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Anti-Coulomb interaction between charges in a dielectric medium
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The free energy of ion solvation can be decomposed into enthalpic and entropic contributions. This helps
to understand the connection between the dielectric properties and the underlying forces. We present a simple
linear-response model of screened charge interactions that provides an alternative understanding of solvation
barriers. Moreover, it explains the “anti-Coulomb” interactions (attraction between like-charged ions and re-
pulsion between opposite-charged ions) observed in both simulations and experiments. We show that this is a
universal behavior associated to the non-local response function of any dielectric or metallic system.

I. INTRODUCTION

The study of electrolyte solutions is of paramount impor-
tance to a wide variety of natural and industrial processes,
from biological to chemical [1, 2]. In principle, solvation is
controlled by simple, classical electrostatic interactions [3-5].
In practice, however, simulations with small changes in the in-
teratomic forces return quantitatively and qualitatively differ-
ent results [6-9], and screening effects can lead to very coun-
terintuitive behaviors in electrolyte solutions. Thus a thorough
analysis of solvent-solute interactions is required to under-
stand such solutions. Computational and theoretical studies
that can separate the different interactions and thermodynamic
quantities will clarify these processes.

Of special interest are ion-ion and ion-solvent interactions
in water, and solvated sodium chloride has been a prototypical
subject of study. Some studies have shown counterintuitive at-
tractive states of same-charge ion-ion pairs. The existence of a
contact ion pair (CIP) has been predicted for C1~ — Cl~ [10-
12], although with varying degrees of stability or even with
no stable state [13]. For Na* — Na* pairs, some local minima
were found [13] but without a stable CIP state [10-12]. In
the electric double layer of water between two electrodes, at-
traction was found between divalent counterions, but not be-
tween monovalent ones [13]. Further simulations with bet-
ter forces and computational power also showed stable states
of C1~ — Cl~ and Na* — Na* pairs in water [14]. Reference
site models have been used to characterize the interactions
and the bound states of these pairs [15, 16]. Furthermore,
colloid suspension experiments using bright-field optical mi-
croscopy have found that like-charged particles can attract and
oppositely-charged particles can repel, and that this can be
used to drive cluster self-assembly [17].

Molecular configurations for these stable states have been
proposed, often treating the water molecules as a stabiliz-
ing bridge between two anions [18]. Diffraction studies have
found extended water shells around solute ions [19], and ex-
perimental support for the anionic bridging was also found
[20].

* alec.wills@stonybrook.edu
 maria.fernandez-serra@stonybrook.edu

There are also continuous-solvent explanations of this
counterintuitive binding. Thus, an inversion of the sign of
the dielectric function (e< 0) leads to overscreening, or ef-
fective repulsion between unlike charges and attraction be-
tween like charges [21]. This is the same mechanism be-
hind phonon-mediated attractive electron-electron interaction
in metals [22, 23].

Further, decomposition of the free energy into enthalpic and
entropic contributions shows counterintuitive enthalpy barri-
ers between oppositely-charged ions [6, 24]. This underscores
the importance of understanding solute-solvent interactions
and the free energy landscape. In the first part of this work, we
confirm these previously mentioned, unexpected occurrences
in simulations of Na* — Na* and Na* — CI~ pairs in water.
Thus, we find that transition barriers between opposite-charge
ions are robust across different simulated systems. Moreover,
the presence of stable states between same-charge ions is also
validated.

In the second part of this work, we introduce a very simple
but highly counter-intuitive model of electrostatic interactions
in dielectric media. This model provides a straightforward ex-
planation of stable states of Na* — Na* and C1- — CI~ pairs,
and of a repulsive barrier of Na* — C1~ pairs in water. And
these predictions do not need the sign inversion of the dielec-
tric constant that leads to overscreening. Thus, combining the-
ory and simulations, we offer a new perspective of the physics
and processes of salt solvation.

II. CHARGES IN WATER: NA* — NA* VS.NA* — CL~

In order to study the interaction between like-charge and
opposite-charge ions, we compute the potential of mean force
(PMF) U, as a function of the interionic separation r. It can
be succinctly stated [25] as

U(r)=—kTIng(r),

where k is Boltzmann’s constant, T is the temperature, and
g(r) is the ion-ion radial distribution function.

