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Degeneracy and symmetry have a profound relation in quantum systems. Here, we report gate-
tunable subband degeneracy in PbTe nanowires with a nearly symmetric cross-sectional shape. The
degeneracy is revealed in electron transport by the absence of a quantized plateau. Utilizing a dual
gate design, we can apply an electric field to lift the degeneracy, reflected as emergence of the plateau.
This degeneracy and its tunable lifting were challenging to observe in previous nanowire experiments,
possibly due to disorder. Numerical simulations can qualitatively capture our observation, shedding
light on device parameters for future applications.

Symmetry of a confined quantum system can yield de-
generate eigenstates. Breaking the symmetry lifts the de-
generacy. One example is semiconductor nanowires with
a symmetric cross-sectional geometry. Electrons in the
wire “feel” a symmetric potential landscape, which may
hold degenerate eigenstates. Each eigenstate corresponds
to a one-dimensional electron system, a subband, with
its momentum oriented along the wire axis. The conduc-
tance of each subband is quantized at 2e2/h for ballis-
tic nanowires. Therefore, conductance steps in units of
2e2/h are revealed by varying subband occupation, tuned
by gate voltages [1–6]. Two degenerate subbands would
manifest in conductance transport as the absence of a
quantized plateau. Breaking the symmetry of the poten-
tial profile, e.g. by applying an electric field, can lift the
degeneracy and restore the missing conductance plateau.

This subband degeneracy and its tunable lifting have
been barely studied in nanowire experiments. Previous
works [7, 8] have reported a missing conductance step,
but without its tunability. Moreover, the step values
(∼ 0.001×2e2/h in [8]) significantly deviate from the
quantized conductance, raising uncertainty on attribut-
ing those steps to subbands due to the non-ballistic na-
ture of devices. In addition, the temperature in Ref.
[7] (77-100 K) can cause significant smoothing on small
features. A bias voltage (V ) of 10 mV was applied
in Refs.[7, 8], and the conductance was calculated as
I/V (I is the current). This large bias sets a low res-
olution for degeneracy: Subbands spacing less than 10
meV would be recognized as “degenerate”, as a missing
plateau would be expected in transport. This “degener-
acy” is simply a biasing effect, as the missing plateau can
be restored if the bias is set back to zero [3].
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Previous ballistic nanowires have exhibited quantized
plateaus at zero magnetic field [3, 5, 6], yet without ob-
serving degeneracy even for a symmetric wire geome-
try. A possible reason could be residue disorder that can
break the potential symmetry [9]. Additionally, the use
of a single gate for tuning the electro-chemical potential
could also introduce asymmetry, as the gate induces an
electric field and tilts the potential profile.

In this study, we report the observation of gate-tunable
subband degeneracy in PbTe nanowires with nearly sym-
metric geometry. A dual gate design is implemented so
that the electro-chemical potential and electric field can
be separately tuned through linear combinations of gate
voltages. Absence of a quantized plateau at 2e2/h or
4e2/h is observed in multiple devices while other plateaus
are present, indicating subband degeneracy. We further
apply an electric field, and demonstrate that the missing
plateau can be restored. Numerical simulations can cap-
ture these findings, suggesting a link between symmetry
and degeneracy. Our observation is enabled by the sig-
nificant mitigation of disorder in PbTe, see Ref. [10–22]
for recent progress on this material.

Figure 1(a) shows the scanning electron micrograph
(SEM) of a PbTe nanowire, see Ref. [21] for its growth
details. The contacts and gates are evaporated Ti/Au
(12 nm/43 nm). The gate voltages are denoted as VL

and VR, respectively. We define effective gate voltages:
VE = VL − VR and VP = (VL + VR)/2, so that VE tunes
the strength of the electric field, and VP tunes the electro-
chemical potential in the wire. The cross-talk is expected
to be minimal as the gate spacing’s are nearly equal.

