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The electromechanical response of polymeric soft matter to applied electric fields is of fundamental scientific
interest as well as relevant to technologies for sensing and actuation. Several existing theoretical and numerical
approaches for polarizable polymers subject to a combined applied electric field and stretch are based on discrete
monomer models. In these models, accounting for the interactions between the induced dipoles on monomers is
challenging due to the nonlocality of these interactions. On the other hand, the framework of statistical field
theory provides a continuous description of polymer chains that potentially enables a tractable way to account for
these interactions. However, prior formulations using this framework have been restricted to the case of weak
anisotropy of the monomer polarizability.

This paper formulates a general approach based in the framework of statistical field theory to account for
the nonlocal nature of the dipolar interactions without any restrictions on the anisotropy or nonlinearity of
the polarizability of the monomer. The approach is based on 3 key elements: (1) the statistical field theory
framework, in which the discrete monomers are regularized to a continuous dipole distribution; (2) a replacement
of the nonlocal dipole-dipole interactions by the local electrostatics PDE with the continuous dipole distribution
as the forcing; (3) the use of a completely general relation between the polarization and the local electric
field. Rather than treat the dipole-dipole interactions directly, the continuous description in the field theory
enables the computationally-tractable nonlocal-to-local transformation. Further, it enables the use of a realistic
statistical-mechanical ensemble wherein the average far-field applied electric field is prescribed, rather than
prescribing the applied field at every point in the polymer domain.

The model is applied, using the finite element method (FEM), to study the electromechanical response of a
polymer chain in the ensemble with fixed far-field applied electric field and fixed chain stretch. The nonlocal
dipolar interactions are found to increase, over the case where dipole-dipole interactions are neglected, the
magnitudes of the polarization and electric field by orders of magnitude as well as significantly change their
spatial distributions. Next, the effect of the relative orientation between the applied field and the chain on the
local electric field and polarization is studied. The model predicts that the elastic response of the polymer chain is
linear, consistent with the Gaussian approximation, and is largely unchanged by the orientation of the applied
electric field, though the polarization and local electric field distributions are significantly impacted.

1. Introduction
Stimuli-responsive polymeric soft matter is central to actuators and sensors in applications such as soft robotics [1–11], stretchable
electronics [12–15], energy harvesting [16–19], healthcare [20–24], and functional systems broadly [25–35]. Electro-responsive
polarizable polymers such as dielectric elastomers (DEs) are naturally soft, lightweight, compliant, and can undergo large
deformation under an applied electric field, making them promising candidate materials. However, there are also shortcomings
with currently-available polymerics materials, e.g., they often need highly applied electric fields to achieve a meaningful level of
actuation [36]. A fundamental understanding of the physics of polymers subjected to electric fields is essential to improve existing,
and discover new, polarizable polymeric materials, e.g., in the case of statistical mechanics applied to soft matter flexoelectricity
[37–42].

Prior Work.The physics of polarizable polymeric soft matter is governed by the polymer chain entropy, the interaction between the
applied electric field and the induced dipoles, and the nonlocal dipolar interactions between the polymer segments (Fig. 1). Existing
models for electro-responsive polymeric soft matter can be broadly divided into two categories: continuum based-approaches, e.g.,
[43–51], and statistical mechanics-based approaches, e.g., [37, 52–58].

∗ pkhandag@alumni.cmu.edu

ar
X

iv
:2

40
4.

02
84

8v
1 

 [
co

nd
-m

at
.s

of
t]

  3
 A

pr
 2

02
4

https://link.aps.org/doi/10.1103/PhysRevE.109.044501
https://orcid.org/0000-0002-3105-1439
https://orcid.org/0000-0002-0516-3066
mailto:pkhandag@alumni.cmu.edu


2

Continuum approaches typically formulate the free energy density by coupling established rubber elasticity models to continuum
electrostatics. These approaches are useful in enabling the study of electro-responsive polymers in complex and realistic geometries
and boundary conditions. However, these approaches cannot provide predictive insights that are based in the response of the
individual monomers.