This in principle gives us a straightforward way to calcu-
late U(r) from unconstrained simulations. But the solvation
landscape strongly favors specific states over others, making
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FIG. 1. (a) Potentials of mean force for Na* — C1~ (red) and Na™ — Na* (blue) ions, solvated in water (with the SPC/E model), as function of
interionic distance. (b) Mean potential energies, giving the enthalpic contribution to the free energy. (¢) Entropic contribution to the free
energy, taken as —T'AS = F — H. The zeros for F' and H were taken as their average for r > 5.5 A.

a converged g(r) hard to calculate efficiently. Also, hydra-
tion shells can be very long-lasting and strongly defer con-
vergence [26]. For these reasons, constrained simulations are
necessary in practice to force the exploration of configuration
space. However, the introduction of constraints requires addi-
tional work, such as choices and tests of sampling methods
and reaction coordinate discretization, among many others,
to ensure converged, repeatable results. Recent work has re-
viewed these choices and their effects in detail, to which we
direct the reader [6].

A. Methodology

Due to the ease of decomposing the total potential energy
into constituent pairwise contributions, our classical molecu-
lar dynamics (MD) simulations are performed with the GRO-
MACS [27] software suite in the NVT ensemble. A cubic
box with a side length of 14.373 A was filled with 96 water
molecules and two ions, either Na* — Cl~ or Na* — Na*. To
sample the PMF, harmonic restraints were placed at reference
interionic distances ranging from 2.0 to 6.8 Ain steps of 0.1
A. Eight different random seeds were used to generate sep-
arate dynamics during equilibration, after which production
runs with Az = 0.5fs were run for 2 x 10° steps, yielding 1
ns of sampling data per random seed and restraint distance (8
ns per reference distance). Additionally, for the same eight
random seeds, a lone Na®™ or Cl~ ion was simulated in the
same box of 96 water molecules to use as the reference in the
infinitely dilute limit.

For these classical simulations, we used a variety of wa-
ter models and ion parameters. The figures in the main body
of this paper were generated with the SPC/E [28] water model
and OPLS-AA ion parameters [29]. In the supplementary sec-
tion, we show results from various combinations of different
water models, such as TIP4P and TIP4P/2005, and a modified
pair of ion parameters for interionic constraints from 2.0 A to
6.0 A [30-32], all showing the expected behavior to varying
degrees.

B. Free Energy Landscape Decomposition

The PMF F was generated using the weighted histogram
analysis method (WHAM) [33], as implemented in the wham
program [34]. It is shown in Fig. 1a as a function of interionic
separation. The average enthalpy H is shown in Fig. 1b, and
a similar average of just the Coulomb energy of the system
is shown in Fig. 2. In both figures, we see clear validation
of previous results: energetically bound states between like-
charge cations and repulsive barriers between opposite-charge
ions.

The entropic contribution to the free energy —TAS =F —H
is shown in Fig lc. Notice that, since T > 0, the changes
in AS are opposite to those shown in the figure. The bound
state of the cation pair is clearly stabilized by the electrostatic
enthalpy, despite the entropy decrease as the pair is brought
together. On the other hand, for the Na* — C1~ pair, the contact
minimum at r ~ 2.5 is stabilized by the increase in entropy.

It is interesting to note that not only the electrostatic interac-
tion but also the entropy changes sign when comparing same-
and opposite-charge pairs. While Fig. 1c shows that, as two
sodium cations are brought together, the entropy decreases un-
til » ~ 3.0, in the case of the Na* — Cl~ pair it monotonically
increases with shorter inter-ionic distances. For Na* — Na*
this indicates that interstitial water molecules forming the sol-
vation shell have larger entropy than when they are in the liq-
uid bulk, while the opposite applies to Na* —Cl~.

The simulation’s electrostatic energy is shown in Fig. 2.
As the like-charge and opposite-charge ion pairs are brought
closer together, the screening effects modify the effective elec-
trostatic potential to yield an energetically favored region of
attraction and an unfavorable repulsive region, respectively.
Indeed, we see that these features persist in the enthalpy de-
composition shown in Fig. 1b. Interestingly, for the water
model and ion parameter combination shown, the enthalpic
stability for the Na* — Na* pair allows for a weakly stable
state in the free energy profile.
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FIG. 2. Average Coulomb energy as a function of interionic
distance. A barrier between oppositely charged ions (Nat —Cl~,
red) is clearly visible as the ions are brought together. On the other
hand, there is a strong attraction between the two like-charged ions
(Nat — Na*, blue). The zero value was taken as the average beyond
55A.

