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Far-from equilibrium molecular templating networks, like those that maintain the populations of
RNA and protein molecules in the cell, are key biological motifs. These networks share the general
property that assembled products are produced and degraded via complex pathways controlled by
catalysts, including molecular templates. Although it has been suggested that the information
propagated from templates to products sets a lower bound on the thermodynamic cost of these
networks, this bound has not been explored rigorously to date. We show that, for an arbitrarily
catalytic reaction network in steady state, the specificity with which a single product can dominate
the ensemble is upper bounded, and the entropy of the product ensemble lower bounded, by a
function of ∆G, the difference between the maximal and minimal free-energy changes along pathways
to assembly. These simple bounds are particularly restrictive for systems with a smaller number of
possible products M . Remarkably, however, although ∆G constrains the information propagated to
the product distribution, the systems that saturate the bound operate in a pseudo-equilibrium
fashion, and there is no minimal entropy production rate for maintaining this non-equilibrium
distribution. Moreover, for large systems, a vanishingly small subset of the possible products can
dominate the product ensemble even for small values of ∆G/ lnM .

I. INTRODUCTION

Biochemical systems use catalysts to selectively pro-
duce multiple distinct products from a shared set of in-
gredients. For example, consider protein production [1]:
many polypeptide sequences are created from the same
set of amino acids, using a set of template mRNAs and
other molecules act as selective catalysts [2]. The re-
sult is a distribution of polypeptide sequences in the cell,
sharply peaked around the target sequences specified by
the mRNA. Since these sequences fold into functional
proteins, a sharply-peaked, or accurate, distribution is
essential to biological function.

Often, biological systems continuously turn over the
products, recycling the basic ingredients for subsequent
use. For example, polynucleotide phosphorylase en-
zymes actively degrade the pool of selectively transcribed
RNA [3]. Degradation allows the cell to set up a finite
steady-state population that is biased towards specific
products, and continuous turnover and recycling of com-
ponents is necessary for systems with finite resources that
need to change their state in response to dynamic envi-
ronments. The underlying processes may also be com-
plex and involve many possible routes of assembling and
disassembling the products. For example, kinetic proof-
reading motifs [4–6] introduce fuel-consuming loops into
the assembly process, thereby providing multiple path-
ways to each product.

∗ t.ouldridge@imperial.ac.uk

Previous studies [6–30] have generally focused on mod-
els of a single production process only, in particular con-
sidering how templated copolymerisation in isolation can
produce an accurate sequence. These studies have ex-
plored thermodynamic constraints on the accuracy in
different classes of templated copolymerisation models,
including those with single pathways leading to infinite-
length polymers [23–25], more complex infinite-length
polymerisation processes [26–28] and finite length copoly-
merisation [29, 30].

To the best of our knowledge, only Refs. [2, 31, 32]
have considered the implications of two or more pathways
for production and destruction of an ensemble of prod-
ucts, in each case without considering a detailed model
of dynamical pathways. These works hypothesise a mini-
mal thermodynamic cost or entropy production per prod-
uct made, which is related to the information accurately
transferred from template to products [2, 31, 32]. How-
ever, entropy production in stochastic thermodynamics
is related to the relative rate of forwards and backwards
transitions [33], rather than the relative rate of two dif-
ferent transitions; it therefore places no minimal cost on
the specificity of a catalyst [29]. Exactly how these two
ideas are reconciled is unclear.

The limiting thermodynamics of this crucial class of
processes therefore remains under-explored. In this pa-
per, we consider the thermodynamics of a general system
in which a distribution of products is created and main-
tained by a set of catalysts that inter-convert molecules
between pools of monomer inputs and pools of assembled
products. These inter-conversion processes can be arbi-
trarily complex, but we assume that all products have
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FIG. 1: Model systems in which products are selectively produced by catalysts from a pool of monomers. (a) A very
simple example network illustrating the class of systems considered herein. Any one of a number of (polymer)
products can be produced via equivalent pathways that rely on catalysed addition of input monomers. Both

catalysts and monomers are assumed to be held at constant concentration by a chemostat, resulting in a linear CRN
that can be represented as a graph. In (i), we illustrate a simple example of such a graph, including a null,

polymer-free state; intermediate states represented by black circles and products represented by red circles. Each
transition is reversible (arrowheads and rates are omitted for clarity). Each distinct pathway from the null state to
the product is coloured a unique colour, and has a well-defined associated free-energy change δG. In (ii) we take an
alternative product as the root of the graph; the network connecting it to the null state is topologically identical to

(i). The equivalent pathways for each product have the same δG, but selective catalysts ensure that the rates
associated with each pathway are product-dependent. (b) The simplest non-trivial system of this kind, in which

monomers (R̄ and W̄ ) at equal concentration are converted to and from products R and W by two catalysts. R and
W are connected to ∅ via topologically equivalent networks, involving a pathway via the red T catalyst and a

pathway via the blue D catalyst. The free-energy change along each pathway is the same for each product; only the
transition rates distinguish R and W . For simplicity, the short-lived catalyst-bound intermediates are not explicitly
represented. We assume R̄ and W̄ are each chemostatted at the same concentration, which have been absorbed into
the reaction rates. (c) Free energy landscape for the model in (b). The possibility of turning over fuel molecules

introduces a ladder of R, W and null states, connected by the transitions involving the two catalysts (red and blue
arrows, respectively). Overall δG from a given null state to given pair of R and W states is equal, but relative rates
of downhill transitions (indicated by the thickness of the arrows) can be very different between R and W . In this

case, the destructive (blue) catalyst is non-specific, with the same rates for R and W .

the same thermodynamic stability [2, 25, 29, 30, 32],
consistent with the fact that catalysts cannot adjust the
thermodynamic stability of the products that they select.
Moreover, all products can be formed by a topologically
equivalent set of processes (figure 1 (a)). By analogy with
the processes of the central dogma, we shall loosely de-
scribe the catalysts that tend to generate products as
“templates”, but we do not make any particular assump-
tions about the detailed mechanisms.

Each pathway for creating or destroying a given prod-
uct can incur a different free-energy change (figure 1 (a)),
due to coupling with ancillary fuel molecules. These free-

energy changes specify the equilibrium that would result
in the long time limit if that pathway operated in iso-
lation. We will show that this set of equilibrium free
energies sets a lower bound on the entropy of the prod-
uct distribution in a non-equilibrium steady state, for
any fuel-coupled catalyst-induced kinetics. If the system
is interpreted as an information channel between the in-
put catalysts and the output products, this lower bound
on entropy is equivalent to an upper bound on channel
capacity [34, 35].

The bound on product distribution entropy also sets a
bound on the accuracy with which a single product can
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dominate the resultant ensemble. But surprisingly, the
goals of producing a distribution maximally specific to
a single chemical species and producing the distribution
of products with minimal entropy are generally distinct.
Moreover, contrary to our expectations, the optimal sys-
tem that minimizes the entropy of the product distribu-
tion – pushing the distribution as far from equilibrium
as possible – is not one in which desired products are
systematically assembled on a template and degraded
by another catalyst [31]. Rather, the optimal system
is a pseudo-equilibrium one in which kinetic specificity
ensures that each product is coupled overwhelmingly to
only a single pathway, with each product’s yield specified
by the equilibrium properties of that pathway.

Exploring our bound, we observe that, for M → ∞
possible products, it is possible to selectively produce a
single product with perfect accuracy in steady state pro-
vided two pathways exist that are separated by ∆G/lnM >
kBT in their free-energy change, irrespective of other
pathways. However, the probability of producing a single
correct product as M → ∞ is zero for ∆G/lnM < kBT .
Further, the convergence to the infinite M behaviour is
slow. Similarly, zero entropy product distributions can
never be achieved with finite ∆G, but even low entropy
requires ∆G > kBT (lnM + ln lnM).

These results appear consistent with the notion that
accurately maintaining a specific pool of products has
a thermodynamic cost related to the information stored
(lnM if a single template selects for a unique product)
[2, 31, 32]. However, this simple picture is incomplete.
Since the bound is saturated for pseudo-equilibrium sys-
tems in which each product couples overwhelmingly to
a single pathway, there is no minimal entropy produc-
tion per product molecule created in these steady states.
Moreover, for M → ∞, although a single product cannot
be maintained with any accuracy for ∆G/lnM < kBT ,
it is possible to maintain a vanishingly small fraction
of the total possible products with perfect accuracy for
any ∆G ≫ kBT , even if ∆G ≪ kBT lnM . Finally, the
bounds only apply to steady states, and it is possible to
produce distributions of arbitrary precision at finite time
with no minimal ∆G.

In Section II, we formally introduce the class of models
and techniques used to analyse them. In Section III, we
motivate our analysis by considering the simplest possible
case of a network of this kind, in which two products can
both be produced via two pathways. We find that, even
with full control over the forward fluxes of each reaction,
the concentrations of each product are still constrained
by the equilibrium properties of the individual pathways.
In Section IVA, we then derive bounds on the distribu-
tion of products for a more general class of models that
include multiple, sometimes overlapping creation and de-
struction pathways to an arbitrary number of products.
In Section IVC, we discuss the physical interpretation of
the bounds. Finally, in Sections VA and VB, we explore
how systems are constrained by the bound in two bio-
logically inspired examples. Throughout this article, we

shall use Shannon entropy in units of nats, free energies
in units of kBT , and concentrations relative to a reference
concentration. Additionally, we use the symbol “≲” to
mean “less than something which is approximately equal
to” and similarly for “≳”.