The statistical mechanics based-approaches for polymers, on the other hand, are capable of accounting for the molecular details
of the polymer chain. Statistical mechanics has been employed for several decades to study the mechanical response of polymers
and their networks, e.g., [59–63]. In the context of electro-responsive polymers, the first works that applied statistical mechanics
appear to be [52] and [53]. Broadly, their work derives an approximate expression for the most probable density of monomer
orientations that is exact when the polymer chain is not stretched. Building on this, a statistical mechanics-based discrete monomer
model for an electro-responsive polarizable polymer chain was presented in [54, 57]. Using the maximum term approximation
assumption, they evaluated the most probable density of monomer orientation and the free energy of polymer chain applicable at
large stretches. Although these theoretical approaches for electro-responsive polymers provide valuable insights, they all ignore
the nonlocal dipolar interactions; they only model the interaction between the applied electric field and the induced dipoles. A key
reason for this limitation is that these approaches all use a discrete description of the polymer chain, and it is computationally very
expensive to account for all pairs of interactions.

In contrast, a statistical field theoretic formulation [64–66] for polarizable polymer chains in an external electric field was
presented in [67] that accounts for the dipolar interactions. A key feature of the field theoretic approach is that the polymer is
described as a continuous — rather than discrete — object, enabling the replacement of dipole-dipole interaction sums by integrals
[68–70]. However, the formulation in [67] is limited to the setting of weak anisotropy of the polymer polarizability. Also, in the
field theoretic formulation, it is challenging to account for realistic electrical boundary conditions, i.e., typically the statistical
mechanics ensemble assumes that the applied field is given at every point, rather than only the far-field or average value which is
more realistic.

Figure 1. A polarizable polymer chain in an externally-applied far-field electric field E0 induces dipoles in the polymer segments. The
dipole-dipole interactions are long range — they decay as the inverse third power of the distance — and lead to nonlocal effects that cannot be
truncated without very large error [71]. These, in turn, affect the configuration of the chain and the mechanical response. We show in this paper
that neglecting the dipole-dipole interactions and only accounting for the applied field-dipole interactions, as in prior work, leads to large errors.

Contributions of This Work. To overcome the limitations of the existing models for polarizable polymeric soft matter, we
have developed a statistical field theoretic framework for polarizable polymer chains that enables us to account for the nonlocal
dipole-dipole interactions among the polymer segments. The approach is based on three elements.

First, the statistical field theory framework, in which the polymer chain is regularized to a continuous description. We model
the polarizable flexible polymer chain using a worm-like chain (WLC) model with field-induced dipoles along the length of the
chain. The continuous description enables us to avoid treating individual interactions between discrete dipoles, but instead as a
tractable continuous polarization distribution.
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Second, the continuous polarization description enables us to replace the nonlocal dipole-dipole interactions — an integral
operation — by the local electrostatics partial differential equation (PDE) which uses instead the interaction with the local electric
field set up the dipoles. To compute the effective bound charge, we introduce a polarization operator for a polymer chain, and
derive an expression for the thermodynamically-averaged induced polarization.

Third, we use a completely general dielectric response function that relates the induced polarization to the local electric field.
While we use a linear anisotropic relation between the polarization and the electric field for the numerical calculations, the method
is directly applicable to general nonlinear response functions. Further, the dielectric response is necessarily nonlinear in the
orientation to satisfy frame invariance. These elements provide a self-consistent field theoretic formulation to obtain the properties
of the polymer chain — such as segment density, polarization distribution, and local electric field distribution around the polymer
chain — under an externally applied electric field.

A significant aspect of our formulation is that we apply the external electric field only on the boundary of the spatial domain
that includes the polymer chain as well as free space. This corresponds to a thermodynamic ensemble with specified far-field or
average applied electric field [54], which is realistic in terms of experimental configurations. The local electric field is obtained
self-consistently through solving for the electrostatic equation that accounts for the polarization distribution. By using the finite
element method (FEM) with an unstructured discretization, we are able to efficiently solve by refining the mesh around the polymer
chain where variations are large and keeping it coarse in the free space away from the chain.

The FEM implementation is applied to study the electromechanical response of a polymer chain in the ensemble with fixed
far-field applied electric field and fixed chain stretch. We find that the nonlocal dipolar interactions are found to increase, over the
case where dipole-dipole interactions are neglected, the magnitudes of the polarization and electric field by orders of magnitude as
well as change significantly their spatial distributions. Next, we study the effect of the relative orientation between the applied field
and the chain on the local electric field and polarization. When the applied electric field is aligned with the chain end-to-end vector,
the larger values of the polarization and electric field are primarily concentrated near the constrained chain ends. In contrast, when
the applied field is orthogonal to the chain end-to-end vector, the larger values of the polarization and electric field are distributed
along the chain. However, we observe that despite these differences in the polarization and local field, the elastic response of the
chain is linear and largely unchanged by the different orientations of the applied electric field.