The cross-section of device A is shown in Fig. 1(b),
obtained via scanning transmission electron microscopy
(STEM) after its measurement. The wire has a nearly
symmetric shape, and is encapsulated by CdTe substrate
and Pb0.99Eu0.01Te (blue). The flat facets enable ballistic
transport [21] and possible subband degeneracy at zero
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FIG. 1. Degeneracy and its tunable lifting in device A. (a) Device SEM. Scale bar, 500 nm. The gates are false-colored in
yellow. (b) Cross-sectional image. Scale bar, 100 nm. The Pb0.99Eu0.01Te layers are highlighted as blue. The SiN mask is
false-colored as pink. STEM of this device has been shown in our previous work for other purpose [21]. (c) Schematic of
subband energy and the degeneracy lifting. (d) G vs VE and VP. B = 0 T. (e) Line cuts from (d), with horizontal offset of 1
V between neighboring curves.

magnetic field. To facilitate the process of STEM, the
whole device was covered by Ti/Au (the black and white
layers on top) after the measurement.

Figure 1(d) presents the main result: Conductance,
G ≡ dI/dV , as a function of VE and VP. V = 0 mV. B =
0 T. The measurement circuit was two-terminal within a
dilution fridge (base temperature below 50 mK). A series
resistance contributed by filters and contacts (1.0 kΩ)
has been subtracted. At VE = 0 V, G as a function of VP

reveals steps near 2e2/h and 3×2e2/h, but lacks a distinct
feature near 2× 2e2/h, see the labeled numbers (in units
of 2e2/h) as a guidance. The black curve in Fig. 1(e)
is the line cut. The absence of the “2” plateau suggests
degeneracy of the second and third subbands (E2 = E3).
We denote E1, E2, E3, and E4 as the energies of the four
lowest subbands (band bottoms).

The “2” plateau (white region in Fig. 1(d)) emerges
and widens with an increase of VE, indicating that the
electric field lifts the E2,3 degeneracy. Figure 1(e) shows
several line cuts with horizontal offsets. For all line cuts,
see Fig. S1 in the Supplemental Material (SM). The
width of the “2” plateau scales (roughly) linearly with
VE. A larger VE induces a larger electric field, leading to
a stronger tilt (asymmetry) in the potential profile, yield-
ing a larger lifting of degeneracy. Figure 1(c) is a sketch
of the energy spectrum of the three lowest subbands as
a function of VE, drawn based on Fig. 1(d).

The variation of pinch-off voltages in VP is small across
different VE values, suggesting that the cross-talk be-
tween them is negligibly small. VE mainly tunes the
electric field, without substantially affecting the electro-
chemical potential. The small jump after the device
pinch-off in Fig. 1(e) (the black curve), also visible in
the upper left corner of Fig. 1(d), is likely due to charge

instabilities.

To extract energy scales associated with subband de-
generacy and its lifting, we measured the conductance
map in (V , VP). Figure 2(a) shows the degenerate case
(VE = 0 V) of device A. The first and third plateaus man-
ifest as diamond shapes in the 2D map (labeled as “1”
and “3”). The diamond sizes, ∼ 3-4 meV, correspond to
E2,3 − E1 and E4 − E2,3, respectively. The absence of
the “2” diamond is due to the E2,3 degeneracy, see the
lower panel in Fig. 2(a) for the line cut. The sizable dip
on the “1” plateau is caused by a charge jump.

In Fig. 2(b), we set VE to -2.2 V to lift the degener-
acy. The “2” plateau emerges as a white diamond, see
the blue line cut and black arrows. The diamond size
measures the amplitude of degeneracy lifting, E3 −E2 ∼
1.2 meV. Figure 2(c) further increases VE to -4 V, and re-
veals a larger diamond: E3−E2 ∼ 2.2 meV. For a rough
estimation, the strength of gate-induced electric field is
(E3−E2)/ew ∼ 7.3×103 V/m (w is averaged wire width).
This strength is orders-of-magnitude smaller than the
field strength induced by workfunction mismatch and ac-
cumulated surface charges [10]. VE thus barely modifies
the direction and the strength of spin-orbit interaction,
useful information for searches of helical gaps [23, 24].

