
2
(
ϑ4
[
i

4πs

]
− νk

)
(9)

where νk, defined as ν0,1 = 1 and νk≥2 = 0, encapsulates
the effect of renormalization procedure.

Thus the fermionic contribution to the free energy is
δHfermion [X] = gvgsFren [X]. The coefficients can be
analytically obtained; gren0 = −3ζ(3), gren1 = −2 log(2)
and gren2 = 1/4 for k ≥ 2 in general, grenk = 2π2−2k[1 −
41−k]Γ(k − 1)ζ(2k − 2) are monotonically decreasing. A
strong curvature regime would require to include higher
order contributions but these quickly suppressed by the
increasing powers of ℓT limited by the validity of the
Dirac model, for most relevant systems k > 2 contribu-
tions can be neglected.

Effective shape equation. The effective Hamiltonian
obtained after integrating out the Dirac degrees of free-
dom and performing the renormalization procedure has
the following structure

Heff [X] =

∫
Σ

dA

[
α

2
K2 + κeffG R+ σeff +

1

2
κ(2)

G R2

]
,

(10)
where σeff := σ + δσeff , κ

eff
G := κG + δκeffG , i.e. with

the exception of the bending rigidity coefficient α, all co-
efficients are modified by one-loop quantum corrections
of the fermionic sector. The surface tension and Gaus-
sian elastic module receive a temperature-dependent con-
tribution stemming from the IR dynamics; βδσeff =
−3gvgsζ(3)/ℓ

2
T and βδκeffG = 1

6gvgs log(2) respectively. It
is noteworthy to notice the sign of δσeff associated with
vacuum energy, this contribution will manifest in temper-
ature constraints for the observation of carbon structures,
discussed later. In addition, δσeff is in agreement with
the known expression for the heat capacity of graphene in
the Dirac approximation [6], as well as the Casimir-type
contribution from the finite temperature calculation [24].
In contrast, an R2 term has been induced with an emer-
gent elastic coefficient βκ(2)

G = − gvgs
960π ℓ

2
T. This term is

already a consequence of the general expression obtained
by the heat-kernel expansion in 2-dimensions [22], consid-
ered in [24] to determine if the sphere is a global maximum
of their free energies.

Now, the natural question that arises is, what are
the shapes that minimize the above effective Hamilto-
nian? To answer this question, we implement the aux-
iliary variable method introduced in [25] to obtain the
shape equation of the membrane and its stress tensor
described by the effective free energy (10). The basic
idea is the introduction of Lagrange multipliers to impose
the geometrical identities as holonomic constraints. In
this procedure, an energy functional of the form H [X] =∫
dA H [Kab, gab, R] is replaced by a new functional that

includes all geometrical necessary constraints (see Sup-
plementary Material). Particularly, this extended func-
tional includes

∫
dA fa · (ea − ∂aX), with the Lagrange

multiplier fa anchoring the tangent vector ea to the em-
bedding functions X. Furthermore, fa is the Nöether
current associated to the translational invariance of the
membrane X → X + a, for any 3D constant vector a;
consequently, fa satisfies a conservation law ∇af

a = 0.
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In addition, fa is interpreted as the stress tensor of
the membrane that, using the auxiliary method, can
be expressed as fa =

(
T ab −Ha

cK
cb +RHRg

ab
)
eb −[

∇bHab − 2 (∇bHR)
(
gabK −Kab

)]
N, where T ab =

−2 1√
g∂(

√
gH)/∂gab is the intrinsic stress tensor, Hab :=

∂H/∂Kab, HR = ∂H/∂R, and N is the unit normal
vector to the surface. Decomposing fa = fabeb + faN,
the shape equation follows from the condition ∇af

a −
Kabfab = 0 [25].
For the effective Hamiltonian (10) one has HR =

κGeff+κ
(2)

G R, Hab = αgabK, and the intrinsic stress tensor
T ab = α

2K
(
4Kab −Kgab

)
−
(
σeff + κeffG R+ 1

2κ
(2)

G R2
)
gab.

