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Abstract—The Legendre transformation is a crucial tool in
theoretical physics, known for its symmetry, especially when
applied to multivariate functions. In statistical mechanics, en-
sembles represent the central focus. Leveraging the dimensionless
aspect of Legendre transformation, this paper explores the trans-
formation process from the entropy characteristic function of

microcanonical ensembles to the analogous definition of partition
function transformation. Additionally, it derives characteristic
functions, partition functions, and establishes their interrelations,
along with deriving corresponding thermodynamic formulas for
various ensembles. This streamlined approach sheds light on the
fundamental principles of statistical mechanics and underscores
the symmetry inherent in Legendre transformation.

I. INTRODUCTION

T
HE Lagrange transformation, attributed to the pioneer-

ing work of Joseph-Louis Lagrange in the late 18th

century[1,2,3], stands as a fundamental concept in classical

mechanics, offering a powerful mathematical framework for

the analysis of dynamic systems. This transformation serves

as a cornerstone in the field, providing a means to elegantly

describe and solve complex physical problems by converting

the system’s representation from Cartesian coordinates to

generalized coordinates and momenta.

Introduced as part of Lagrange’s efforts to reformulate

classical mechanics, the Lagrange transformation offers a more

streamlined approach to solving problems involving the mo-

tion of particles and rigid bodies. By expressing the system’s

dynamics in terms of generalized coordinates and momenta,

rather than traditional position and momentum variables, the

transformation enables a more comprehensive and intuitive

understanding of the underlying physics[4,5,6].

Through the lens of the Lagrange transformation, Hamil-

ton’s principle becomes a central guiding principle, allowing

for the derivation of Hamilton’s equations of motion. These

equations, in turn, provide a concise and powerful framework

for describing the evolution of a system over time, offering

insights into the underlying dynamics and enabling the pre-

diction of future states.

In this paper, we explore the historical context and the-

oretical underpinnings of the Lagrange transformation, its

mathematical formulation, and its practical applications in
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classical mechanics. By elucidating the principles and tech-

niques involved, we aim to provide a comprehensive un-

derstanding of this fundamental concept and its significance

in the broader context of theoretical physics[7,8,9,10]. The

Lagrange transformation originates from the following partial

differential equation:

R
∂2z

∂x2
+ S

∂2z

∂x∂y
+ T

∂2z

∂y
= 0 (1.1)

Where, if we let p = ∂z
∂x

and q = ∂z
∂y

, and further assume

that R, S, and T are only functions of p and q, then for the

tangent plane of the surface z = f(x, y) given by:

px+ qy + z − v = 0 (1.2)

There should exist:

R
∂2v

∂q2
− S

∂2v

∂p∂q
+ T

∂2v

∂q2
= 0 (1.3)

Eq. (1.2) provides a transformation between the variables

x, y, and their conjugate variables p, q. Specifically, the

transformation can be expressed as the partial derivatives:

∂z

∂x
= p,

∂z

∂y
= q ,

∂v

∂p
= x,

∂v

∂q
= y (1.4)

Considering the Jacobian matrices of the transformation

should be mutually inverse, i.e.,

(

∂p
∂x

∂p
∂y

∂q
∂x

∂q
∂y

)

=

(

∂z2

∂x2

∂z2

∂x∂y
∂z2

∂x∂y
∂z2

∂y2

)

,

(

∂x
∂p

∂y
∂p

∂x
∂q

∂y
∂q

)

=

(

∂v2

∂p2

∂v2

∂p∂q
∂v2

∂p∂q
∂v2

∂q2

)

We obtain:

∂2z

∂x2
=

1

∆

∂2v

∂q2

∂2z

∂x∂y
=

1

∆

∂2v

∂p∂q

∂2z

∂y2
=

1

∆

∂2v

∂p2

and

∆ =

∥

∥

∥

∥

∥

(

∂2v
∂p2

∂2v
∂p∂q

∂2v
∂p∂q

∂2v
∂q2

)
∥

∥

∥

∥

∥
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This transformation converts a quasi-linear Eq. (1.1) into a

linear Eq.(1.3).

II. LAGRANGE TRANSFORMATION

We have

y = y(x) (2.1)

y′ = t =
dy

dx
(2.2)

u = u(t) (2.3)

u′ =
du

dt
(2.4)

From (2.2), solve for x as a function of t and substitute into

the following

u = xt− y (2.5)

Differentiating the expression u = xt − y with respect to t,
we get:

du = xdt+ tdx−
dy

dx
dx

= xdt+ (t−
dy

dx
)dx

= xdt

From this, it’s evident that u is a function of t, and its

derivative with respect to t is x. Eq. (2.5) determines a

transformation between the variables u, y, x, and t. It maps

y = y(x) to

t = t(x), u = u(t) (2.6)

Similarly,y = xt−u from Eq.(2.5), it follows that it defines

another transformation that is the inverse of the one above.