III. CHARGES IN A DIELECTRIC: A SIMPLE MODEL

The calculation of the interaction energy between two
charges embedded in a dielectric involves computing the
medium’s response to these charges, typically through its non-
local dielectric function € (r,r’). We compute this interaction
from the linear response to a generic external charge density,
from which one can calculate the perturbing potential.

A. Linear Response

For completeness, we derive here the standard linear re-
sponse equations [22] that will be used to compute the in-
teraction between charged particles embedded in a dielectric
medium. The Poisson equation for an externally perturbing
potential is

—V? Pext (I‘) = 4T Pex; (l‘) )

where pey; is the density of the perturbing particle, placed at
the origin. Another Poisson equation is satisfied by the rotal
potential ¢ and density p:

~V29(r) = 4mp(r),
where p = pext + Ping 18 the total charge density of both the
perturbing particle and the induced screening density.

One assumes a linear medium, such that the external poten-
tial and total potential are linearly related through

o) = [ ar' e (1)),

where spatial homogeneity implies that € (r,r') =¢ (r —r’).
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FIG. 3. (a) A bare ion test charge ¢; to measure 8V;,q induced by ¢,
in a dielectric medium, where we take the external perturbing
potential to be the Coulomb potential of ¢,. Its induced potential is
schematically shown as the cloud around g;. We call the perturbing
ion and its induced potential a “dressed ion." Connecting lines
indicate additive potentials. (b) Two bare ions with their first-order
induced potentials. In the dressed-dressed interaction, the Coulomb
potential is supplemented by each induced potential surrounding the
constituent ion.

This further implies diagonality in reciprocal space:

1

dext(q) =€ (q)9(q) <> ¢(q) = @‘pext(q)- (D

However, it can be more natural to work directly with the
charge density induced in the dielectric medium (pjnq) by the
external potential. If pj,q and ¢ are also linearly related (as
should be the case for a weak enough ¢), their Fourier trans-
forms are also linearly related through y:

pind(q) = x(q4)¢(q), 2

where  is the susceptibility of the material.
To relate € to x, we Fourier transform the Poisson equations
above and, letting ¢ = |q|, we find

7*9exi(q) = 47pexi(9), 7°9(q) = 47p(q),

which, together with the linear response relations, give

qz ext(q)

17 120 — 9eu(9)] = 2(9)0(q) ¢ 0(g) = %,

yielding
€lg)=1- ?x(fﬂ 3)

Equipped with Egs. (1), (2), and (3), one just needs to
specify an exact or approximate dielectric function € to com-
pute the effective interaction between charges in the dielectric.
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FIG. 4. Bare-dressed (red) and dressed-dressed (blue) interaction energies (left y-axis) and induced densities (green, right y-axis) for the
Thomas-Fermi approximation (left), RPA approximation (middle), and Inkson’s dielectric function with €;_,o= 80 (right). All plots are
generated with kr = kg = 1, using external Gaussian charge densities of width oexy = 0.25 A.

B. Dressed Potentials

The net effect of the screening, whether quantum mechan-
ical (exchange and correlation) or electrostatic in origin, is to
induce a surrounding charge around the perturbation source.
When the perturbing source is a point charge, it is natural to
define a “dressed particle" as a quasiparticle charged with the
sum of the original and screening charge densities. A diagram
depicting this scenario is given in Fig. 3, showing the various
densities and potentials at play when considering interactions
between pairs of these dressed or bare particles.

In the interacting electron gas, this dressing is nothing
else but n[g(r) — 1], where g(r) is the electron-electron pair-
correlation function and n is the average electronic density,
n = 3e/(4xr}) with ry being the Wigner-Seitz radius. Over-
hauser originally showed that this distribution can be com-
puted by solving the two electron scattering problem with an
effective screened Coulomb repulsion, with later studies ex-
tending his analysis [35-37]. In this model, an electron scat-
ters with the screened Coulomb potential generated by the
other electron. The effective interaction used by Overhauser is
what we refer to here as the “bare-dressed"” interaction. Later,
Corona et al. proposed an alternative “dressed-dressed” ef-
fective interaction to solve the same problem [38]. In such a
description, the scattering occurs between two neutral parti-
cles — each electron dressed by their corresponding exchange
and correlation hole.