The three 2D maps in Figs. 2(a-c) quantify the energy
scales related to degeneracy lifting at zero magnetic field
(B). We next study its evolution with B. Figure 2(d)
shows the By scan of the degenerate case at VE = 0 V. By

is perpendicular to the device substrate, see the sketch in
Fig. 1(a). The emergence of the “0.5” and “2” plateaus
results from the Zeeman splitting of E1 and E2,3, respec-
tively. Note that E2↑ and E3↑ remain degenerate, as do
E2↓ and E3↓ (↑ and ↓ denote the spin directions). By

does not lift the subband degeneracy, indicating that the
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FIG. 2. (a-c) G vs V and VP for VE = 0, -2.2 and -4 V,
respectively. B = 0 T. Lower panels are zero-bias line cuts.
All panels share the same VP-axis. (d) G vs By and VP for VE

= 0 V. V = 0 V. (e) Line cuts from (d) and (f). The black
curve has a horizontal offset of 0.8 V for clarity. (f) Similar
with (d) but for VE = -4 V. The labeled numbers indicate the
plateaus (in units of 2e2/h).

orbital effects of B on E2 and E3 are either identical (due
to the symmetric geometry) or insignificant. The black
curve in Fig. 2(e) shows the line cut atBy = 3.0 T, resolv-
ing the “0.5”, “1.0”, “2.0”, and “3.0” plateaus. The “1.5”
and “2.5” plateaus are absent due to the aforementioned
degeneracy (E2↑,3↑ and E2↓,3↓). The charge-instability-
induced jumps are observable after device pinch-off.

Figure 2(f) shows the non-degenerate case at VE =
-4.0 V, where all spin-resolved subbands can be individ-
ually revealed. The green curve in Fig. 2(e) is a line cut
of Fig. 2(f) at 2.5 T. The “2” plateau is absent while
other plateaus are present. This degeneracy arises from
B-induced level-crossing. As B increases, E2↓ ascends
and E3↑ descends in energy. They meet and cross each
other at B ∼ 2.5 T (green arrow in Fig. 2(f)), leading to
the degeneracy. Such B-induced degeneracy has been ob-
served in previous experiments [25, 26], and stems from a
different mechanism with the zero-field case in Fig. 2(a),
despite their phenomenological similarity (the absence of
“2” plateau). For B scans along other directions, see Fig.
S2 in SM.

To gain insights on the tunable degeneracy, we per-
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FIG. 3. Numerical simulations. (a) Cross-section model of
device A. (b) Potential landscape in PbTe at VE = VP = 0
V. (c) Line cuts of (b) at the three color bars. The solid and
dashed lines correspond to VE = 0 V and -0.6 V, respectively.
(d) Wavefunctions (modular square) of the three lowest eigen-
states. (e) Energy of these eigenstates as a function of VP.
Inset, enlargement of the nearly degenerate point. Chemical
potential EF = 0 (dashed line). (f) Plateaus in VP scan. VE

= 0 V for (d-f). (g-i) Similar to (d-f) but for VE = -0.6 V.

formed numerical simulations for device A. Figure 3(a)
shows the device model, where different regions were as-
signed with different dielectric constants. VE and VP set
the potentials of side gates (yellow), serving as boundary
conditions. By solving the Poisson equation for a spe-
cific (VE, VP) pairing, we can obtain the potential pro-
file, ϕ(x, y), inside the wire. The knowledge of surface
charge accumulation, ρacc(x, y), is required in this step,
but cannot be obtained from experiment. In the simu-
lations, ρacc was assumed to be symmetric about x = 0,
reflecting the device’s geometric symmetry. We varied its
spatial distribution as a free input. With the obtained
ϕ(x, y), we further solved the Hamiltonian to determine
the eigenstates, their spacing’s, and degeneracies. Simu-
lation details can be found in SM.