Hence, these two transformations are mutually inverse, and

their relation is symmetric.

The Legendre transformation has a property: if two curves

are tangent on the x-y plane, then after transformation to the u-

t plane, they are also tangent, and vice versa. Transformations

with this property are called contact transformations. The

Legendre transformation is a special case of contact trans-

formations.

Extending the above ideas to the case of multiple variables,

consider a function U of n variables q1, q2, . . . , qn, which has

continuous partial derivatives up to the second order. Let U
be transformed into a new set of variables Q1, Q2, . . . , Qn

according to the equation:

Qi =
∂U

∂qi
, (i = 1, 2, . . . , n) (2.7)

They constitute a set of transformations with respect to the

original variables q1, q2, . . . , qn. The Jacobian determinant of

these transformations with respect to the original variables

q1, q2, . . . , qn is given by:

∥

∥

∥

∥

∂Qi

∂qj

∥

∥

∥

∥

=

∥

∥

∥

∥

∂2U

∂qi∂qj

∥

∥

∥

∥

From Eq.(2.7), the original variables can be solved out as

qi = qi(Q1, Q2, . . . , Qn), (i = 1, 2, . . . , n) (2.8)

Considering the new function:

UC =

n
∑

i=1

Qi · qi − U (2.9)

Differentiating the above equation, we get:

dUC =

n
∑

i=1

∂UC

∂qi
dqi =

n
∑

i=1

∂qi dQi

We have thus demonstrated:

qi =
∂UC

∂Qi

(i = 1, 2, . . . , n) (2.10)

The relationship between two functions U and UC is

given by Eq.(2.9). The corresponding relationships between

variables and functions are respectively given by Eqs.(2.7)

and (2.10). They encapsulate many duality relationships in

mechanics and physics.

III. THE SYMMETRY OF LEGENDRE TRANSFORM

Multivariable function: Φ = Φ(x1, x2, . . . , xn), where

xi (i = 1, 2, . . . , n) are independent variables. For conve-

nience, let’s assume Φ is smooth and differentiable in N -

dimensional space, such that at each point, si =
∂Φ
∂xi

= ∂Φ
∂xi

,

then

dΦ =
n
∑

i=1

∂Φ

∂xi

dxi =
n
∑

i=1

sidxi (3.1)

[11,12]

If we take m (m ≤ n) of the variables from

the function Φ = Φ(x1, x2, . . . , xn), the independent

variables xj (j = 1, 2, . . . ,m) are replaced by their

corresponding variables sj , forming a new function Ψ,

defined by Lj : Φ(x1, x2, . . . , xm, xm+1, . . . , xn) →

Ψ(s1, s2, . . . , sm, xm+1, . . . , xn), where

Ψ =

m
∑

j=1

sjxj − Φ (3.2).

Considering Eq.(3.1), we have dΨ =
∑m

j=1
(sjdxj +

xjdsj)−
∑n

i=1
sidxi, where j = 1, 2, . . . ,m; i = 1, 2, . . . , n;

and m ≤ n. Simplifying, we get

dΨ =

m
∑

j=1

xjdsj −

n
∑

i=m+1

sidxi (3.3).

Since any given set of variables uniquely determines a

function, different functions are essentially distinguished by

their sets of independent variables. Therefore, the differential

form of any function can be expressed as

dΨ =

m
∑

j=1

∂Ψ

∂sj
dsj +

n
∑

i=m+1

∂Ψ

∂xi

dxi (3.4).

Comparing the first half of Eq. (3.4) with Eq. (3.3), we

find xj = ∂Ψ
∂sj

, which corresponds to sj = ∂Φ
∂xj

. This shows
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that the two variables before and after the transformation are

interrelated. Additionally, Eq. (3.2) can be rewritten as

Φ+Ψ =
m
∑

j=1

sjxj (3.5)

The functions before and after the transformation are equiv-

alent, demonstrating the clear symmetry of the Legendre

transformation.

IV. LEGENDRE TRANSFORMATION ENTERS STATISTICAL

MECHANICS

The ensemble method is a core concept in the teaching of

statistical mechanics, generally studying three ensembles: mi-

crocanonical ensemble, canonical ensemble, and grand canon-

ical ensemble. For a system with n independent variables, the

number N of equivalent characteristic functions is given by

N =

n
∑

i=0

Cn
i = 2n (4.1)

For a uniform system with three independent variables,

there are 8 equivalent characteristic functions, implying a

total of 8 ensembles. Starting from the fundamental relation-

ship of the microcanonical ensemble, this paper utilizes the

Legendre transformation of entropy and analogously defines

the transformation of the partition function, while obtaining

the characteristic functions and partition functions of various

ensembles.