Here we argue that the interaction between two charges
embedded in a dielectric medium corresponds to the interac-
tion between two of such “dressed quasiparticles,” i.e. the
Coulomb interactions between two charges and their respec-
tive dressings. We describe here how we define the problem
and obtain the inter-particle energies as a function of their sep-
aration. In addition, this formulation of the problem can be
readily adapted to the evaluation of inter-charge interactions
in water (or other dielectric liquids), given that the pair corre-
lation functions are directly obtained from molecular dynam-

ics simulations.
a. Formalism: With charge density sources Si(r;) and
S»(r7) interacting through the Coulomb kernel

oc

K(r,r’):m,

where o is the proportionality constant for the Coulomb in-
teraction, the interactions can be described by the integral

E[r;,r;] = /d3rd3r’Sl (r—r)K(r,r')S (X' —-r) @)

For an isotropic medium, E[ry,r;] = E[r] —ry] = E|r]. These
convolutions can be easily calculated in reciprocal space and
Fourier-transformed back into real space. Indeed, without ac-
cess to a closed form of pjq(r), it is necessary to use the k-
space linear response relations in order to calculate the inter-
actions involving the induced screening charge.

b. Bare-Bare Interaction For two point-charge sources

Si=Qié(r—r;),

the integral in Eq. (4) reduces to the regular Coulomb interac-
tion:

010

Irp—ra|

Egg[ri,r2] = 0c )

c. Bare-Dressed Interaction Here, one source is still an
unscreened point charge (which we can think of as a test
charge with which to measure the potential of the screened
charge). The dressed charge will have a source term of the
form

Si(r—r;) = Qi6(r —r;) + Pina,i(r —r;),

where pjng ; is the induced screening charge from the medium.
With these forms of source terms, we find in this case that

Ein([r1,r2] = Egg[ri,r2)
+ Eg,p, [r1,12],
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FIG. 5. The bound-state depth for dressed-dressed interactions in
the TF approximation as a function of its location, colored by the
screening parameter ky. The bound state depth gets weaker with
increasing screening length, and the position of the minimum shifts
to farther separations. The numerical results agree well with the
analytical expressions derived from Eq. S3 until small values of k.

where
indj(F —T;
EBiDj [rlarZ} = aCQl/d?’FIM (6)
l

is the interaction energy between the undressed point charge
and the screening charge induced around the other point.

d. Dressed-Dressed Interaction Now, with each source
having its own dressing, one finds upon expanding the terms
in Eq. (4) that

Ein[r1, 2] = Epp[ry,12]
+ Eg,p, [ry,12)]
+ EB,p, [r1,12]
+Ep,p,[r1,12),

where

Ep,p,[r1,12] = ac /d3rd3r/ Pind,1 (T — T;)Pilid,z(l’/ —r)
(N
With the above formulae, all that remains is to find a rela-
tion between the external perturbing charge sources and their
induced charge densities via linear response. To avoid numer-
ical problems with the ! singularity of the Coulomb poten-
tial, and its k2 behavior in reciprocal space, we substitute the
external point charges by narrow Gaussians (of 0.25 A width),
what has a negligible effect at the relevant interionic distances.
This approximation assumes that each dressing charge is
independent of the presence of the other charge, i.e. the re-
sponse of the medium is linear with the perturbation. We call
this the independent hole approximation (IHA). We will eval-
uate the validity of the IHA calculating (i) the exact interaction
of two test charges in a real metal using density functional the-
ory (DFT); and (ii) the exact interaction between two charges
in a dielectric liquid (Na™ and CI~ ions in water).

0.4
0.3
0.21
0.11
0.01

Vion —ion (eV)

—-0.11

—-0.21

—-0.31

-0.4

o 1 2 3 4 5 6 17
Fion —ion (ang)

FIG. 6. The modeled interaction energy using the induced densities
around the ions as defined in Eq. (8).