II. MODELS AND METHODS

A. Physical model

We now define the class of models considered, illus-
trated in figure 1 (a). Consider a set of input chemical
species that may be assembled into a number of different
possible products. For simplicity, and to focus on in-
formation propagation, we shall assume that all input
species are held (chemostatted) at the same constant
concentration by the cell or the environment. In these
context of the central dogma of molecular biology, these
inputs would be the nucleotides or amino acids. There
are M possible different products that these inputs may
form, corresponding to the different sequences of copoly-
mers (e.g. RNAs, polypeptides). Finally, there are cat-
alytic species (e.g. templates, polymerases, or nucleases)
that facilitate the inter-conversion of inputs and prod-
ucts via intermediates. We assume that these catalysts
are also chemostatted, and neglect any reaction involv-
ing more than one product and/or intermediate. We are
interested in the set of products formed.
Such a model may be expressed as a deterministic

chemical reaction network (CRN) [36, 37]. A determin-
istic CRN consists of a set of chemical species, a set of
complexes (which are collections of species), and a set of
reactions. In each reaction, a complex (the set of reac-
tants) is converted into a different complex (the set of
products) at some reaction rate, which is a function of
the concentrations of species making up the reactants.
We shall work with deterministic reversible CRNs obey-
ing mass action kinetics. By reversible, we mean that, if
a reaction from a complex X to a complex Y is allowed,
then its reverse reaction from Y to X is also allowed. By
mass action kinetics, we mean that the rate of a given
reaction is proportional to the product of concentrations
of species making up the reactants. Henceforth, we shall
refer to the constant of proportionality as the “reaction
rate”. Since all reactions are reversible, we may use the
principle of local detailed balance to define free-energy
changes due to reactions. For a pair of reactions X → Y,
with reaction rate k+, and its reverse Y → X , with reac-
tion rate k−, the free-energy change due to this reaction
is

δGX→Y = − ln

(
k+

k−

)
. (1)

Given our assumptions about their chemostatting, the
concentrations of input species and catalysts can be
treated as parameters, rather than variables. Under
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such assumptions, the CRNs are linear: the set of com-
plexes contains only the null complex (containing no non-
chemostatted species), and singletons (containing a single
non-chemostatted species, i.e. an intermediate or a prod-
uct). All reaction rates therefore depend linearly on the
concentration of the non-chemostatted species. Transi-
tions from the null complex correspond to the first asso-
ciation between inputs or inputs and catalysts to produce
an intermediate.

We can draw a linear CRN as a graph (e.g. fig-
ure 1 (a)(i)), with nodes as species, edges as reactions and
weights as reaction rates, absorbing the concentration of
any chemostatted species involved into the reaction rates.
We shall assume the graph produced is connected, as it
must be if all species can be produced from the null state.
This graph defines a set of self-avoiding walks (SAWs)
from the null state to each product; each SAW together
with its inverse define a “pathway” between the null state
and the products.

We allow for the transitions to be coupled to implicit
fuel molecules, meaning that different SAWs are associ-
ated with different δG. However, each edge must corre-
spond to the turnover of a fixed number of fuel molecules;
branching pathways allow for variable fuel consumption
when coupled to a given catalyst. Each SAW from the
null complex to a product therefore has a well-defined
free-energy change.

We assume that products are all connected to the null
complex by topologically equivalent graphs (figure 1 (a)).
Such an assumption makes sense for a set of products
corresponding to, for example, RNA molecules of a fixed
length, which can all be grown via an equivalent set of
steps. We further assume that all products are equally
thermodynamically stable. This assumption is consistent
with the fact that catalysts cannot thermodynamically
favour one product over another [2, 25, 29, 30, 32], and
allows us to focus on the question of how information
is propagated from catalysts to products. Any internal
thermodynamic bias towards certain products would not
generally help to form an arbitrary product.

As a consequence, the equilibrium product state would
contain a uniform distribution over products [2] and a
narrower distribution over products can only be achieved
via kinetic selection of a non-equilibrium steady state by
the catalysts. Moreover, there exists a finite number of
SAWs from the null complex to any given product, each
with a free-energy change δGi where i indexes the given
SAW. The set of SAWs from the null complex to any
product will be topologically equivalent and incur the
same set of total free-energy changes (figure 1 (a)).

These constraints on free energy only apply to full
paths from the null state to completed products. Inter-
mediate states, involving partial, catalyst-bound prod-
ucts, can have sequence-specific free energies. Moreover,
the transition rates between states can be different, sub-
ject to the overall constraint that, along a given complete
SAW from null to product, the total free-energy change is
the same as its equivalent for all other products. We will

explore how relative yields of the products can be opti-
mised by varying these strictly positive rates arbitrarily
under this constraint.
Finally, we focus on deterministic CRNs here. How-

ever, since the CRNs are linear and connected, our re-
sults also apply to the expected concentrations at steady
state of a stochastic realisation of the CRN [38].

B. Analytical methods

The steady state concentration of species X in a linear,
deterministic CRN can be found directly from the graph.
The concentration is given by the ratio of the sum of
spanning trees of the graph rooted at the species X to
the sum over spanning trees rooted at the null species.
Explicitly,

cX =

∑
T∈T (X)

∏
e∈T

k(e)∑
T∈T (∅)

∏
e∈T

k(e)
, (2)

where T (X) is the set of spanning trees rooted at node
X, e ∈ T is an edge in graph T , and k(e) means the
weight of edge e. For a proof, see appendix B or [39] for
a similar result.
These sums over spanning trees may be usefully rewrit-

ten as a sum over the SAWs from the null species to the
given product species X [28, 40]. Having done so, the
results are expressed in terms of the free-energy change
along a given SAW [36] S,

δGS = − ln

(∏
e∈S

k(e)

k(ē)

)
, (3)

where ē is the reverse reaction of edge e. Note that SAWs
with positive δGS correspond to pathways that tend to
disassemble products.
Using graph theoretical methods, one may calculate

the steady state concentrations for all of the product
species. Having done so, and denoting the products by
Zi for i = 1, · · ·M , we define the product distribution as
the probability that a randomly chosen product from the
resultant ensemble is Zi,

P(Zi) = pi =
cZi

M∑
j=1

cZj

=
cZi

cT
, (4)

where cT =
M∑
j=1

cZi
is the total concentration. We define

the (Shannon) entropy [35] of this distribution as

H[pi] = −
M∑
i=1

pi ln pi = ln cT − 1

cT

M∑
i=1

cZi ln cZi (5)

In appendix A, we show how under certain assumptions,
the minimisation of this entropy maximises the channel
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capacity of this system if treated as an information chan-
nel from catalysts to products. Informally, a lower en-
tropy reduces the probability that the same product is
sampled from the output of two different catalyst config-
urations.

C. Simulation of specific networks

Although calculations of the bounds (section IVA) is
often straightforward, evaluation of the actual perfor-
mance of a system realisation can be more challenging.
For the examples presented in section V, steady state dis-
tributions are found by numerical solutions of the under-
lying ordinary differential equations (ODEs). The CRNs
are linear, connected and contain only one stoichiometric
compatibility class. Hence, there exists a single positive
steady state to the ODEs induced by mass action ki-
netics [36]. Initially, all concentrations are set to zero,
and the ODEs are simulated for a large time until no
change to the distribution is observed. For section VB,
to speed up simulation, we make use a of a result from [28]
whereby we may coarse grain some sets of reactions with-
out changing the steady state. The code used to simulate
the ODEs is available from the zenodo repository.

III. FREE-ENERGY DIFFERENCES BETWEEN
PATHWAYS BOUND ACCURACY FOR A

SIMPLE NETWORK WITH TWO CATALYSTS

To build intuition, we first consider the simplest non-
trivial system in which inputs and products are inter-
converted by catalysts (figure 1 (b,c)). The reaction net-
work has two product species that we denote “right” (R)
for the target species and “wrong” for the other species
(W ). These products are formed by catalytic activation
of their inactive states R̄ and W̄ , which are the input
monomers, present at equal concentrations. Absorbing
the concentrations of R̄ and W̄ and the catalysts into
the rate constants, we may describe the system via the
following CRN:

∅
kT
R−−⇀↽−−
kT
R

R, ∅
kD
R−−−−−⇀↽−−−−−

kD
R eδGf

R,

∅
kT
W−−⇀↽−−
kT
W

W, ∅
kD
W−−−−−⇀↽−−−−−

kD
W eδGf

W, (6)

where ∅ is the null species, and the effective reaction rates
are written above/below the arrows. For each product
there are two pathways from the null state leading to the
product, one via a catalyst we call the template (reaction
rates labelled by T in equation 6) and one via a destruc-
tive catalyst (reaction rates labelled by D in equation 6).
For simplicity, we have assumed the catalyst-bound inter-
mediates are short-lived, and do not explicitly represent
them.

The pathways via the destructive catalyst are both bi-
ased with free energy δG2 = δGf > 0 against creating
the product, relative to the pathways via the template
(δG1 = 0). A non-zero δGf implies that the D (or T )
pathway is coupled to the turnover of implicit molec-
ular fuel, allowing the apparent disruption of detailed
balance [33]. Each individual pathway, however, has a
well-defined free-energy change associated with it; in the
presence of only that pathway, the system would relax to
an equilibrium defined by the free-energy change of that
pathway.