Figure 3(b) shows the energy profile, −eϕ(x, y), “seen”
by electrons in the wire at VE = VP = 0 V. This profile
is obtained by assigning a non-uniform (but symmetric)
ρacc(x, y), see Fig. S3 in SM. The solid lines in Fig.
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3(c) are horizontal line cuts of the potential profile, see
the corresponding color bars in Fig. 3(b). The profile
“bends down” near the two edges to account for accu-
mulation of surface charges. A dip in the middle of the
profile can lead to E2,3 degeneracy, whereas E1,2 degen-
eracy is associated with a peaked profile (the case of Fig.
4). We find the non-degenerate case the most likely one
by varying the profile, consistent with our observations
[18, 21]. Presence of dip or peak depends on the varia-
tion details in ρacc(x, y). This variation can arise from
the non-uniform thickness of the wire (the middle region
is thicker), or an inhomogeneous environment. For exam-
ple, the fabrication process may create additional surface
charges in the middle region of the wire due to its expo-
sure, but not in the side regions as they are covered by
SiN mask. The dashed lines in Fig. 3(c) are the case
of VE = -0.6 V (VP = 0 V). A transverse electric field,
induced by VE, tilts the profile and breaks its symmetry.

Figures 3(d) and 3(g) show the three lowest eigenstates
for the profiles of solid and dashed lines in Fig. 3(c), re-
spectively. The wavefunction of E1 is mainly distributed
within the middle dip, whereas E2 or E3 is located in the
two side dips with a small coupling. Correspondingly,
E2 and E3 are almost degenerate (Fig. 3(e)), due to the
symmetric nature of the two side dips. This near de-
generacy leads to the near absence of the second plateau
(Fig. 3(f)). The crossings between the solid lines and the
dashed line in Fig. 3(e) mark occupations of the corre-
sponding subbands. The small splitting between E2 and
E3 (inset of Fig. 3(e)) is due to residue overlap of their
wavefunctions. The corresponding small step in Fig. 3(f)
may not be observable as a plateau in transport, as the
plateau visibility is also influenced by the smoothness of
the saddle point potential [27, 28]. For the case of VE =
-0.6 V, the two side dips differ in energy, resulting in the
lifting of E2,3 degeneracy (Fig. 3(h)) and the emergence
of the second plateau (Fig. 3(i)).

We next study a second device exhibiting the E1,2 de-
generacy. In Fig. 4(a), the “1” plateau (2e2/h) is absent
or barely visible at low VE’s (0-3 V), and is restored at
high VE’s (the lifting of E1,2 degeneracy). The gate spac-
ing of this device is larger than that of device A, see Fig.
S4 in SM for its image, thus necessitating higher VE’s to
lift the degeneracy. The slight asymmetry of wire geom-
etry and gate spacing can be compensated by adjusting
VE near 0 V. The (nearly) degenerate case refers to low
VE’s (< 3 V). Figure 4(b) shows the 2D map of this case
at VE = -3 V. The “1” diamond is absent, while the “2”
diamond is present, suggesting E3 − E1,2 ∼ 2.1 meV.
Figure 4(c) is the non-degenerate case (VE = 10 V). The
appearance of “1” diamond measures the magnitude of
degenearcy lifting, E2 − E1 ∼ 2.6 meV. For numerical
simulations of device B, see Fig. S5 in SM.

Figures 4(d-g) are the By scans of the two cases. B
does not lift the E1,2 degeneracy, as shown by the ab-
sence of the “0.5” plateau in Fig. 4(d). In the non-
degenerate case (Fig. 4(f)), all integer and half plateaus
can be revealed. B-induced degeneracy (level-crossing)
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FIG. 4. Tunable degeneracy in device B. (a) G vs VP, with
VE labeled. Horizontal offset between neighboring curves, 1
V. (b) G vs VP for VE = -3 V. Lower panel, zero-bias line cut.
(c) The case of VE = 10 V. (d) G vs By and VP for VE = -2.8
V. V = 0 V. (e) Line cuts from (d). Horizontal offset, 0.5 V.
(f-g) The case of VE = 10 V. V = 0 V.

is present in both cases, see the green arrows. Notably,
the left arrow in Fig. 4(d) marks the location where
E3↑ = E1↓,2↓, signifying simultaneous B-induced and
symmetry-induced degeneracies. The same also applies
to the upper arrow, where the conductance plateau jumps
by 1.5× 2e2/h. For additional data of device B, see Fig.
S4 in SM. In Fig. S6, we show tunable subband degen-
eracy in a third device.