C. Model Results

Fig. 4 shows the model’s bare-dressed and dressed-dressed
interactions, as well as the induced screening charges given by
Eq. (2). We use three dielectric functions: the Thomas-Fermi
(TF) approximation, the Lindhard or random phase approxi-
mation (RPA), and Inkson’s interpolating dielectric function
with €;_,0= 80 [39]. An analytical derivation of the TF inter-
action potential is provided the supplementary information.
As can be seen for the three approximations, the screened in-
teraction between two like charges is attractive at short dis-
tances. On the other hand, as it should be due to charge in-
version, the same interaction will be repulsive for opposite
charges.

The strength (depth of the potential well) of the attrac-
tive/repulsive interaction depends on the screening length of
the dielectric medium in question. This can be easily ana-
lyzed using the TF model, which allows to control the screen-
ing length through the parameter kp = 1/A. The longer this
length, the less the charges are screened, and the depth of the
potential well goes to zero linearly as A — oo. This behav-
ior is shown in Fig. 5, where the bound state depth is plotted
versus the location of the potential’s minimum. The points
are colored by the screening parameter kg. The stronger the
screening, the deeper the bound state becomes. Conversely,
as the screening strength decreases, the bound state depth ap-
proaches zero and its position shifts to shorter separations.
Additionally, as the screening strength increases, the mini-
mum shifts to shorter interionic separations, indicative of the
stronger localization of the screening charge.
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FIG. 7. The error as defined in Eq. (9) for the densities induced
around the Na* — Na* pairs, as a function of their interionic
separation r. The error increases drastically when the two individual
ion SDFs start to overlap.

IV. ANALYSIS AND DISCUSSION
A. Charges in Water

As we have seen, the results presented in Figs. 1a, 1b, and 2
agree qualitatively with the model predictions shown in Fig. 4.
This model assumes that the response of the dielectric medium
is linear and that therefore the screening of two charges is the
sum of that of the separated charges. We can evaluate the va-
lidity of this approximation in realistic systems by computing
the exact interaction between charges in a self-consistent re-
sponse of the medium. We do this for simulations of a pair of
sodium cations and for sodium chloride in liquid water. Our
simulations add to previous ones, since the free energy of sol-
vation of sodium chloride has been well studied [6, 24, 40—
44].

Using the TRAVIS [45] program, we simulate each lone
ion, as well as different ion pairs, in a box of water. We
generate the ion-oxygen and ion-hydrogen spatial distribution
function (SDF), defined as g; x (r) = (nx(r)) /nx, where ny is
the number density of particle X in the system and (nx(r))
is the average number density at a distance r away from the
ion. Then, the charge density of particle X around the ion i is
pix(r) = Ox -nx - gix(r), and the charge induced around an
ion can be constructed as

Piind = Pi.o(r) + piu(r). (8

Using this charge in Eq. 7, the dressed-dressed interactions
for the Na* — Na*, CI~ — Cl~, and Na* — CI~ ion pairs are
presented in Fig. 6. Comparison with Figs. 1b and 2 shows
a general qualitative agreement, with similar minima/maxima
locations and depths. There are also some quantitative dis-
crepancies, part of which may be due to the IHA. Also, our
model considers the ions as point charges, ignoring the Pauli

repulsion due to the overlap of the ion cores. This repulsion is
determined by the o;; parameter in the Lennard-Jones poten-
tial, which controls at which point the repulsion dominates.
With the OPLS-AA force field, this is 1.8 A for the sodium
ion pair and 2.8 A for the sodium chloride pair. It must fur-
ther be noted that in our model there is no structural informa-
tion of the solvent besides the approximation for its dielectric
function. In contrast, in the simulations, all this structural in-
formation is included in the g; x (r) correlation functions.