The two products R and W can be produced by topo-
logically equivalent pathways, by processes with the same
overall free energy change. R and W are therefore both
equally thermodynamically stable and a non-equilibrium
excess of R over W is only possible if the template is
kinetically selective for production of R over W . This
setup is a minimal analog of a transcription-like system
in which all products are thermodynamically viable, but
those selected by the presence of their templates are pref-
erentially produced.

In a conventional analysis of a system in which a tem-
plate selectively produces a specific daughter molecule
[9–29], it is typical to simply consider how selective the
template is when producing the intended product. We
can calculate the net flux of product, R, along pathway
T in steady state as

JT (R) = kTR(1− cR) =
kTRk

D
R (eδGf − 1)

kTR + kDR eδGf
, (7)

where cR is the concentration of R. Equivalent equations
have the same form for JD(R), JT (W ), and JD(R). At
the steady state, JT (s) = −JD(s) for s = R,W .
By varying the underlying rates at fixed δGf , the flux

ratio relating the production rate of R and W by T can
be straightforwardly varied. A quick calculation shows
that this ratio is

JT (R)

JT (W )
=

(
kTRk

D
R

kTR + kDR eδGf

)/(
kTW kDW

kTW + kDW eδGf

)
. (8)

This ratio can be made arbitrarily large for any δGf , sim-
ply by picking appropriate rates kTR ≫ kTW , forcing the
template to produce output R at a rate arbitrarily higher
than the rate it produces output W . The catalyst can
therefore be arbitrarily kinetically selective for a given
δGf along each pathway; kinetic selectivity of catalysts
is not – in principle – constrained by thermodynamics.
We might, therefore, expect to be able to produce an

output distribution that contains an arbitrarily higher
concentration of R than W by varying the reaction rates
at fixed δGf . However, this is not the case. The steady-
state concentrations of R and W are

cR =
kTR + kDR

kTR + kDR eδGf
, cW =

kTW + kDW
kTW + kDW eδGf

. (9)

Both these concentrations are bounded by
e−δGf ≤ cR/W ≤ 1. Hence, we cannot achieve an
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arbitrary ratio of concentrations, cR/cW . Moreover, since
ratios JT (R)/JT (W ) and cR/cW can be set independently,
an arbitrarily high ratio of fluxes does not necessarily
correspond to a high ratio of concentrations. For exam-
ple, if the rates obey kTR ≫ kDR , kDW ≫ kTW , kDR ≫ kTW
(figure 1 (c)) then JT (R)/JT (W ) will be large, and
cR/cW will be close to eδGf . However, if instead
kTR ≫ kDR , kDW ≫ kTW , kTW ≫ kDR , then cR/cW will still be
close to eδGf , but JT (R)/JT (W ) will be small.
The optimal distribution giving the highest propor-

tion of the right product R is found when kTW → 0 and
kDR → 0. In this case, R is overwhelmingly produced
and destroyed via the template. For R, it is as if the
yield is governed by the equilibrium of a single red tran-
sition in figure 1 (c). W , by contrast, is overwhelmingly
produced and destroyed via D; its yield is equivalent to
the equilibrium of a single blue transition in figure 1 (c).
This “pseudo-equilibrium” limit gives a concentration of
cR = 1 for R and a concentration of cW = e−δGf for W .
We note that although the individual products appear to
equilibrate, the product ensemble remains far from equi-
librium, because different product species are coupled to
different equilibria.

In conclusion, even with arbitrary relative fluxes of dif-
ferent products along different pathways, and a far-from-
equilibrium distribution of products, the relative steady-
state concentrations of products are bound by the dif-
ferences in the equilibrium properties of individual path-
ways, and the ideal behaviour involves vanishing cyclic
flux around the template/destroyer cycle. In the remain-
der of this paper, we shall generalise this result and ex-
plore its consequences.

IV. GENERAL BOUNDS ON THE PROPERTIES
OF PRODUCT DISTRIBUTIONS

A. Derivation of the bounds

We shall now present the main mathematical results of
this work: an upper bound on the maximal probability of
a single product pmax, and a lower bound on the entropy
H[pi] of the product distribution. To do so, we first note
that for the class of linearised CRNs considered here, the
steady-state concentration of any species is bound by the
set of free-energy changes along the pathways that create
or destroy it. Generalizing the result in Section III, the
steady state concentration is upper-bounded by the equi-
librium implied by the single pathway with the most neg-
ative free-energy change of species formation, and lower-
bounded by the equilibrium implied by the pathway with
the most positive free-energy change of species formation.
These bounds are achieved when the rates along all other
pathways tend to zero.

Mathematically, we define δGZi

L = max
SAWs,S

δGZi

S and

δGZi

U = min
SAWs,S

δGZi

S as the maximal and minimal free

energy changes along self-avoiding walks that lead to the

creation of Zi from the null state, respectively. Then

e−δG
Zi
L ≤ cZi ≤ e−δG

Zi
U . (10)

The proof for this statement is given in Appendix C,
although similar bounds are shown in [39–42].
Our systems have the particular property that the con-

centrations of all product species have the same upper
and lower bounds (e−δGU , e−δGL). As a result of this cru-
cial fact, properties of the distribution defined by eq. 4
are constrained. Specifically, the maximal probability of
a single product has a non-trivial upper bound, while
the entropy has a non-zero lower bound. We now calcu-
late the optimal distribution for maximising one desired
product and the distribution for minimising total prod-
uct distribution entropy, showing that they are different.
When maximising the probability of a single prod-

uct species, hereafter referred to as specificity maximi-
sation, the probability distribution will be one product
with probability pmax, and all others with plow, with

pmax =
(
1 + (M − 1)e−∆G

)−1
,

plow = e−∆G
(
1 + (M − 1)e−∆G

)−1
, (11)

where ∆G = δGL−δGU and M is the number of possible
product species.
Alternatively, we can consider entropy minimisation,

or finding the minimal entropy of a distribution un-
der the constraint that all species are restricted by
e−δGL ≤ ci ≤ e−δGU . We obtain H[pi] ≥ Hmin, with

Hmin =
(M −m)∆Ge−∆G

m+ (M −m)e−∆G
+ ln

(
m+ (M −m)e−∆G

)
.

(12)
Hmin arises from a distribution in which m species are at
the upper bound concentration, exp(−δGU ), and M −m
species are at the lower bound, exp(−δGL). The m that
minimises entropy is given by either:⌈

e−∆G
[
∆G−

(
1− e−∆G

)]
(1− e−∆G)

2 M

⌉
or⌈
e−∆G

[
∆G−

(
1− e−∆G

)]
(1− e−∆G)

2 M

⌉
− 1, (13)

whichever gives the lower H. We use the ceiling function
because m is integer; we are required to check two values
on either side of the minimum of the continuous function.
A reasonable approximation to the optimal value of m is
given by

mmin = max

(
e−∆G

[
∆G−

(
1− e−∆G

)]
(1− e−∆G)

2 M, 1

)
, (14)

since for mmin > 1, the difference between using the in-
teger value of mmin (eq. 13) and the continuous value
(eq. 14) is small. In practice, using equation 14 produces
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a very slightly looser bound on H[pi]. Further, using
eq. 14, for mmin > 1, we may simplify:

Hmin = lnM−∆G

(
1 +

e−∆G

1− e−∆G

)
+ln

(
∆G

1 + e−∆G

)
+1.

(15)
The proofs for these results are given in appendix D.

Note that in the context of copolymerisation, lnM is pro-
portional to the length of polymer necessary to produce
M different possible product sequences.

B. The bounds in the presence of kinetic
proofreading

Surprisingly, internal cycles in the reaction network,
a requirement for celebrated kinetic proofreading mo-
tifs [4–6], do not directly feature in the bounds derived,
since SAWs cannot contain cycles by definition. Adding
a proofreading loop to a process may affect ∆G, since it
may provide a new pathway with a maximal or minimal
free-energy change, but the SAWs identified would always
be loop-free and correspond to a fixed free-energy change
for product formation. The possibility of repeatedly un-
dergoing a single dissipative cycle in an actual dynamic
trajectory, consuming an arbitrary amount of molecular
fuel, does not translate into an arbitrary δG along a path-
way. However, the existence of loops within the network
may still help to achieve a better product distribution
than otherwise if transition rates are constrained beyond
the free-energy changes along SAWs being fixed.

C. Physical significance of the bounds

We split the analysis into three main parts. In the first,
we discuss the difference between specificity maximisa-
tion and entropy minimisation. We look at the properties
of both of these distributions in detail. In the second we
compare our result to the previous arguments from Ben-
nett on the minimal cost of systems that create product
polymers via templates and destroy them via other path-
ways [31]. Finally, we discuss whether and how systems
can, even in principle, reach the bounds we find.

1. Entropy minimisation versus specificity maximisation

One might naively expect that the distribution of prod-
uct concentrations that minimises the entropy would be
the same as the distribution that optimises the probabil-
ity of a single product. However, this is not the case in
general. The concentration of each species is constrained
between e−δGL and e−δGU . The lower concentration can-
not be arbitrarily close to zero, and the higher concen-
tration cannot be arbitrarily high. Since having multiple
products at the high concentration increases the total

FIG. 2: Entropy minimisation is not equivalent to
specificity maximisation when ∆G ≲ lnM + ln lnM .
We plot Hmin (solid lines) and the entropy of the

distribution for specificity maximization (dotted lines)
as a function of ∆G for various M . We scale both

quantities by lnM . The dashed line is discontinuous at
∆G = lnM for M → ∞. The vertical (gray) lines show
∆G = lnM + ln lnM . For ∆G ≲ lnM + ln lnM , the
minimum entropy distribution has a significantly lower
entropy than the maximum specificity distribution. For
∆G ≳ lnM + ln lnM , the dotted and solid lines merge,
as the minimum entropy distribution is the maximal
specificity distribution. As M increases, the solid lines

tend to the solid black line, albeit very slowly.

concentration of products, suppressing the relative prob-
abilities of sampling products at the low concentration,
the probability distribution may be sharper for systems
with multiple products at a higher concentration. In this
subsection, we first discuss when specificity maximisation
and entropy minimisation are equivalent; then proceed to
analyse specificity maximisation and finally entropy min-
imisation.