In summary, we have observed nearly degenerate sub-
bands in PbTe nanowires that possess a nearly symmet-
ric geometry. The degeneracy can be lifted by a gate-
induced electric field. Numerical simulations qualita-
tively capture the results, suggesting a link between sym-
metry and degeneracy. PbTe nanowires have attracted
much interest for the realization of Majorana zero modes
[29–32]. Given that disorder has been the major road-
block in Majorana searches [33–41], our results, enabled
by disorder mitigation, can serve as a benchmark exper-
iment toward low-disordered Majorana nanowires.
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Details of numerical simulations

We simplified the device as an infinitely long 1D nanowire (along the z-direction), and focused on the 2D cross-section

(in the xy-plane). In the absence of a magnetic field, the wire Hamiltonian is H =
p2
x

2mxx
+

p2
y

2myy
+

pxpy

mxy
−EF −eϕ(x, y),

where px and py are the momentum operators, mxx, myy, and mxy are the anisotropic effective masses, EF is the
Fermi energy, e is the modulus of the electron charge, and ϕ(x, y) is the electrostatic potential tuned by gates. We
neglected the Rashba spin-orbit interaction, as the gate-induced electric field inside the wire is relatively weak.

The energies of subband bottoms can be obtained by solving this 2D Hamiltonian. ϕ(x, y) is determined by the
2D Poisson equation: ∇ · (ϵ0ϵr(x, y)∇ϕ(x, y)) = −[ρe(x, y) + ρh(x, y) + ρacc(x, y)], where ϵ0 is the vacuum dielectric
constant, ϵr(x, y) is the relative dielectric constant, ρe(x, y) is the electron density, ρh(x, y) is the hole density, and
ρacc(x, y) is the accumulated surface charge density.

We used Thomas-Fermi approximation to determine ρe(x, y) and ρh(x, y) within the PbTe nanowire: ρe(x, y) =
−e{2me

d[−Ec(x,y)]Θ[−Ec(x,y)]}3/2

3π2ℏ3 , and ρh(x, y) =
e{2mh

d [Ev(x,y)]Θ[Ev(x,y)]}3/2

3π2ℏ3 . me
d = 3

√
me

l (m
e
t )

2 and mh
d = 3

√
mh

l (m
h
t )

2 are

the density-of-states effective masses (for electron and holes) with a constant energy (an ellipsoidal-shaped surface).
We set me

l = 0.24me, m
e
t = 0.024me, m

h
l = 0.31me, and mh

t = 0.022me (l represents the longitudinal and t represents
the transverse directions). Ec(x, y) = −eϕ(x, y) − EF and Ev(x, y) = Ec(x, y) − Eg (Eg = 0.19 eV, is the band gap
of PbTe bulk) are the edges of conduction and valence bands. Θ is the Heaviside step function, corresponding to the
Fermi-Dirac distribution at zero temperature.

We took ρacc(x, y), which is unknown in experiments, as a free input in the simulation. ρacc was assumed to
be symmetric about x = 0 for device A due to its symmetric geometry, but inhomogeneous over x due to reasons
mentioned in the main text.

Combining ρacc(x, y), ρe(x, y) and ρh(x, y) with boundary conditions (set by the gate voltages), we obtained ϕ(x, y)
by numerically solving the Poisson equation. A finite element method was used by enclosing the device within a large
enough 2D rectangular box (see Fig. 3(a)). Neumann boundary conditions were imposed on the four edges of the
box, while Dirichlet boundary conditions, ϕ = VL and ϕ = VR, were imposed on the left and right gates.