We can evaluate the error in the IHA by comparing the
exact Pipg(r) (calculated from a MD simulation of the ions
constrained to be at distance r) with the superposition of two
copies of the SDF generated via simulation of the lone ion.
This decomposition is shown in Fig. S8 for ion separations
of 2.8 and 6.8 A. For each separation constraint 7, ping (r';r)
is generated as the cylindrically averaged SDF of the water
atoms around the ions. Then, the SDF from a lone-ion sim-
ulation is copied and superposed with itself, with the copies
separated by the same separation r, giving us Pind ma (¥’ 7).
The difference is taken between ping(r';r) and Ping ma (r';7),
and the error is found by integrating across the SDF via

_ S /[Pina(r'sr) — pina,ima ('3 1)
Jdr'\/ pina(¥';r)? ’

&(r) €))

This error metric for the induced densities around each sodium
ion is shown in Fig. 7. We see that, atr ~ 3 A the error reaches
a maximum, arising from the superposed lone-ion SDFs gen-
erating charge density in between the two ions, which does
not occur in the molecular dynamics simulations with the ion
pairs. The error then steadily decreases as the ions are sepa-
rated.

B. Charges in Metals

Our model is very general and it relies on dielectric func-
tions that are appropriate for the free electron gas. It is then in-
teresting to compare its predictions with realistic simulations
of charges in metals. The simplest case is a pair of hydrogen
atoms, which are fully or partially ionized in metals [46]. The
metals can be well-approximated in the RPA regime, whose
dielectric function is that of the Thomas-Fermi approximation
modified by the Lindhard function F(q/2kr), with standard
Fermi wave vectors for each metal [22]. Here we examine the
proton-proton interactions in aluminum (with a face-centered
cubic structure), as well as in sodium and lithium (both body-
centered cubic). We compare the results of our simple model,
in the RPA approximation, to those of ab initio simulations
using density functional theory (DFT). Details of this simula-
tions are provided in Appendix A. The model and DFT results
are compared in Fig. 8 (and in the middle plot of Fig. 4 for
kr = 1 A). Our model has good qualitative agreement with
the ab initio results, with the minima locations closely aligned
and with the same order of magnitude of depth. Differences
are due to the IHA and to the incomplete ionization of hydro-
gen atoms, as shown in Fig. S9, where we fit our model to the
ab initio binding energies using the charge’s magnitude and
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FIG. 8. Comparison between our model predictions (solid) and DFT
binding curves (dashed) for two hydrogen atoms in aluminum,
sodium, and lithium (top to bottom).

extent as free parameters. As expected, we find best fits with
incompletely but mostly-ionized hydrogen atoms.

V. CONCLUSIONS

The results above are striking. They show that oppositely
charged particles repel, while particles with the same charge
attract when embedded in a dielectric with sufficient screen-
ing strength, without the need for sign inversion of the dielec-
tric function for the medium that causes overscreening. In-
stead, it is simply a consequence of the balance of Coulomb
interactions between the screening charges and the perturbing
sources. In principle, this behavior is general, and indeed it
was already obtained by Corona et al. for antiparallel-spin
electron-electron interaction in a high density homogeneous
electron gas [38]. We have reproduced their result, finding
that the electron-electron interaction has an attractive well, al-
though too weak and short-ranged to produce a bound state of
the electron pairs.

In this work, we have shown that a simple electrostatic
model based on linear response reproduces very nicely the
behaviour of classical charges in a dielectric medium. Using
this model, we can explain the origin of the various solvation
states in the potential of mean force between ions in solution.
The decomposition of the PMF further illuminates the role of
entropy in the solvate’s attraction and repulsion.

Even more, this simple model nicely reproduces the pairing
of protons in metals as obtained from ab initio DFT simula-
tions. It is tempting at this point to make connections with

electron pairing mechanisms that lead to superconductivity,
such as Cooper pairs. As explained above, the observation
of an attractive dressed-dressed electron-electron interaction
is not new, although the attractive region of the potential was
not highlighted [38] and an attractive well does not imply the
existence of a bound quantum state. However, what this work
has shown is that it is possible to achieve an attractive effec-
tive interaction and that this interaction will depend only on
the spatial distribution of the electronic exchange and correla-
tion hole.

Independently of its possible quantitative importance in a
variety of systems, we have shown a general and counter-
intuitive physical effect that is not generally recognized.
There is no need to invoke overscreening to explain an attrac-
tive interaction between like charges [21, 23], and hence this
should be taken into account when asserting the structural and
dynamical properties of ions and charges in solution or at in-
terfaces, including at the electrochemical interface. This also
highlights the necessity to have very accurate charged models
for the solvent, given that the structural properties resulting
from the model parameters will have a profound impact on
the behavior of the screening.
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Appendix A: Ion-Ion Screening in Metals

Ab initio energy calculations were done using the den-
sity functional theory (DFT) code SIESTA with a van der
Waals exchange-correlation functional (vdW-DRSLL). Pseu-
dopotentials were used for all core electrons and a triple-zeta
polarized (TZP) basis set was used for all valence electrons.