Therefore the tangent, and normal components of the
stress tensor are

fab = αK

(
Kab − 1

2
gabK

)
− gab

(
σeff −

κ(2)

G

2
R2

)
, (11)

fa = −
[
α∇aK + 2κ(2)

G ∇bR
(
gabK −Kab

)]
, (12)

respectively. Using the stress tensor, one can compute
the force that a piece, R, of the membrane acts on its sur-
roundings. Indeed, according to the development in [19]
this force is given by

∫
∂R ds ℓaf

a, where ds is the line el-
ement on the boundary ∂R, and ℓa are the components
of the unit normal vector outward ∂R. Furthermore, the
shape equation turns out to be given by

− α

[
∆gK +

1

2
K
(
K2 − 2R

)]
+ σeffK

+ 2κ
(2)
G

[(
Kab − gabK

)
∇a∇bR− 1

4
R2K

]
= 0. (13)

Notice that κeffG does not appear in the shape equation,
this is consequence of limiting our analysis to manifolds
without boundaries, resulting in R-term of the effective
Hamiltonian being topological. Despite the non-linear
nature of the shape equation (13), it is possible to de-
duce exact solutions corresponding to known structures
constructed from graphene.

On one hand, R = 0 and K = 1/r0 constant are a solu-
tion of (13) which corresponds to a cylinder with radius
r0 =

√
α/(2σeff) while σeff > 0. Likewise, taking the

condition K2 = 2R and K = 2/r1 constant, one get an-
other solution of the equation (13) which corresponds to
a sphere with radius r1 = (2κ(2)

G /σeff)
1/4 while σeff < 0.

The condition σeff > 0 (σeff < 0) for cylinder (sphere) im-
poses an upper (lower) bound on the equilibration tem-

perature T < Tc (T > Tc), where Tc =
(

σ(ℏvF )2

3gvgsζ(3)k3B

) 1
3

.

In particular, for the cylinder surface, the mean curva-
ture and Ricci curvature satisfy

Kcyl =
1

ℓTc

√
6gvgsζ(3)kBTc

α

[
1−

(
T

Tc

)3
] 1

2

,

Rcyl = 0 (14)

FIG. 1. Mean and Ricci curvature as a functions of tempera-
ture. The green (purple) lines denote the values for cylindrical
(spherical) structures in the nm scale. The solid lines shows
the stability region starting at Tmin = 757.75K for carbon
nanotubes. The critical temperature Tc = 963.16K is ob-
tained imposing the constraints rC60 < 1 nm and rnt < 8 nm
at synthesis temperatures TC60 = 1000K and Tnt = 720K
within range of the known values in the literature [26]. The
values of Tmin and Tc has been obtain using α = 1.44 eV [20],
and Fermi velocity vF = 0.85× 106 m/s [27].

whereas for the sphere surface, these curvatures satisfy

Ksph =
2(1440πζ(3))

1
4

ℓTc

(
T

Tc

) 1
4

[(
T

Tc

)3

− 1

] 1
4

,

Rsph =
1

2
K2

sph (15)

Clearly, the temperature Tc distinguishes two separated
phases where cylindrical and spherical surface formation
occurs. This distinction is a consequence of the contrast
dependence of the effective elastic coefficients with re-
spect to the thermal wavelength; indeed, while surface
tension coefficient behaves as βδσeff ∼ ℓ−2

T , the non-linear
elastic coefficient as βκ(2)

G ∼ ℓ2T . This is another way to
see that there are two opposite temperature regimes for
the formation of the surfaces. By convenience, we call the
high- and low-temperature regimes, these dominions can
be defined by T ≫ Tc and T ≪ Tc, respectively, where
Tc is the same characteristic temperature defined above.
Notice that in the low-temperature regime, the density
energy 1

2βκ
(2)

G R2 dominates the elastic behavior, while in
the high-temperature region, the term δσeff dominates
the behavior. In the low-temperature regime, the shape
equation reduces to

(
Kab − gabK

)
∇a∇bR− 1

4R
2K = 0.
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Notice that this equation is identically satisfied for R = 0.
Thus, all surfaces with R = 0 represent solutions in this
regime, encompassing various types of geometric con-
figurations known as developable surfaces; generated by
sweeping a straight line in space and revolving around
an axis: planes, cylinders, conical surfaces, tangent sur-
faces, and union of pieces of them [28]. In addition, in the
high-temperature dominion, the shape equation reduces
to δσeffK = 0 or K = 0, which corresponds to a plethora
of structures known as minimal surfaces [28].