If m = 1 minimises eq. 12, entropy minimisation and
specificity maximisation are equivalent. The lowest en-
tropy state then contains a single product at a high con-
centration, and all others at a low concentration. We find
mmin = 1 is optimal for ∆G > lnM+ln lnM+O

(
ln lnM
lnM

)
(figure 2). For ∆G smaller than this value, the en-
tropy of the distribution that maximises specificity dif-
fers quite drastically from that minimising the entropy.
Surprisingly, the distribution for maximising specificity
has an entropy consistent with an unbiased distribution
(H = lnM) for ∆G/lnM ≤ 1 in the limit M → ∞. In
other words, the concentration of the desired product
tends to zero relative to the total concentration of prod-
ucts.

To explore this observation further, we consider the
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maximal product probability pmax. The probability pmax

is a sigmoidal function centred on ∆G = lnM , with
pmax = M−1 at ∆G = 0 and pmax → 1 as ∆G → ∞.
Interestingly, the sigmoidal function does not approach
a step function here, but has fixed width around lnM
(figure 3a). Instead pmax has the exact form pmax =
(1+e−(∆G−lnM))−1 as M → ∞. Thus, if we were to plot
pmax as a function of ∆G − lnM , the curves for differ-
ent, but large enough, M would collapse onto each other.
Therefore, to achieve a pmax ≈ 1 − e−A for small e−A,
one needs a ∆G ≈ lnM + A. If we instead scale by sys-
tem size, we find that pmax tends to a step function when
M → ∞ (figure 3b), reiterating that the relative yield of
a single product is necessarily zero below ∆G/lnM = 1 as
M → ∞. Although the intended product can be far more
probable than any single alternative, the large number of
possible alternatives dominates.

To put the bound on pmax into context, we consider
the implications for the charging of a single tRNA with
the correct amino acid. Here, there are approximately
M = 400 different combinations of codon and amino
acid, having grouped all codons that correspond to the
same amino acid into one. Using M = 400, we can cal-
culate the bound for the specificity with which an en-
semble dominated by a single charged tRNA could be
maintained in steady state. We see that for an error rate
of 10−A, i.e. pmax = 1 − 10−A, one needs a free-energy
difference in the pathways connecting inputs and prod-
ucts of approximately (2.3A+6)kBT . Thus, for an error
rate of 10−5, one would need a free-energy difference of
around 17kBT or 1 ATP[43] at 37◦C, substantially higher
than kT lnM = kBT ln 400 ≈ 6kBT , the value implied
by the large M limit.

For entropy minimisation, we find that the limits
∆G = 0 and ∆G → ∞ are identical to those found
by specificity maximisation (figure 2). At ∆G = 0, all
pathways carry the same free-energy change and so the
system is a true equilibrium one and no specificity is pos-
sible, Hmin = lnM . For ∆G → ∞, Hmin → 0 for all M
and a single product dominates. As can be seen from
figure 2, the approach to the M → ∞ limit is very slow.
Even for M = 250, there is a significant discrepancy be-
tween Hmin and the minimal entropy for the M → ∞
limit. This difference, when normalised by lnM , is ap-
proximately ln lnM/lnM (which is ≈ 0.1 for M = 250).

We now consider the properties of the entropy-
minimizing distribution formmin > 1. Here,mmin species
are at the same high concentration, and the remaining
species are at a low concentration. The fraction mmin/M
given by eq. 14 is independent of M , and monotonically
decreases to 0 with increasing ∆G. Thus, if we scale
∆G → ∞ at fixed ∆G/lnM, the fraction of products with
high yields will tend to zero even for ∆G ≪ lnM , well
inside the region where specificity for a single product is
impossible (figure 4a).

Furthermore, the probability of a product randomly
chosen from this distribution being one of the mmin with
a high concentration is given by phigh = 1− 1

∆G + 1
e∆G−1

.

(a)

(b)

FIG. 3: Specificity maximisation results in a pmax that
is a sigmoidal function of ∆G centred at ∆G = lnM .

pmax for a specificity-maximised system (a) as a
function of ∆G and (b) as a function of scaled free
energy ∆G/lnM. For (a), we see that the shape of the

curves quickly approaches the same functional form, but
shifted by lnM . For (b), as M increases, pmax tends to

a step function at ∆G/lnM = 1.

This quantity is also independent of M and increases
monotonically with ∆G to 1 (figure 4b). Thus, as M →
∞ at fixed ∆G/lnM, a vanishingly small proportion of the
total number of products can contain an overwhelming
majority of the probability, even for ∆G ≪ lnM and
mmin > 1. The black lines in figure 4 illustrate this
surprising phenomenon in the limit of M → ∞.

Turning now to ∆G/lnM > 1, we consider how Hmin

behaves for large ∆G and large, but finite, M . Below
∆G ≈ lnM + ln lnM , from eq. 15, Hmin ≈ lnM −
∆G + ln∆G + 1, which is approximately linear in ∆G
(figure 5a). Above ∆G ≈ lnM +ln lnM , Hmin decreases
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(a)

(b)

FIG. 4: The fraction mmin/M of species at the high
concentration bound in the entropy minimizing
distribution tends to zero with scaled free energy

∆G/lnM, while the probability of picking one of these
high concentration species from an ensemble, phigh,
tends to 1. (a) The fraction of products at high

concentration in the entropy-minimizing distribution
against ∆G/lnM for two values of M and the limit as
M → ∞. We approximate this fraction as continuous
using eq. 14. (b) The total probability of products at

the high concentration. Notice how, even below
∆G/lnM = 1, phigh can be arbitrarily close to 1 and
mmin/M arbitrarily close to 0 for large enough M .

exponentially as Hmin ≈ exp (−(∆G− lnM − ln lnM)).
Further, at ∆G ≈ lnM + ln lnM , Hmin ≈ 1. Since the
maximum value of H is lnM , this value for ∆G gives the
approximate scale for Hmin to be considered small.

In figure 5b, we show how the limits on the un-
normalised entropy Hmin vary with ∆G/lnM. Here, for

sufficiently large ∆G ≳ 1.3 lnM , increasing M leads to a
nominal decrease inHmin, not just a decrease in Hmin/lnM,
as might be expected. Similarly for specificity maximisa-
tion (figure 3a), for sufficiently large ∆G ≳ 1.1 lnM , pmax

increases with increasing M . Longer polymers therefore
have much more scope within the bounds derived to use a
given ∆G per monomer to suppress the absolute entropy
of the resultant product distribution.

2. Relationship of the bounds to previously postulated costs

In his seminal paper [31], Bennett briefly discussed the
production of a single product RNA copolymer using a
specific template, and its subsequent destruction via a
non-specific destructive enzyme. Without considering a
specific model, he stated that since the enzyme is non-
specific, one requires four times the phosphate concentra-
tion driving the non-specific destructive enzyme than one
would if it was a sequence-specific destructive enzyme.
This difference would prevent the non-specific destruc-
tive enzyme from creating non-target, random sequences,
instead encouraging it to indiscriminately destroy every-
thing, including the target sequence. He therefore states
that a cycle of create via template followed by destruc-
tion via destructive catalyst must use at least kBT ln 4
per nucleotide of free energy, even in steady state, corre-
sponding to ∆G/lnM > 1 in our formalism.
Our bounds update this understanding in several ways.

Firstly, we point out that although two pathways with
∆G/lnM > 1 are required to generate a product distribu-
tion consisting of a single sequence in the steady state,
the optimal system in terms of maintaining a specific
product pool would not typically push polymers around
a cycle, producing ∆G of entropy each time a polymer
was created then destroyed. Instead, although the distri-
bution over products as a whole is far from equilibrium,
each product is effectively in its own kinetically-selected
pseudo-equilibrium state. Each product is produced and
destroyed by inverse pathways coupled to the same type
of catalyst. Such a system has vanishing entropy produc-
tion per creation event in the steady state.
Secondly, as shown through figures 2 and 3, while

∆G/lnM > 1 does serve as a necessary condition for per-
fect specificity in the limit of infinite polymer length, the
approach to this limit is slow. A finite size correction on
the order of lnL/L (where L ∝ lnM would be the length
of a polymer product) provides the minimum free-energy
difference above ∆G = lnM for high specificity to be
achievable.