Two H atoms were added to three different 5 x 5 x 5 metal-
lic supercells. The aluminum lattice is fcc with a unit cell
lattice constant of 4.05 A. The sodium and lithium lattices are
bee with unit cell lattice constants of 4.29 A and 3.51 A re-
spectively. The placement of the atoms was made to ensure
that they would not come into contact with any aluminum nu-
clei. The plots shown in Fig. S1 are obtained after convoluting
the H-H distance along the [001] direction, in order to remove
the influence of crystal potential on the results. The two atoms
were separated by distances between 0.25 A and 6ry at inter-
vals of 0.25 A while maintaining the same midpoint position.
The energies were adjusted so that 0 eV corresponds to the
asymptote for large atomic separations.
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I. DRESSED-DRESSED INTERACTION POTENTIAL IN
THE THOMAS-FERMI APPROXIMATION:

We show here the analytical derivation for dressed-dressed
interaction in the simplest case: the Thomas-Fermi model [1].
In this case, the screened potential of a charge Q in a metal is
D(r) = %e’k‘)’. The associated screening/dressing charge is:

p(r) =~ 1-V*0(r)

Its Fourier transform is given by

1
p(q) = W/dSrp(r)e ar

1
271?)3/2/ 4rrtdrjo(qr)p(r). 2)

Given that the expansion of a plane wave in spherical harmon-
ics is given by €" =¥ i jo(qr)Yim(@)Yim(F), we have:
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where ¢ = |q| and rjp = |r, —r;|. The integral over d3r en- parameters k are identical, so
forces q1 = —q3, but since p is even in g the negative signs
are dropped upon substituting p(g) for ¢(q). VAT — 0,00k 2 /m dgq  sin(qri2) )
For two charges in the same medium the screening decay Vis' = 0102ks- xh B+a)? g
and the total interaction between the screened charges is:
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where the second term is each point charge’s interaction with
the other’s induced charge density and the third term is the
interaction between the induced charges. The first term is the
bare-bare interaction of the point charges, and is negative to
subtract out the double counting of this interaction included
in the bare-dressed energy. This is necessary since the ana-
lytical forms of prr and @rF are the fotal induced density and
potential, including the point charge that is screened.
Defining x = kor12 and § = q/ko,

%/"" dg sin(c]x)}
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x

* (+BP)

1 2
V{gt = Q1 0rko |:— 4+ —e 7+
X X

)

where for the final equality we let y = gx. This potential has
a minimum of Vi, = —8.72 x 1073 - Q'T?Z H at r = 2.73r,

with ro = 1 /ko = ?(277:/3)”3. These (Fmin, Vmin) values as
a function of kg are plotted alongside numerically derived re-
sults in Fig. 5. The agreement between the linear response
numerical results and the analytically derived expressions is
exact until departures begin in the regime of small k.

II. PHENOMENOLOGICAL MODEL FOR ION-ION
SCREENING IN METALS

Our energy calculations within the aluminum lattice show
the full interaction between the two ions in the metal. It is use-

ful to break this total interaction down into constituent parts
that can be explained physically. The first correction we make
is for the bare-bare ionic interaction. This can be described as
a simple Coulomb potential between two point charges. Mul-
liken charges for each atom in the system are produced in the
SIESTA output file. The Coulomb interaction between the two
relevant ions in the system is subtracted from each energy cal-
culation. These results are shown in Fig. 1. This figure shows
much more symmetric energy energy curves with nearly iden-
tical periodicity. We fitted these curves to the following func-
tional form.

cos(cx+d)

E=a+b ”

+f

-] -

Here, E is the energy, x is the ionic separation distance, and a-
e are parameters of the fit. The first term is for energy scaling,
the second term is inspired by the Lindhard model (where c
should be proportional to the Fermi wavevector), and the third
term has the form of the Lennard-Jones potential. We see that
the fit is very strong and we obtain a consistent value for c in
each fit.