A phase diagram for the conformation of surfaces
above is depicted in Fig. 1 through the mean and Ricci
curvatures versus the reduced temperature T/Tc. The
phase diagram shows six regions, from left to right, a
developable surface phase for T ≪ Tc, a cylinder phase
for T < Tc, a sphere phase for Tc < T , a minimal sur-
face phase for T ≫ Tc and two unknown regions. Notice
that from the solutions (14) and (15) we cannot either
infer a lower value of temperature for cylinder neither
a upper value of temperature for sphere phase. How-
ever, we can deduce these temperature values if we per-
form a mechanical stability analysis (see Supplemental
Material for details). Indeed, through the calculation of
the second variation of the effective Hamiltonian (10),
the condition for the cylinder to be stable is the in-
equality T > ccylTc(1− (T/Tc)

3), whereas for the sphere
T > cS2Tc((T/Tc)

3 − 1), with ccyl and cS2 at the Sup-
plemental Material. The large value of Tmax obtained for
the sphere, implies their stability to all practical values of
temperature. In addition, the minimal surfaces solutions
under the Hamiltonian

∫
δσeffdA are unstable, however,

if we do not neglect the bending energy α
2

∫
dAK2 the

shape equation reduce to −α
[
∆gK + 1

2K
(
K2 − 2R

)]
+

σeffK = 0, where still K = 0 is a solution but now the
surfaces are stable. Therefore the stable minimal surfaces
are found in the high-temperature regime neglecting the
terms κ(2)

G but not the bending coefficient α. In contrast,
the developable surface of graphene dominated by the
term 1

2κ
(2)

G R2 appears to be unstable under mechanical
deformation.This instability may be related to the ten-
dency of the membrane to crumple [14].

Concluding remarks. We have provided for the first
time a simple theoretical phase diagram of the shapes
that a curved sheet of graphene can have under the as-
sumption that the electronic degrees of freedom are de-
scribed by the Dirac curved model. From this perspec-
tive, more realistic modeling of curved graphene would
require including a non-abelian Wilson line to account
for topological defects that result in non-trivial curva-
ture. It would be interesting to see how such corrections
translate to shape equations, stability, and consequently
to the phase diagram, to be reported elsewhere. Addi-
tionally, a curved tight-binding model that provided the
correct field theory at low energy would aim to under-
stand the possible carbon shapes accurately; a discus-
sion in this direction is provided in [8–10]. However, it is

noteworthy that despite the simple and näıve model for
curved graphene used here, captures most of the equilib-
rium geometries obtained with the shape equation (13)
have been experimentally observed for graphene. Cylin-
der and spherical surfaces correspond to the well-known
single-wall carbon nanotube and Buckminsterfullerene
C60 structures with observed characteristic radii around
∼1 nm. Furthermore, according to the thermal pyrolysis
synthesis method for the formation of carbon nanotubes
(CNTs), presented in [12], the CNT formation rate in-
creases above 700 K and decreases after 1000 K, which is
in agreement, qualitatively, with the cylindrical phase of
the phase diagram shown in Fig. (1). According to [26],
fullerenes C60 and C70 are not formed at 298.15 K, but
they can be produced at 1273.15 K. These findings are
consistent with the spherical phase shown in Fig. (1).
Although negative Gaussian curvature has not been pro-
duced in the lab or found in nature, there is a reasonable
expectation to do so; in particular, it may be necessary
to seek the synthesis of membranes with negative cur-
vature surfaces at higher temperatures according to the
above phase diagram, despite the current experimental
obstacles. However, minimal surfaces are currently con-
sidered candidates to understand Glass-like Carbon [2].
In this way, the negative Casimir-like contribution from
fermions imposes a tight constraint on the classical con-
tribution to the surface tension σ, or equivalently, the
critical temperature Tc to be measured at the lab.