Thirdly, the bounds are fundamentally a property of
distributions of products and monomers, rather than the
specificity of templates [29]. Although the kinetic selec-
tivity of the template is important in determining how
close a system can get to the bound (see section V),
it doesn’t set the bound. This observation resolves the
paradox that there are thermodynamic constraints on the
templated ensemble, even though there are no thermody-
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(a)

(b)

FIG. 5: Hmin decreases roughly linearly with ∆G until
∆G ≈ lnM + ln lnM , after which it decreases
exponentially. We plot (a) the entropy drop

lnM −Hmin against ∆G for various M , and (b) the
entropy Hmin as a function of the free-energy difference
scaled by system size ∆G/lnM. In (a), The entropy drop
is independent of M so long as mmin > 1 (eq. 14). For
large enough ∆G, lnM −Hmin ≈ ∆G− ln∆G− 1

(eq. 15), which is roughly linear, until
∆G ≈ lnM + ln lnM (vertical lines) whereupon the

entropy drop ceases to be linear and saturates
exponentially to Hmin = 0 (horizontal lines). In (b),
above certain values of ∆G, the unnormalised entropy

Hmin is smaller for larger M at fixed ∆G/lnM.

namic constraints on catalytic specificity.

That the bounds are unrelated to catalytic speci-
ficity is particularly emphasised by considering the re-
gion ∆G/lnM < 1. In this region, for large M , a fraction
of the possible products mmin/M dominates the ensem-
ble. In principle, such an ensemble could follow from

mmin/M distinct templates each catalysing formation of
a single product sequence with high accuracy, even for
∆G/lnM < 1. Intriguingly, for M → ∞, a vanishingly
small fraction mmin/M of the possible products can con-
stitute the full ensemble, in the absence of any other
products, even for ∆G ≪ lnM .
Fourthly, the limits on entropy and specificity with ∆G

hold not only in the case of a non-specific destructive
ecatalyst but also for a specific one, or indeed any com-
plex set of pathways between monomers and products.
Finally, although our work mainly focuses on the is-

sue of creating a steady state distribution of high speci-
ficity, we note by simple example that away from steady
state, no free-energy differences are required to achieve
arbitrary specificity. Consider a simple system with two
products as follows:

∅ kR−−⇀↽−−
kR

R, ∅ kW−−⇀↽−−
kW

W. (16)

This CRN is a simplified version of the system considered
in section III, with only a single catalyst and thus ∆G =
0. The steady state bound on this distribution would give
an unbiased equilibrium of pR = pW = 1/2. However, the
concentrations of R and W can be very different at short
times. Starting with initial conditions cR(0) = cW (0) =
0,

lim
t→0

pR(t) = lim
t→0

cR(t)

cR(t) + cW (t)
=

kR
kR + kW

, (17)

which is only bounded by 0,1. Thus, the entropy can
temporarily be below our steady-state bound and we can
achieve arbitrarily high specificity for any set of free-
energy differences between pathways.

3. The achievability of the bounds

The bounds we have derived are not always achievable,
even if we allow a system to have arbitrary reaction rates
consistent with the overall ∆G of each path. Whether
or not the bounds are achievable depends on the topol-
ogy of the CRN. To achieve the bounds, it is essential
that it is possible to make the pathways corresponding
to δGU for m high-yield products and δGL for M − m
low-yield products fast, while keeping all other pathways
slow. Given that pathways to a product will typically
share edges with pathways to other products, this inde-
pendent scaling is not always possible.
A pleasing aspect of our result is that, although find-

ing full steady-state concentration requires knowledge of
all of the SAWs from ∅ to the product, identifying the
bounds only requires knowledge of the pathways with the
highest and lowest free-energy-change. These free energy
changes can often be intuited or proven without know-
ing all of the pathways. Further, it is then often possible
to check whether or not the set of pathways identified is
indeed compatible with reaching the bound.
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V. EXAMPLES

Having explored the properties of the bound itself, we
consider two example systems to see how/whether the
bound is reached as the rates along different edges are
extremised.

A. Example 1: Templated polymerisation with a
destructive catalyst

Refs [25, 28] studied a system in which a polymer is
grown on a template. Monomers of either the “right” or
the “wrong” type are added one at a time to a polymer
in contact with a template, while the product polymer
continually unbinds from the template from behind its
leading edge. We now extend the system to include final
dissociation from the template for complete polymers,
and also a “destructive template”. This destructive tem-
plate participates in identical reactions to the template,
except that polymerisation is driven backwards due to
consumption of fuel molecules, meaning products tend
to be destroyed rather than grown.

A full CRN for this model is shown in appendix E;
we illustrate the linearised network (assuming monomers
and catalysts are coupled to chemostats) for the case
of dimerisation in figure 6. The thermodynamics of the
model are characterised by the standard polymerisation
free energy of the monomers (−δGpol); the standard free-
energy change of binding to the template for right and
wrong monomers (−δGR and −δGW ), and the free en-
ergy of fuel turnover −δGf . We assume that both right
and wrong monomers are held at concentration c.
For the model depicted in figure 6, we can calculate

the free-energy change for different paths to each product
state. For example, the paths from the null state to RR
are:

1) ∅ → TR → TRR → RR,
2) ∅ → TR → TRW → RW → DRW

→ DR → DRR → RR,
3) ∅ → DR → DRW → RW → TRW

→ TR → TRR → RR,
4) ∅ → DR → DRR → RR.

(18)

These incur free-energy changes:

1) −(δGpol +2 ln c),

2) −(δGpol +2 ln c),

3) −(δGpol +2 ln c) + δGf ,

4) −(δGpol +2 ln c) + 2δGf . (19)

Each pathway contains the terms −(δGpol+2 ln c), corre-
sponding to the standard free-energy change of product
formation without any fuel turnover. Since our bounds
only rely on the differences in free energies between path-
ways, we may drop these contributions, and the fuel free
energy δGf alone determines the bounds. For polymers

FIG. 6: Linearised CRN for a system in which dimers
are grown/destroyed via a template “T” and by a

destructive template “D”. The system starts in the null
state (blue) and a right or wrong (“R” and “W”)
monomer attach to either the template “T” or

destructive enzyme “D”. A second monomer can attach
and polymerize with the first, yielding to a dimer that
then detaches, giving the four red output states. Each

arrow represents a reversible reaction, with the
free-energy change in direction of the arrow indicated.
For brevity, δGRW = −δGWR = δGR − δGW . To reach

each red product node, there are four self-avoiding
walks from the blue null state.

of length L, the equivalent standard free energy of prod-
uct formation is (L− 1)δGpol +L ln c, and it too may be
dropped for consideration of the bounds.
Our bounds are achieved when rates of the path with

the most negative free-energy change are maximised for
the desired product(s), and rates of the path with the
most positive free-energy change are maximised for all
other products. For the L = 2 case, for example, we
could therefore maximise the rate of path 1 for RR, and
the equivalents of path 4 for other products.
In fact, for this system, the entropy bound is formally

achievable for arbitrary L. We can split the edges of the
graph into two sets; one in which the rates are ∼ 1, and
one in which the rates are ∼ k. In figure 7, we show H[pi]
as k → 0 for a particular choice of these sets, in which all
the reactions leading directly to the fully correct sequence
being created/destroyed on the template are set to be fast
(not proportional to k), as are all the reactions leading
directly to the creation/destruction of other sequences on
the destroyer. The system saturates the entropy bound
found in section IVA as k → 0. Note that for the value of
δGf used, the minimal entropy and maximal specificity
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FIG. 7: The entropy bound may be saturated by model
systems in the limit that some reaction rates are much
smaller than others. We plot the entropy, H, of the

product distribution as a function of the slow reaction
rates, k, for different template lengths, L, for the simple

production and destruction model introduced in
section VA. The data is obtained for a fixed δGf = 2,
δGpol = 0, δGR = 2, δGW = −2 and c = 1. Note that
longer templates reach a lower entropy bound for a

fixed fuel turnover per unit length, δGf .

distributions are the same.

There are many possible ways to chose sets of edges
that can saturate the bound in the limit k → 0. Here, we
have chosen a set of rates that specifically highlights a full
pathway to each product for illustrative purposes. One
might also wish to choose a minimum set of rates to have
rate k while still saturating the bound in the limit k → 0.
For example, letting the slow reactions be DRL → RL,
whereRL means L copies ofR, and TX1...XL → X1..XL,
excluding X1 · · ·XL all being R (appendix E), will still
saturate the bound in the limit k → 0. Further, we
note that it is possible to saturate the bound with a non-
specific destructive catalyst, where the reaction rates are
independent of the polymer sequence. In the examples
we have identified, such a network requires at least three
rate scales ∼ 1, k, k2.

We stress that although the bound is formally attain-
able in this system, doing so relies on the ability to ma-
nipulate rate constants arbitrarily, subject to thermody-
namic constraints. In a more realistic model of a tem-
plating system, constraints on relative rates may also be
relevant; these constraints may stop the system reaching
the bounds on accuracy or product entropy.

B. Example 2: Hopfield-like kinetic proofreading
with a destructive catalyst

To illustrate the application of the bound to a more
complex network, and to demonstrate the possibility of
non-trivial pathways defining the bound, we consider an
extension to the previous model, wherein the template
also performs kinetic proofreading. First suggested by
Hopfield [4] and Ninio [5] and widely studied [6, 44], ki-
netic proofreading is a mechanism by which a system
can increase the specificity of a process by expending ex-
tra free energy through fuel consuming cycles. These
cycles give an extra opportunity to reject the “wrong”
monomers due to their shorter binding lifetime.
The full chemical reaction network for a proofread-

ing template of arbitrary length is given in appendix F.
Once again, we linearise the system by assuming that
monomers and catalysts are coupled to chemostats. In
figure 8, we show part of the linearised CRN graph;
this fragment should be inserted into figure 6 in place
of the pathway (∅ → TR → TRR → RR), with sim-
ilar modifications to all other template-based pathways
to RW , WR, and WW . Proofreading adds complexity
to the graph in the form of additional loops, and we now
explicitly consider a polymerization step independently
from the binding to the template.
Monomers are now present in inactive (starred) and

active forms, with −δGact, representing the free-energy
change of activation. We assume that each non-activated
monomerR∗, W ∗ is chemostatted at the same concentra-
tion as each non-activated monomer R, W , c. Dropping
this assumption would only cause a shift to δGact. As a
result, δGf and δGact control the concentration bounds.
We assume δGf , δGact ≥ 0.