The characteristic function of the microcanonical ensemble

is entropy, with the corresponding thermodynamic formula:

S = k lnΩ(E, V,N) (4.2)

It is often challenging to derive other functions from entropy

using Legendre transformation. Due to historical reasons, the

variables involved in Legendre transformation do not always

appear in pairs. For example, the energy E of a system

is paired with the reciprocal of temperature (β = 1/kT ,

where k is the Boltzmann constant). However, temperature is

commonly used in many relationships, such as the familiar

equation F = E − TS, which relates free energy and

entropy but obscures the symmetry between β and E. If we

define dimensionless quantities: S′ = S/k, F ′ = βF , their

duality can be perfectly represented as F ′(β) + S′(E) = βE.

Therefore, we rewrite Eq. (4.2) as

S/k = lnΩ(E, V,N) (4.3)

In differential form:

d ln Ω(E, V,N) = dS(k) = βdE + γdV + αdN (4.4)

Starting from the dimensionless quantity S′, using Legendre

transformation to obtain other dimensionless quantities, we

have 3 pairs of corresponding variables: β,E; α,N ; γ, V . To

express the dimensionless quantities as characteristic functions

in statistical mechanics, we also need to know the common

expressions of β, α, γ. From the thermodynamic formula dS =
(1/T )dE + (p/T )dV − (µ/T )dN , we obtain

dS(k) = (1/kT )dE + (p/kT )dV − (µ/kT )dN (4.5)

Comparing Eqs. (4.4) and (4.5), we have

β = 1/kT, γ = βp, α = −βµ (4.6)

Then Eq. (4.4) becomes

d lnΩ = dS(k) = βdE + βpdV − βµdN

From this equation, we derive:

β =
∂ lnΩ

∂E

∣

∣

∣

∣

V,N

, p =
1

β

∂ lnΩ

∂V

∣

∣

∣

∣

E,N

, µ = −
1

β

∂ lnΩ

∂N

∣

∣

∣

∣

E,V

V. THE APPLICATION OF LEGENDRE TRANSFORM IN

STATISTICAL MECHANICS

Starting from Sk(E, V,N) and performing Legendre trans-

formations to other functions, we can analogously define the

transformation of partition functions.

5.1 Transformation of characteristic functions

There are a total of 7 characteristic functions equivalent to

Sk(E, V,N), denoted by x1 = E, x2 = V , x3 = N , s1 = β,

s2 = γ, s3 = α.

5.1.1 Transformation of microcanonical ensemble charac-

teristic functions

The characteristic function of the microcanonical ensemble

is entropy, and there are 3 possible Legendre transformations

when changing one variable of Sk(E, V,N), corresponding to

3 characteristic functions and 3 ensembles.

If the variable transformation is E → β, meaning only

energy exchange between the system and the surroundings,

we have from Eq. (3.5):

Ψ1(β, V,N) + Sk(E, V,N) = βE (5.1)

Rewriting this as Ψ1(β, V,N) = βE − Sk(E, V,N) and

substituting β = 1/kT , we get:

Ψ1(β, V,N) = βE − βTS = β(E − TS) (5.2)

Letting Ψ1 = βF , we obtain F + TS = E, which is

the familiar thermodynamic equation. Here, F (T, V,N) is

the Helmholtz free energy, the characteristic function of the

canonical ensemble. From equation (3), we get the differential

equation for the function: dΨ1 = Edβ − γdV − αdN , and

considering γ = βp, α = −βµ, we have:

dΨ1 = Edβ − βpdV + βµdN (5.3)

If we substitute Ψ1 = βF into this equation, we get dF =
−SdT−pdV+µdN , which is the familiar differential equation

for the Helmholtz free energy.

If the variable transformation is V → γ, meaning only

force interactions between the system and the surroundings,

we obtain a new ensemble characterized by:

Ψ2(E, γ,N) + Sk(E, V,N) = γV

If the variable transformation is N → α, meaning only

particle number exchange between the system and the sur-

roundings, we obtain another new ensemble characterized by:

Ψ3(E, V, α) + Sk(E, V,N) = αN

5.1.2 Transformation of characteristic functions by changing

two variables
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If we change two variables of Sk(E, V,N), there are 3

possible Legendre transformations, corresponding to 3 char-

acteristic functions and 3 ensembles.

If the variable transformation is E → β, V → γ, meaning

only energy exchange and force interactions between the

system and the surroundings, we have from Eq. (3.5):

Ψ4(β, γ,N) + Sk(E, V,N) = βE + γV

Letting Ψ4 = βG and substituting β = 1/kT , γ = βp, we

obtain G+ TS = E + pV , where G is the Gibbs function, a

familiar thermodynamic quantity.