As a matter of perspectives, it would be interesting
to explore what other types of solutions, i.e. expected
surfaces, Eq. (13) allows. However, as evidenced via
Monge gauge, the shape equation often results in a com-
plicated nonlinear fourth-order differential equation for
the height function where appropriate boundary condi-
tions and approximations should be carefully considered.
In the case of graphene, consistency (13) with the cur-
rently observed structures predicts a strict bound on the
values for the surface tension of the fermionic membrane.
However, under a conformal transformation, the shape
equation (13) constrains the conformal factor, resulting
in a more tractable second-order PDE to explore non-
trivial deformations of simple geometries. Additionally,
including an electromagnetic field would provide extrin-
sic curvature terms that, under the integration of the
fermionic degrees of freedom, may correct the bending
parameter since the electromagnetic fields are in the am-
bient space where the membrane is embedded.

∗ pablo morales@araya.org
† pcastrov@unach.mx; author to whom correspondence
should be addressed.
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SUPPLEMENTAL MATERIAL

Notation and Fourier decomposition of the Dirac
Field

Let us perform a decomposition in Fourier modes as
follows

Ψ (τ, x) =
1√
β

∑
n∈Z

ψn (x) e
−iωnτ , (16)

ψn(x) =
1√
β

∫ β

0

dτΨ(τ, x)eiωnτ (17)

where ωn = (2n+1)π/β, with n ∈ Z, are the Matsubara
frequencies. Orthogonality relations for the Fourier basis

is
∫ β
0
dτeiτ(ωn−ωn′ ) = βδnn′ , and completeness relation-

ship
∑
n∈Z e

iωn(τ−τ ′) = βδ(τ − τ ′). Using the Fourier
decomposition of the Dirac field, and the orthogonality
relation, the action adopts the following frequency rep-
resentation

S(Ψ†,Ψ) =
∑
n∈Z

∫
Σ

d2x
√
g ψ†

n (x)
(
−iωn + Ĥ

)
ψn(x)

The functional measure in the Fourier basis is written as
D
(
Ψ†,Ψ

)
=
∏
n∈Z D

(
ψ†
n, ψn

)
, thus the functional inte-

gral adopts the following expression

Z =
∏
n∈Z

[∫
D
(
ψn, ψn

)
e−

∫
Σ
d2x

√
g ψn(x)(iωnγ

0+ /DE)ψn(x)

]

where /DE = γ0Ĥ = iγa∇a is an Euclidean Dirac opera-
tor. Since {ψn(x)} are Grassmann variables, it is known
that each of these integrals can be carried out directly,
thus we get the Eq. (2) from the manuscript.

Heat-Kernel expansion

Let us here make a few comments on the local ex-
pansion of the Heat-Kernel (4). As described [22] the
asymptotic behaviour of K(s;x, x) goes as s(k−m)/2 with
2 corresponding to the degree of the operator, m the di-
mension of the manifold and k ∈ Z+ to the k-th leading
term. For manifolds without imposed boundaries, it can
be shown that only k even contribute, relabeling coin-
cides with the standard notation at [21] adopted in this
paper. The coefficients read,

E0 = 1 , E1 = − 1
12
R , (18)
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E2 =
1

12
ΛµνΛµν +

1
180

[RµνρσRµνρσ −RµνRµν ]

− 1

6
∇µ∇µ

(
1
5R−X

)
1 +

1

2
( 16R−X)21 , (19)

with Λµν = [∇µ,∇ν ] = −iRabµνΣab, where Σab =

− i
8 [γa, γb] corresponds to the generators of the Lorentz

group, X = 1
4R for the elliptic Dirac operator.

Stress tensor and shape equation

First variation of the effective Hamiltonian by auxiliary
variables

Following [25], here we introduce the auxiliary vari-
ables method. To thus purpose, we introduce the func-
tional Hc

[
X, R,Kab, gab, ea,N,Λ

ab, fa, λn, λab, λ
a
⊥
]

:=
Hc where Hc is given by

Hc =

∫
dA H [Kab, gab, R] +

∫
dA fa · (ea − ∂aX)

+

∫
dA
(
λa⊥ (ea ·N) + λn

(
N2 − 1

))
+

∫
dA
(
Λab (Kab − ea · ∂aN) + λab (gab − ea · eb)

)
+

∫
dA ΛR

(
R− (gabKab)

2 +KabKcdg
acgdb

)
(20)

Now, we carry out variations respect to each quantity.
Let us performed the variation respect to Kab. Thus it is
convenient to define Hab := ∂H

∂Kab
and HR = ∂H

∂R . Thus

we got the equation Λab = −Hab − 2HR(g
abK − Kab).