The concentration bounds of this system, determined
by the SAWs with maximal and minimal free-energy
changes, depend on the values of both the aforemen-
tioned free-energy parameters, as well as whether L is
odd or even. The bounds are set by

δGU =

{
L2

4 + L
2

(L+1)2

4

}
δGact, (20)

and

δGL = −

{
L2

4
L2−1

4

}
δGact − LδGf (21)

where the top value in each brace is for even L and the
bottom value for odd L. Unlike the simple system in sec-
tion VA, the SAWs that exhibit δGU and δGL are not
the intuitively simple pathways that go via the template
and the destroyer, respectively. Instead, the extremal
pathways correspond to snaking through the CRN, alter-
nately using both the template and destructive catalyst
to first create a sequence, and then convert it into an-
other sequence. We show these pathways for L = 4 in
appendix G. These SAWs would not only be absurd as
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FIG. 8: Modifying the template-based reactions of the
model in section VA to include kinetic proofreading.
We show here the template-based reactions leading
directly to the dimer RR, which should replace the
equivalent template-based reactions in figure 6. As
before, arrows represent reversible reactions with
free-energy change in the direction of the arrow

indicated. On the template, from state TR, either a
non-activated (R∗) or activated (R) monomer may bind
to the template. If that monomer has bound, but has

not yet been polymerised into the growing polymer, it is
represented by TR ◦R∗ or TR ◦R. When bound to the
template, non-activated monomers may be activated, as
shown by the transitions in which R∗ is converted to R.
When there is an activated monomer at the end of the
growing polymer (TR ◦R), that monomer may be
polymerised into the growing polymer to reach a

polymerised state (TRR). After a full length polymer
has grown on the template, it may detach to a product

(RR for a dimer template).

the dominant pathways in a real system, they actually
define a bound that is unachievable, even in principle.
Since the pathways exhibiting δGU and δGL pass through
other products as intermediates, scaling these pathways
to be fast would necessarily result in sub-pathways to
other products being fast.

Nonetheless, the existence of these snaking pathways
can provide some advantage, at least in principle. In
figure 9, we show two attempts to find parameters that
minimize entropy for a system with L = 4. In the first
“näıve” scheme, plotted in blue, reactions contributing to
assembly of RRRR via the template or assembly of any
other sequence via the destructive catalyst are assigned
rates of 1 and all other rates are taken as ∼ k. We show
this scheme in appendix G. In the second “best guess”
scheme, plotted in red, we make use of these snaking

FIG. 9: Entropy H for two attempts to optimise the
entropy, plotted alongside the lower bound Hmin

implied by eqs. 20 and 21, plotted as a function of he
parameter k that sets the overall scale of slow reactions
relative to fast ones. In the “naive” approach, rates

favour pathways to the correct product on the template
and the incorrect ones on the destroyer. The “best

guess” favours the snaking pathways described in text.
The data is obtained for δGf = 1, δGact = 1, δGpol = 0,

δGR = 2, δGW = −2 and c = 1.

pathways. The reactions contributing to assembly of
RRRR via the template are still assigned rates of 1.
However, for all other products, the longest snaking path-
way which does not intersect with the pathway leading to
RRRR has rates assigned 1. Again we show this scheme
in more detail in appendix G.
As k → 0, the snaking pathways outperform the

non-snaking pathways significantly, resulting in approxi-
mately half the entropy of the product distribution (fig-
ure 9). Notably, however, neither the best guess nor the
näıve system converges on the bound as k → 0; the best
guess approaches H = 1.8 × 10−2 as compared to the
bound at Hmin = 1.9 × 10−4, two orders of magnitude
lower.
Although the the best guess system can outperform

the näıve system in principle, when absolute rates can be
chosen freely, rates may in practice be mechanistically
constrained. As a result, this outperformance may not
be achievable in a specific model. Indeed, at moderate
k, the entropies of the naive system and the best guess
converge.

VI. CONCLUSION

Considering systems in which catalysts selectively pro-
duce products drawn from a large set of possibilities, we
have derived general bounds on the steady-state distribu-
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tion of products. The maximal difference in free energies
between formation paths for the products sets an up-
per bound on the specificity (or probability with which a
single sequence can be selected from the product distri-
bution) and a lower bound on the entropy of that prod-
uct distribution. These bounds are remarkably simple,
applying to arbitrarily complex networks regardless of
details such as kinetic proofreading.

Several features of these bounds are, a least to us,
unexpected. They modify our understanding that pro-
ducing sequence-specific products has a “cost” related
to the information stored [2, 31, 32], and help to resolve
the paradox that thermodynamics imposes limits on tem-
plating despite the fact that catalysts can be arbitrarily
specific for their substrate with no minimal cost.

Most importantly, the bounds are pseudo-equilibrium
in nature. In the optimal system, kinetic selectivity en-
sures that each product is coupled to only a single path-
way, with the yield determined by the equilibrium prop-
erties of that pathway. As a result, although maintaining
an ensemble with exactly one product drawn fromM pos-
sibilities requires pathways differentiated by ∆G/lnM > 1,
this ∆G is not a cost in the sense of entropy production.
A low entropy product distribution will be far from equi-
librium, with a high non-equilibrium free energy, and will
consequently require more chemical work to create it in
the first place than a uniform ensemble [2, 29]. But once
in the dynamic steady state, a highly-specific ensemble
(which is capable of dynamically responding to changing
catalyst concentrations) can, in theory, be maintained
with negligible “housekeeping” entropy production [45].

Such behaviour is profoundly different from apparently
similar information-processing networks, such as a push-
pull phosphorylation network [46]. In that case, accurate
information transmission is only possible if the system
undergoes cyclic phosphorylation by one pathway, and
dephosphorylation by another, resulting in a high house-
keeping entropy production. Fundamentally, the differ-
ence arises because the system considered here relies on
catalytic rates distinguishing between different pathways
to different products, which is not constrained by entropy
production, whereas the push-pull network of [46] relies
on catalysts selecting a forwards pathway over its reverse,
which is so constrained [33].

Indeed, the thermodynamic limits on the product dis-
tribution that do exist do not reflect the actual selectivity
of the underlying catalytic processes, which is the typical
focus of work on templated processes [6–22, 25–30]. The
ability of a template to kinetically select certain prod-
ucts determines how close to the bound a system can
come, but it does not determine the bound itself. For
example, although a single product cannot dominate the
steady state for ∆G/lnM < 1, this does not mean that
catalysts cannot be arbitrarily specific; simply that the
steady state achieved via the set of available catalysts
cannot be dominated by one product. Indeed, remark-
ably, for M → ∞ the lower bound on product entropy
is achieved when a vanishingly small fraction mmin/M

of the possible products dominate the ensemble, even for
∆G ≪ lnM . Such a distribution could arise from a sys-
tem withmmin templates each catalysing a single product
with high accuracy, and a non-specific destructive cata-
lyst.

The above results suggest that, in some sense, cat-
alytic templating ensembles do not have an inherent
minimum maintenance “cost” related to the accuracy
of information propagation from a single template to
its product. From another perspective, however, our
bounds show that maintaining a product distribution
that is highly-specific for a single product is hard rel-
ative to previous claims [2, 31, 32]. The minimal entropy
distribution is only dominated by a single product for
∆G ≳ lnM + ln lnM , a condition that converges to the
more familiar ∆G/lnM > 1 achingly slowly withM . More-
over, the minimal entropy of a product distribution with
finite M is larger than that for M → ∞ for all values
of ∆G/lnM. For any finite M , perfect accuracy is only
possible in the limit (∆G − lnM) → ∞, although good
accuracy is possible for ∆G ≳ lnM + ln lnM .

This work open up several lines of inquiry. Firstly:
why do cells not operate in the manner suggested by the
optimal behaviour? RNA molecules are not destroyed
by the reverse of their creation pathway. As we have
noted, the bounds may be formally unachievable even in
a system for which rates can be arbitrarily scaled, but
even in this context it is theoretically possible to pro-
duce sharply-peaked ensembles at low cost via mecha-
nisms that avoid cycling of products via distinct path-
ways. We expect that practical constraints that would
limit the speed and specificity of catalysts operating in
this reversible regime must be a factor. It may also be
true that, in practical contexts, the “excess” entropy pro-
duction due to responding to changing conditions [45]
dominates of the housekeeping entropy production for
the steady state. Indeed, exploring how the behaviour of
realistic models that are constrained by the actual chem-
istry and biological context would be highly informative.
We note, however, that synthetic information-processing
systems might be engineered to operate in this low-cost
fashion - particularly if the products are relatively simple
compared to proteins and RNA. Such a system would be
reminiscent of the behaviour of dynamic combinatorial
chemistry ensembles [47], but with the system designed
so that the presence/absence of specific catalysts changes
the free energy of the dominant pathway to an assembled
product.