If the variable transformation is E → β, N → α, meaning

only energy exchange and particle number exchange between

the system and the surroundings, we obtain another ensemble

characterized by:

Ψ5(β, V, α) + Sk(E, V,N) = βE + αN

Letting Ψ5 = βJ and substituting β = 1/kT , α = −βµ, we

obtain J + TS = E − µN , where J(T, V, µ) is the grand

canonical potential, precisely the characteristic function of the

grand canonical ensemble.

If the variable transformation is V → γ, N → α, meaning

only force interactions and particle number exchange between

the system and the surroundings, we obtain another ensemble

characterized by:

Ψ6(E, γ, α) + Sk(E, V,N) = γV + αN

5.1.3 Transformation of characteristic functions by changing

three variables

If we change three variables of Sk(E, V,N), there is 1

possible Legendre transformation, corresponding to 1 charac-

teristic function and 1 ensemble.

If the variable transformation is E → β, V → γ, N →

α, meaning energy exchange, force interactions, and particle

number exchange between the system and the surroundings,

we obtain another ensemble characterized by:

Ψ7(β, γ, α) + Sk(E, V,N) = βE + γV + αN

This last Legendre transformation changes three variables,

resulting in the zero ensemble. Therefore, there are effectively

7 ensemble distributions.

5.2 Transformation of partition functions

Considering β = 1/kT , the partition function of the

microcanonical ensemble is Ω(E, V,N) = eSk = eβTS .

If the variable transformation is E → β, the characteristic

function is transformed from Sk(E, V,N) to Ψ1(β, V,N) as

follows:

Ψ1(β, V,N) = βE − βTS = βF (5.4)

Correspondingly, the partition function Ω(E, V,N) is trans-

formed to:

Z(β, V,N) =
∑

E

Ω(E, V,N)e−βE =
∑

E

eβTSe−βE (5.5)

which is the partition function of the canonical ensemble.

Similarly, by analogy with Legendre transformations of

characteristic functions, we can derive the partition functions

of other ensembles.

If the variable transformation is V → γ, the partition

function is transformed to:

A(E, γ,N) =
∑

E

Ω(E, V,N)e−γV

If the variable transformation is N → α, the partition

function is transformed to:

B(E, V, α) =
∑

E

Ω(E, V,N)e−αN

If the variable transformation is E → β, V → γ, the

partition function is transformed to:

C(β, γ,N) =
∑

E

Ω(E, V,N)e−βEe−γV

If the variable transformation is E → β, N → α, the

partition function is transformed to:

Ξ(β, V, α) =
∑

E

Ω(E, V,N)e−βEe−αN

which is the partition function of the grand canonical ensem-

ble.

If the variable transformation is V → γ, N → α, the

partition function is transformed to:

D(E, γ, α) =
∑

E

Ω(E, V,N)e−γV e−αN

If the variable transformation is E → β, V → γ, N → α,

the partition function is transformed to:

M(β, γ, α) =
∑

E

Ω(E, V,N)e−βEe−γV e−αN

5.3 Relationship between partition functions and character-

istic functions

For the partition function of the canonical ensemble given

in Eq. (5.5), taking the logarithm of both sides:

lnZ(β, V,N) = βTS − βE = −β(E − TS)

Considering Eq. (5.3), we have the relationship between

the partition function and the characteristic function of the

canonical ensemble:

lnZ(β, V,N) = −Ψ1(β, V,N) = −βF (5.6)

Therefore, the characteristic function F = −kT lnZ(β, V,N),
which is an important expression for thermodynamic quantities

in the canonical ensemble. Considering Eq.(5.2), we have the

thermodynamic formulas for the canonical ensemble:

E = −

(

∂ lnZ

∂β

)

V,N

, p =
1

β

(

∂ lnZ

∂V

)

β

,

µ = −
1

β

(

∂ lnZ

∂N

)

β

(5.7)

which are consistent with what we learned in statistical me-

chanics.

Similarly, by analogy with Legendre transformations of

characteristic functions, we can derive the relationships be-

tween partition functions and characteristic functions for other

ensembles along with their corresponding thermodynamic

formulas.
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VI. CONCLUSION

By deducing the Legendre transform and its application in

multivariate functions in statistical mechanics, we can further

understand the symmetry and universality of the Legendre

transformation. From the above introduction, the transforma-

tion of characteristic functions unifies with the transformation

of partition functions as introduced in statistical mechanics.

From a mathematical perspective, transitioning from one en-

semble to another in statistical mechanics is essentially a

Legendre transformation involving variable transformations.

Moreover, Legendre transformation does not alter the prop-

erties of the system. Therefore, from this perspective, these

ensembles are equivalent.
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