Now, we perform the variation with respect to the metric

gab. Now, it is convenient to define T ab = −2 1√
g

∂(
√
gH)

∂gab
.

This quantity is the intrinsic stress tensor, thus it is

not difficult to show λab = Tab

2 + 2HRR
ab, where we

have used the definition of the Ricci curvature Rab =
KabK −KacK

c
b . Now, the variation with respect to the

embedding functions X. This variation represents a con-
servation principle ∇af

a = 0, where ∇a is the covariant

derivative compatible with the metric gab. Now, we carry
out the variation with respect to ea. This equation gives
us the stress tensor of the graphene membrane

fa =
(
ΛacKb

c + 2λab
)
eb − λa⊥N. (21)

Now, we make the variation with respect to N.

λa⊥ea + 2λnN+∇a(Λ
abea) = 0 (22)

Now, we use the Weingarten-Gauss equations, ∇aeb =
−KabN, which implies

λa⊥ = −∇bΛ
ab

2λn = ΛabKab (23)

leading to the tangent and normal components at
Eqns. (11) and (12).

Stability analysis of the geometric configurations

Second variation of the effective Hamiltonian

As shown in [29], the second variation of a sur-
face functional invariant under parametrization H[X] =∫
d2x

√
gf(X) can always be expresed in the form

δ2H =

∫
dAΦLfΦ (24)

for some local differential operator L , where change in
the embedding function is given by X → X + δX with
δX = Φn+Φaea. In addition, it has been assumed that
the surfaces are closed without boundaries. In particu-
lar, the operator L can be obtained by performing the
normal variation LΦ = δ⊥(

√
gE (f)), where E (f) is the

factor obtained in the first normal variation of the func-
tional. In particular, the Euler-Lagrange equations are
at equilibrium E (f) = 0. Here, we focus on the second
order variation of the functional 1

2κ
(2)

G

∫
dAR2 as the vari-

ation of the other terms in the effective Hamiltonian are
already computed in [29]. After a tedious but straight-
forward calculation

1

4
LR2 = K

[
Kab(∇a∇bR)−K(∆gR)−

1

4
R2K

]
+ (∇a∇bR)

[
−∇a∇b + (KKab −Rab)− 4KacK b

c

]
+ (Kab −Kgab)∇a∇b

[
2∇c

[
(Kcd − gcdK)∇d (·)

]
−RK (·)

]
−∇cR [Kc

a∇b +Kc
b∇a −Kab∇c + (∇aK

c
b )]

− (∆gR)
[
−∆g + (R−K2)

]
+ 2KKab∇a∇bR+K∇aK∇aR+ 2KKab∇aR∇b −K2∇aR∇a

− 1

2
RK

[
2∇c

[
(Kcd − gcdK)∇d (·)

]]
− 1

4
R2
(
−∆g + (R−K2)

)
. (25)

As in [29], one has the following expressions for the op-
erators LK2 and LK2 , defined in (24),

LK2 = 2∆2
g + (K2 − 4R)∆g + 4KKab∇a∇a

+ 2R2 + 2K4 − 5RK2 + 12Kab∇a∇bK

−K∆gK + (∇aK)(∇aK) (26)
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and

L1 = −∆g +R . (27)

Stability analysis of the cylinder

In the case of the cylinder with parametrization
X(θ, z) = (r0 cos θ, r0 sin θ, z), where recall that the cylin-
der radius is r0 =

√
α/2σeff is the radius of the cylinder,

with σeff > 0. using this parametrization one have the
surface metric components gθθ = r2, gzz = 1, gθz =
gzθ = 0, the components of the extrinsic curvature tensor
Kθθ = r0, Kzz = Kzz = Kθz = Kθz = Kzθ = Kzθ = 0,
and Kθθ = 1/r30. Additionally, the mean curvature
K = 1/r and the Ricci curvature R = 0. The Laplace-
Beltrami operator on scalars is ∆cyl = r−2

0 ∂2θ + ∂2z . The
spectrum of this operator is − 1

r20
(m2+(kr0)