Secondly, we have made a number of simplifying as-
sumptions in this work. Most significantly, we have as-
sumed that all products are equally thermodynamically
stable, and produced via equivalent pathways. In prac-
tice, although the presence of catalysts cannot change the
thermodynamic stability of the products, some products
will be more stable than others due to intra-product in-
teractions, and network topologies will necessarily vary
for polymers of different length. As a result, δGU and
δGL will be product-specific in general. In this case,
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much of our analysis would still apply directly, with indi-
vidual products pushed either to their maximum or mini-
mum concentration to minimize entropy, and the optimal
distribution being achieved when each product is over-
whelmingly coupled to a single pathway. However, it will
likely be easier to create distributions that are sharply
peaked about the most stable products, and harder in
other cases. Given that the aim of processes like tran-
scription and translation is to produce functional, rather
than stable, products, it is unclear whether this asym-
metry would actually be beneficial. It would also be in-
teresting to examine behaviour when either monomers or
catalysts are not chemostatted, making the system non-
linear.

Finally, we have not considered the dynamics of these
networks in detail. We have shown that at finite times,
the bounds can be violated, but we have not attempted
to explore for how long this is possible. Indeed, one might
ask whether cells are effectively in this non-steady-state
limit since some theoretically possible polymers (such as
chimeric RNA/DNA sequences) are essentially never cre-
ated by the cell. The question of how these networks
respond to dynamical changes in the concentration of
the catalysts, and the associated thermodynamic costs,
is also open.
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Appendix A: Minimizing entropy maximizes channel
capacity

We can consider the deterministic CRNs in this paper
to be information channels. Let us assume the underlying

chemistry, which determines the rate constants appear-
ing in the un-linearized model, and the concentration of
monomers, are fixed. The effective rates of the linearized
network would then vary with the concentrations of cat-
alysts only. As a specific (simple) example of how the en-
tropy bound defines the channel capacity, let us assume
that all variability is due toM sequence-specific template
catalysts, one for each product, and that of these tem-
plates exactly one is present at any given time at a fixed
concentration.

We can define the input to the information channel as
the template that is present at high concentration; the
output would then be a product sampled from the steady
state product distribution for that input state. If the
templates are symmetric, acting equivalently relative to
their ideal sequence, then each output distribution would
merely be a permutation of the set of product probabili-
ties.

A system of this kind would define a symmetric chan-
nel. The channel capacity of such a symmetric chan-
nel [34] is given by C = lnM −H([pi]) in our notation,
where M is the number of products/sequence-specific
templates, and H([pi]) the Shannon entropy of the out-
put distribution for any single template. This entropy
will be the same for any input state in our symmetrized
description. Hence, minimizing the entropy maximizes
the channel capacity.

Appendix B: Proof of the steady state concentration
written as sum over spanning trees

We note that a similar result can be seen in e.g. [39].
However, we prove this result here with particular refer-
ence to the effect of a null species.

Consider a linear connected CRN under mass action
kinetics. Let Xi be the chemical species with concen-
tration ci. Assume the CRN contains some reactions of
the form ∅ ⇌ X. Without loss of generality, we assume
that there only exists at most one reaction of the form
Xi → Xj (for the cases where there are multiple such
reactions, replace their reaction rate with the sum over
all reaction rates of reactions of that form). We may cast
the steady state equation for the vector of steady state
concentrations of the chemical species, c, as the linear
equation:

Ac+ b = 0, (B1)

where b is a vector such that entry bi is the reaction
rate of the reaction ∅ → Xi, and A is a matrix with
off diagonal entries Aij equal to the reaction rate of the
reaction Xj → Xi and diagonal elements Aii equal to
minus the sum of reaction rates of reactions Xi → Xj

over all chemical species Xj j ̸= i as well as Xi → ∅.
Note that the sum of column i of matrix A is equal to
minus the reaction rate of reaction Xi → ∅. Thus, we

https://doi.org/10.5281/zenodo.10909084
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may create the new matrix:

K =


A b

dT −
∑
i

bi

 , (B2)

where d is a vector such that entry di is equal to the reac-
tion rate of reaction Xi → ∅. The columns of the matrix,
K, now sum to zero and we can use the all minors matrix
tree theorem [48]. Represent K as a graph with nodes
corresponding to chemical species Xi and an additional
node corresponding to ∅, and edges e corresponding to
reactions between species with weights equal to their re-
action rate constants k(e). Then, the determinant (up
to a sign) of the sub matrix formed by deleting row and
column i from matrix K is given by the sum over the set
of spanning trees rooted at node i, T (Xi),

det(K/i) =
∑

T∈T (Xi)

∏
e∈T

k(e), (B3)

where (K/i) represents matrix K with row and column
i deleted. In particular,

det(A) =
∑

T∈T (∅)

∏
e∈T

k(e). (B4)

Thus, by Cramers rule [49], and the sign of the determi-
nant under swapping of rows, eq. 2 gives the solution to
eq. B1.

Appendix C: Proof of boundedness of steady-state
concentrations

We note that similar proofs exist in the literature [39–
42], but we have included the proof here for completeness
and to match our specific conventions. Further, in the
cases considered in this paper, the fact that all products
are connected to the null state means that our result
bounds the absolute, rather than a relative, concentra-
tions.

Consider a linear connected CRN with chemical species
Xi and some reactions of the form ∅ ⇌ Xi. The concen-
tration of species Xi may be written as in eq 2. The
numerator and denominator in this fraction are sums
over spanning trees rooted at a given node. A sum over
spanning trees rooted at node X may be factored into
a sum over self avoiding walks (SAWs) from some arbi-
trary other node to node X. Concretely, letting Y be
the other, arbitrary node, and S(Y → X) be the set of
SAWs from Y to X,∑

T∈T (X)

∏
e∈T

k(e) =
∑

S∈S(Y→X)

A(S)
∏
e∈S

k(e), (C1)

where A(S) is a factor that, crucially, is the same for the
equivalent (reversed) SAW in S(X → Y ), in which all

edges are reversed compared to S(Y → X). That is to
say, if we now wish to find the sum over spanning trees
rooted at Y , we may choose X as the arbitrary other
state and find:∑

T∈T (Y )

∏
e∈T

k(e) =
∑

S∈S(Y→X)

A(S)
∏
e∈S

k(ē), (C2)

where ē is the reverse of edge e. For the linear CRNs,
utilising eq 3, we may thus write:

cX =

∑
S∈S(∅→X)

A(S)
∏
e∈S

k(e)∑
S∈S(∅→X)

A(S)
∏
e∈S

k(ē)

=

∑
S∈S(∅→X)

A(S)

[ ∏
e∈S

k(ē)

]
e−δGS∑

S∈S(∅→X)

A(S)
∏
e∈S

k(ē)
. (C3)

Hence,

cX ∈
[
e
− max

S∈S(∅→X)
(δGS)

, e
− min

S∈S(∅→X)
(−δGS)

]
, (C4)

as required.

Appendix D: Proof of the boundedness of
steady-state distribution entropy

We have a set of M concentrations {c1, . . . cM}. De-

note the total concentration cT =
M∑
i=1

ci. From these

concentrations we can define a distribution {p1, . . . pM}
where pi =

ci
cT

. The Shannon entropy of this distribution
is

H([pi]) = −
M∑
i=1

pi ln pi = − 1

cT

M∑
i=1

ci ln ci + ln cT . (D1)

Suppose that each concentration is bounded by the same
upper and lower bounds, ci ∈ [cL, cU ]. We now propose
that the distribution of concentrations that minimises the
entropy, H([ci]), is that with mmin of the species at con-
centration cU and M −mmin at concentration cL, where
mmin is either

cL
cU

[
− ln

(
cL
cU

)
−
(
1− cL

cU

)]
(
1− cL

cU

)2 M

 or


cL
cU

[
− ln

(
cL
cU

)
−
(
1− cL

cU

)]
(
1− cL

cU

)2 M

− 1. (D2)

To prove this claim, let us calculate the derivative of
H = H([pi]) with respect to a concentration cα, holding
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all other concentrations fixed and remembering that cT
is linear in cα,

∂H

∂cα
=

1

cT

(
− ln

(
cα
cT

)
−H

)
. (D3)

Additionally, we require the second derivative,

∂2H

∂c2α
= − 1

c2T

(
− ln

(
cα
cT

)
−H

)
− 1

cT

∂H

∂cα
− 1

cT

1

cα

(
1− cα

cT

)
.

(D4)

Evaluating the second derivative at − ln
(

cα
cT

)
= H, the

first two terms are zero and the third is necessarily neg-
ative for non-zero cL. Thus

∂2H

∂c2α

∣∣∣∣
− ln

(
cα
cT

)
=H

< 0. (D5)

And so, for any distribution, we can decrease the H by
increasing the concentrations of any species i for which

− ln
(

ci
cT

)
< H and decreasing the concentrations for any

species whose concentration has − ln
(

ci
cT

)
> H. For

species for which − ln
(

ci
cT

)
= H, changing the concen-

tration in either direction will decrease H. Consequently,
minimising the entropy of the distribution necessarily re-
quires all species to be at one bound or the other: we
need m species at concentration cU and M −m at con-
centration cL. Hence, we have transformed the problem

into a one dimensional one of minimising H as a function
of m. We can write this entropy as

H(m) = −
(M −m) cLcU ln

(
cL
cU

)
(M −m) cLcU +m

+ln

(
(M −m)

cL
cU

+m

)
.