We used the following parameters: EF = 0, ϵSiN
r = 7.5, ϵCdTe

r = 10.3, ϵPbTe
r = ϵPbEuTe

r = 1000. The valley
degeneracy is not observed in experiment, possibly due to the strain induced by substrate. We thus neglected valley
degeneracy in the model. The effective mass, estimated based on the plateau sizes, should be smaller than the bulk
values in literature. We thus used mxx = myy = 0.013 me (0.02 me) for device A (B), mxy = 0.2 me, leading to
subband spacing qualitatively consistent with the plateau size.
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FIG. S1. (a) All line cuts of Fig. 1(d) with a horizontal offset of 1 V between neighboring curves. (b) Waterfall plots of the
2D maps in main text figures (see labeling). The plateaus are resolved as clusters of line cuts.
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FIG. S3. Additional information on simulations of device A. (a) Device model. (b) Assigned ρacc. We assumed this charge
distribution on the bottom surface of PbTe nanowire (within a 1-nm-thick layer). The potential profiles in Fig. 3 are generated
by this ρacc, yielding results qualitatively consistent with experiments. Note that the actual distribution may differ from this
assumption. (c) Potential profile at VE = -1 V, VP = 0 V. (d) Three line cuts from (c), see the colored bars. (e) Wavefunctions of
the three lowest eigenstates, corresponding to the potential profile of (c). Color represents the modular square of wavefunction.
(f-i) Four cases of VE illustrate the gradual evolution of the degeneracy lifting. The cases of 0 V and -0.6 V have been shown
in Fig. 3. The “2” plateau becomes larger for larger |VE|.
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Cross-sectional STEM. (c) Theory model. (d) G vs VP and VE at B = 0 T. The labeled numbers are the plateau values in units
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FIG. S6. Subband degeneracy in device C. (a) Device SEM. (b) Cross-sectional STEM of device C, performed after its
measurement. (c) G vs VE and VP at B = 0 T. V = 0 mV. Lower panel, four horizontal line cuts at different VE’s. The tilted
shape indicates sizable cross-talk between VE and VP, possibly due to the asymmetric gate spacing’s. The labeled numbers are
plateau values in units of 2e2/h. The blue arrow points to the E1,2 degeneracy, where the “1” plateau is absent (see the blue
curve in the lower panel). The black and green arrows point to the E2,3 degeneracy, where the “2” plateau is absent (see the
black and green curves in the lower panel). The red line cut in the lower panel is the case that the degeneracy between E1,
E2, and E3 are lifted, as both the “1” and “2” plateaus can be resolved. The “3” plateau is, however, absent, suggesting the
E3,4 degeneracy, see the red arrow in the upper panel. (d) G vs Vtop and Vbottom at B = 0 T. V = 0 mV. Lower panel, four
line cuts. For larger Vtop’s, the “2” plateau is absent (see the black and red line cuts), suggesting E1,3 degeneracy. In the blue
line cut, the “2” plateau emerges but the “1” plateau disappears, suggesting the E1,2 degeneracy. For the green line cut, both
“1” and “2” plateaus are present. (e) G vs V and Vbottom at B = 0 T. Vtop = 3.8 V. Lower panel, zero-bias line cut. The
absence of the “2” plateau/diamond indicates the E2,3 degeneracy. (f) Vtop is changed to -0.4 V, and the E2,3 degeneracy is
lifted, evidenced by the appearance of the “2” plateau/diamond. (g-i) B scans along three axes. V = 0 mV. Vtop = 3.8 V.
The green arrow points to the degenerate case where the conductance plateau goes from “0.5” directly to “2”. This change
of 1.5× 2e2/h suggests the presence of both types of degeneracy (B-induced and geometry symmetry-induced): E1↓ = E2↑,3↑.
Contact resistance Rcontact = 650 Ω.
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