[1] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt-
Saunders, 1976).
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FIG. 1. Total energy calculations (corrected for bare ion
interactions) for Li-Li (blue) and Li-F (red) with the aluminum
lattice. The corresponding dashed lines are fits using (8).
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FIG. 2. The average Coulomb energy as a function of interionic
distance with JCP ion parameters in SPC/E water. The transition
barrier between oppositely charged ions (NaCl, red) is clearly
visible as the ions are brought together. On the other hand, there is a
strong attraction between the two like-charged ions (NaNa, blue).
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FIG. 3. (a) The WHAM generated NVT PMFs for JCP NaCl (red) and NaNa (blue) ions solvated in SPC/E the water model. (b) The
histogram-binned total potential energies along the reaction coordinate, giving the enthalpic contribution to the free energy. (c¢) The entropic
contribution to the free energy, taken as —TAS=F —H.
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FIG. 4. The average Coulomb energy as a function of interionic
distance for OPLS-AA ion parameters in TIP4P water. The
transition barrier between oppositely charged ions (NaCl, red) is
clearly visible as the ions are brought together. On the other hand,
there is a strong attraction between the two like-charged ions
(NaNa, blue).
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FIG. 5. (a) The WHAM generated NVT PMFs for OPLS-AA NaCl (red) and NaNa (blue) ions solvated in TIP4P the water model. (b) The
histogram-binned total potential energies along the reaction coordinate, giving the enthalpic contribution to the free energy. (c¢) The entropic
contribution to the free energy, taken as —TAS=F — H.
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FIG. 6. The average Coulomb energy as a function of interionic
distance for OPLS-AA ions in TIP4P/Ew water. The transition
barrier between oppositely charged ions (NaCl, red) is clearly
visible as the ions are brought together. On the other hand, there is a
strong attraction between the two like-charged ions (NaNa, blue).

0.20 0.4
—— NaCl —— NaCl
0.15 —— NaNa 0.3 —— NaNa
0.2
0.10
< 01
S 3
@ o005 = 00
w I
0.00 -01
-0.2
-0.05
-0.3
-0.10 -0.4
25 3.0 35 40 45 50 55 6.0 25 30 35 40 45 50 55 6.0
dna-x (A) dna-x (A)
(@) (b)

—TAS (eV)

o
W

o
N

°
-

o
o

|
o
-

|
o
N

— NaCl
—— NaNa

|
o
w

25 30 35 40 45 50 55 6.0

dna-x (A)

©

FIG. 7. (a) The WHAM generated NVT PMFs for OPLS-AA NaCl (red) and NaNa (blue) ions solvated in TIPAP/Ew the water model. (b)
The histogram-binned total potential energies along the reaction coordinate, giving the enthalpic contribution to the free energy. (¢) The

entropic contribution to the free energy, taken as —TAS=F — H.
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FIG. 8. (left) The two-dimensional ion-pair simulation charge distributions given by Eq. 8 alongside the (middle) reconstructed charge
distribution from the infinitely-dilute ion simulations and (right) the deviations between the two for the case when (top) the interionic
separation r = 2.8 A and (bottom) when r = 6.8 A. Notably, the 6p at r =2.8 A is an order of magnitude larger than at r = 6.8 A, in
agreement with the results presented in Fig. 7.



—— Al (ke=1.75,rs=1.10)
=== Al (ab initio)
—-= Best Model Fit: Qext = 0.81, Oext = 0.30

—————

—— Na (kr=0.92,rs=2.10)
—-=- Na (ab initio)
— = Best Model Fit: Qext = 0.90, Gyt = 0.62

Vion —ion (€V)

— Li(kp=1.12,rs=1.72)
=== Li (ab initio)
— .= Best Model Fit: Qext = 0.93, Ocxt = 0.48

Fion —ion/T's

FIG. 9. A comparison between our model predictions (solid), the binding curves from the ab initio metal simulations (dashed), and model fits
to ab initio results (dash-dot) for (top) an aluminum lattice (kp = 1.75 A=!, r; =1.10 A), (middle) a sodium lattice (kp = 0.92 A1,

ry =2.10 A), and (bottom) a lithium lattice (kg = 1.12 Al =172 A). We see that the fits correspond to almost fully-ionized protons in
the metal, with charge extents on the order of the hydrogen atom.