(D6)
Taking the derivative with respect to m and setting it to
zero tells us that

mmin =

cL
cU

[
− ln

(
cL
cU

)
−
(
1− cL

cU

)]
(
1− cL

cU

)2 M (D7)

gives a turning point for H(m), which is clearly a min-
imum since H(0) = H(M) = lnM is maximal entropy.
Since H(m) has only a single turning point as a function
of m, the integer that minimises H(m) will be either the
floor or ceiling of the above expression, and Hmin is given
by eqs. 12 and 13.

Appendix E: Chemical reaction network for example
1

We present here the full chemical reaction network
used for section VA.

T +X1

kT
X1−−−−−−−−⇀↽−−−−−−−−

kT
X1

e
−δGX1

TX1

TX1 · · ·Xn−1 +Xn

kT
X1···Xn

e
−δGXn−1

−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−
kT
X1···Xn

e−δGXn
−δGpol

TX1 · · ·Xn

TX1 · · ·XL

kT,u
X1···XL

e
−δGXL

−−−−−−−−−−−⇀↽−−−−−−−−−−−
kT,u
X1···XL

T +X1 · · ·XL

D +X1

kD
X1−−−−−−−−−−⇀↽−−−−−−−−−−

kD
X1

e
δGf−δGX1

DX1

DX1 · · ·Xn−1 +Xn

kD
X1···Xn

e
−δGXn−1

−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−
kD
X1···Xn

eδGf−δGXn
−δGpol

DX1 · · ·Xn

DX1 · · ·XL

kD,u
X1···XL

e
−δGXL

−−−−−−−−−−−⇀↽−−−−−−−−−−−
kD,u
X1···XL

D +X1 · · ·XL,

(E1)

for n ≤ L, Xi ∈ {R,W}. Dynamics is assumed to follow
mass action kinetics, with rate constants given above and

below the harpoons. T represents the template, D the
destructive catalyst and R,W the “right” and “wrong”
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monomers. The products are X1 · · ·XL, representing the
polymers of length L. Here, there are M = 2L different
products. TX1 · · ·Xn and DX1 · · ·Xn represent partial
polymers, X1 · · ·Xn, bound to the template or destruc-
tive catalyst. Monomer X binds to the template or de-
structive catalyst with standard free-energy −δGX and
the standard free-energy of polymerisation is −δGpol in
the absence of fuel. The destructive catalyst has an addi-
tional free energy δGf per length driving the disassembly
of polymers.

Let us consider a set of rate constants that allow us to
saturate (in a certain limit) the bound for specificity max-
imisation. We may for example, set the rates of ∅ → TR,
TR → TRR, ..., TRL−1 → TRL, TRL → RL equal
to a non-zero constant kJ = 1 (here, RL corresponds
to L copies of R). We also set all the rates of ∅ →
DX1, DX1 → DX1X2, ..., DX1...XL−1 → DX1...XL,

DX1...XL → X1..XL, where Xi = R or W but excluding
X1 · · ·XL all being R, equal to 1. Conversely, we set the
rates of ∅ → DR, DR → DRR, ..., DRL−1 → DRL,
DRL → RL and ∅ → TX1, TX1 → TX1X2, ...,
TX1...XL−1 → TX1...XL, TX1...XL → X1..XL, where
Xi = R or W but excluding X1 · · ·XL all being R, equal
to kI = k. The reverse reactions of those listed above
have a rate determined by the free-energy change of re-
action. For k → 0, this set of reaction rates saturates the
bound.

Appendix F: Chemical reaction network for example
2

Similarly, we present the full CRN used for section VB.

T +X∗
1

kT,I
X1−−−−−−−−⇀↽−−−−−−−−

kT,I
X1

e
−δGX1

TX∗
1

TX∗
1

kT,act
X1

eδGact

−−−−−−−−⇀↽−−−−−−−−
kT,act
X1

TX1

T +X1

kT
X1−−−−−−−−⇀↽−−−−−−−−

kT
X1

e
−δGX1

TX1

TX1 · · ·Xn−1 +X∗
n

kT,I
X1···Xn−−−−−−−−−−−⇀↽−−−−−−−−−−−

kT,I
X1···Xn

e−δGXn

TX1 · · ·Xn−1 ◦X∗
n

TX1 · · ·Xn−1 ◦X∗
n

kT,act
X1···Xn

eδGact

−−−−−−−−−−⇀↽−−−−−−−−−−
kT,act
X1···Xn

TX1 · · ·Xn−1 ◦Xn

TX1 · · ·Xn−1 +Xn

kT
X1···Xn−−−−−−−−−−−⇀↽−−−−−−−−−−−

kT
X1···Xn

e−δGXn

TX1 · · ·Xn−1 ◦Xn

TX1 · · ·Xn−1 ◦Xn

kT,pol
X1···Xn

e
−δGXn−1

−−−−−−−−−−−−⇀↽−−−−−−−−−−−−
kT,pol
X1···Xn

e−δGpol

TX1 · · ·Xn

TX1 · · ·XL

kT,u
X1···XL

e
−δGXL

−−−−−−−−−−−⇀↽−−−−−−−−−−−
kT,u
X1···XL

T +X1 · · ·XL

D +X1

kD
X1−−−−−−−−−−⇀↽−−−−−−−−−−

kD
X1

e
δGf−δGX1

DX1

DX1 · · ·Xn−1 +Xn

kD
X1···Xn

e
−δGXn−1

−−−−−−−−−−−−−−−−−−⇀↽−−−−−−−−−−−−−−−−−−
kD
X1···Xn

eδGf−δGXn
−δGpol

DX1 · · ·Xn

DX1 · · ·XL

kD,u
X1···XL

e
−δGXL

−−−−−−−−−−−⇀↽−−−−−−−−−−−
kD,u
X1···XL

D +X1 · · ·XL,

(F1)

where n ≤ L, Xi ∈ {R,W}, X∗
i ∈ {R∗,W ∗}. As in the previous CRN, T represents the template, D the
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destructive catalyst, R the “right” monomers and W
the “wrong” monomers. R∗ and W ∗ are non-activated
monomers. Dynamics is assumed to follow mass ac-
tion kinetics, with rate constants given above and be-
low the harpoons. The species, TX1 · · ·Xn−1 ◦ Xn

(TX1 · · ·Xn−1 ◦ X∗
n) represent a complex of polymer

of length n − 1 bound to the template as well as a
(non-)activated monomer Xn (X∗

n) bound, but not yet
polymerised into a single polymer of length n. X1 · · ·XL

are the products. Both non-activated (X∗) and activated
monomers (X) bind to the template or destructive cata-
lyst with standard free energy −δGX . If an non-activated
monomer is bound to the template, it may be activated,
with a free-energy change δGact. If an activated monomer
is bound to the template, it may be polymerised into the
growing copolymer; the standard free-energy change of
polymerisation is −δGpol. The destructive catalyst has
an additional free-energy δGf per length driving the dis-
assembly of polymers.

Appendix G: Pathways for example 2

In this appendix, for the kinetic proofreading
CRN (section VB) we depict the pathways of most posi-
tive/negative free-energy change (figure 10) as well as the
fast reactions used for the two attempts to minimize the
entropy, the näıve attempt (figure 11) and our best guess
(figure 12). For simplicity, we have coarse-grained the
intermediate states for the reactions involving templates,
and have presented these processes using two lines for
the pathways through the kinetic proofreading motifs.
The solid line represents the inactivated monomer
pathway (TX1 · · ·Xn−1 →TX1 · · ·Xn−1 ◦X∗

n →
TX1 · · ·Xn−1 ◦Xn →TX1 · · ·Xn) and the dashed
line represents the active monomer pathway
(TX1 · · ·Xn−1 →TX1 · · ·Xn−1 ◦Xn →TX1 · · ·Xn).
Extremal pathways (figure 10) and fast reactions with
rates ∼ 1 (figure 11 and figure 12) are highlighted in red.
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(a)

(b)

FIG. 10: (a) The pathway to RRRR with free energy change δGU given by eq. 20 is shown in red. (b) The pathway
to WWWW with free energy change δGL given by eq. 21 is shown in red. For each of these diagrams, only the

relevant half the reaction network is shown for simplicity.
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FIG. 11: Fast reactions (red) with rate ∼ 1 for the näıve attempt to minimize the entropy of the product
distribution.
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FIG. 12: Fast reactions (red) with rate ∼ 1 for our best guess at how to minimize the entropy of the product
distribution.


	Information propagation in far-from-equilibrium molecular templating networks is optimised by pseudo-equilibrium systems with negligible dissipation 
	Abstract
	Introduction
	Models and methods
	Physical model
	Analytical methods
	Simulation of specific networks

	Free-energy differences between pathways bound accuracy for a simple network with two catalysts
	General Bounds on the properties of product distributions
	Derivation of the bounds
	The bounds in the presence of kinetic proofreading
	Physical significance of the bounds
	Entropy minimisation versus specificity maximisation
	Relationship of the bounds to previously postulated costs
	The achievability of the bounds


	Examples
	Example 1: Templated polymerisation with a destructive catalyst
	Example 2: Hopfield-like kinetic proofreading with a destructive catalyst

	Conclusion
	Author Contributions

	Data Availability Statement
	Acknowledgments
	Minimizing entropy maximizes channel capacity
	Proof of the steady state concentration written as sum over spanning trees
	Proof of boundedness of steady-state concentrations
	Proof of the boundedness of steady-state distribution entropy
	Chemical reaction network for example 1
	Chemical reaction network for example 2
	Pathways for example 2
	References