2), for m ∈ Z
and k ∈ R. Using LK2 ,L1 and LR2 we can compute the
spectrum of the operator Lcyl for the energy density of
the effective Hamiltonian,

spec(Lcyl) =
2σeff
r20

[
m4 + 2m2((kr0)

2 − 1) + 1
]

+
(2σeff)

2

α

[
1 +

8κ(2)

G σeff
α2

]
(kr0)

4 . (28)

Observe that the first term is always positive, whereas
the second term is only positive if the condition 1 +
8κ

(2)
G σeff

α2 > 0. This implies the following inequality for
the temperature

T∗
1− T 3

∗
> c (29)

where we have defined the reduce temperature T∗ = T/Tc

and c =
8gvgsℓ

2
Tc
σkBTc

α2 . The minimum value of the tem-
perature where the cylinder configuration is stable is
given by

Tmin

Tc
=

(
2λ

3

) 1
3

[
1

2c

(
2

3

) 1
3

− λ−
2
3

]
(30)

with λ = 9c3 +
√
3c3(27c3 + 4) Additionally, one can

show that the image of the RHS function of c is the in-
terval [0, 1] for any value of c ∈ R.

Stability analysis of the sphere

In the case of the sphere, including an explicit
parametrization is unnecessary. It is enough to use the
fact that the curvature extrinsic tensor satisfies Kab =
K
2 gab, and K2 = 2R. We recall that the radius sphere

satisfy r1 = (2κ(2)

G /σeff)
1/4 or equivalently the Ricci cur-

vature is R = (2σeff/κ
(2)

G )1/2, with σeff < 0. Also, we

take the advantage that the Laplace-Beltrami operator
on scalars for the sphere is written in terms of the an-
gular momentum L̂ as ∆S2 = −R

2 L̂
2, whose eigenvalues

are given by ℓ(ℓ + 1), for ℓ ∈ N ∪ {0}. The spectrum of
the operator Lcyl for the energy density of the effective
Hamiltonian is obtained using LK2 ,L1 and LR2 is

spec(LS2) =
1

4
αR2f

(1)
ℓ +

1

2
σeffRf

(2)
ℓ (31)

where f
(1)
ℓ = ℓ(ℓ + 1) [ℓ(ℓ+ 1)− 2] and f

(2)
ℓ =[

2 (ℓ(ℓ+ 1)− 2)
(
ℓ(ℓ+ 1)− 5

2

)
+ ℓ(ℓ+ 1) + 1

]
. Notice

that the sequence f
(1)
ℓ ≥ 0, whereas the sequences

f
(2)
ℓ > 0 for all ℓ ∈ N ∪ {0}. The stability condi-
tion should satisfy spec(LS2) > 0 for all ℓ, implying

(−2σeff/(αR)) < f
(1)
ℓ /f

(2)
ℓ . Now, notice that the new

sequence f
(1)
ℓ /f

(2)
ℓ ≤ 24/35. Substituting the expression

of the Ricci curvature in terms of the temperature and a
straightforward calculation, we obtain the condition

T 3
∗ − 1

T∗
<

(
24

35

)2
α21440πζ(3)

σ2ℓ4Tc

:= d . (32)

Recall that T∗ ≥ 1 since is the condition found in the
sphere solution. Thus, the maximum value of T∗ that
satisfies the above inequality is the real root of the third-
order polynomial P (x) = x3 − dx− 1 for x ≥ 1.

Stability analysis of the minimal surfaces

In the case of minimal surfaces K = 0, we use the
operators LK2 , and L1. It is not difficult to show by
integrating by parts that

LMinS = α(−∆g +R)2 + σeff(−∆g +R) (33)

which certainly will give a positive spectrum. Note that
α ̸= 0 or is required for stability. As a consequence, at
high temperatures the contribution from σeff dominates
resulting in spec(LMinS) < 0, i.e. unstable structures.

Stability analysis of the developable surfaces

In the case of developable surfaces R = 0, we use
the operator LR2 . It is not difficult to show using the
Codazzi-Mainardi equation ∇aK

ab = ∇bK that

LDevS = 4κ(2)

G O2 (34)

where O = (Kab − Kgab)∇a∇b. Since κ(2)

G is negative,
the developable surfaces are automatically unstable.
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