Organization. Section 2 presents our approach; Section 3 presents the numerical method; and Section 4 presents results from our
calculations.

2. Formulation
This section presents the formulation of the framework for a polarizable polymer chain under a far-field applied electric field. First,
we summarize the standard self-consistent statistical field theoretic description of the polymer chain, following [66]. Next, we
introduce the polarization operator and its thermodynamic average for the polarizable polymer chain, and describe the coupling
between electrostatics and polymer chain description.

2.A. Self-Consistent Statistical Field Theory Description of a Polymer Chain
We use a worm-like chain (WLC) model in this paper with a small but nonzero value for the persistence length. The chain has
N coarse-grained polarizable polymer segments, each with length a; Lc = aN is the total contour length of the chain. The
persistence length is denoted by λ, i.e., the distance along the polymer chain contour over which the orientational correlations
decay. The ratio λ/Lc determines the flexibility of the chain: λ/Lc ≪ 1 gives a very flexible polymer chain, whereas λ/Lc ≫ 1
gives a rigid rod-like polymer chain. To model a flexible polymer chain in this work, we use λ/Lc = 10−3.

A coarse-grained configuration of the polymer chain is represented as a continuous 3-d space curve r(s) in Figure 2, where s is
the chain contour coordinate that is non-dimensionalized with chain contour length Lc such that 0 ≤ s ≤ 1. The position and

orientation of the chain segment with contour coordinate s are given by x = r(s) and u =
1

Lc

dr

ds
, respectively. The chain is

assumed to be inextensible, hence u is a unit vector. The position and orientation at the ends of the chain are denoted x0 and u0 at
s = 0 and x1 and u1 at s = 1.

The fundamental statistical mechanics quantity is the partition function, Q[w], which has the expression:

Q[w] =
1

4πV

∫
dx

∫
du q(x,u,x0,u0, s)q∗(x,−u,x1,u1, 1− s), (2.1)

where w(x,u) is the potential of the external field, originating in the interaction between the induced dipole on the polymer
segment and the local electric field and whose form is given in (2.13); q(x,u,x0,u0, s) and q∗(x,−u,x1,u1, 1− s) are the
partial partition functions of the chain for the two chain fragments, one from 0 to s and the other from 1 to s, respectively (Fig. 2);
and V = Na2 is the volume of the polymer chain in 2-d (we would use V = Na3 for 3-d). The domain of integration is over the
spatial domain in x and over the unit sphere in u.
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Figure 2. Kinematic quantities used to describe the polymer chain.

The partial partition functions q and q∗ are obtained by solving the PDEs below [66]:

∂q

∂s
= −w(x,u)q − Lcu · ∇xq +

Lc

2λ
∇2

uq (2.2)

∂q∗

∂s′
= −w(x,u)q∗ − Lcu · ∇xq

∗ +
Lc

2λ
∇2

uq
∗ (2.3)

where s′ = 1− s varies along the chain contour in the opposite sense as s (Fig. 2).

The corresponding initial conditions are:

q(x,u,x0,u0, s)
∣∣∣
s=0

= V δ(x− x0). (2.4)

q∗(x,−u,x1,u1, s′)
∣∣∣
s′=0

= V δ(x− x1) (2.5)

The initial conditions in (2.4) and (2.5) specify the physical constraint that the ends of the chain are fixed at x0 and x1. We do
not constrain the chain orientations at the ends.

The linear PDEs in (2.2) and (2.3) are Fokker–Planck equations that govern the propagation of correlations in segment position
and orientation for a worm-like polymer chain under an external field w(x,u). This system of PDEs is derived using a recursive
relation based on the Markov property of the polymer chain partition function. Physically, these PDE imply that the partition
function for a chain fragment from 0 to s+∆s can be composed of two contributions: first, the partition function for the chain from
0 to s, and second, the partition function for a small additional chain segment between s and s+∆s. The partition function for
this additional segment is then written, using a Boltzmann weight, in terms of the energy that consists of a quadratic contribution
from chain bending and the energy due to the external field w. Taking the limit ∆s → 0 leads to the system of PDE; for the details
of the derivation, we refer to Section 2.5 in [66].

The first term on the right sides of (2.2) and (2.3) relate to the external field acting on the polymer chain. The operator ∇2
u in

the third term on the right side is the rotational diffusion operator that generates diffusive motion on the unit sphere.

In general, by using the appropriate form for the functional dependence of w(x,u) on u, these equations can be used to describe
the interaction between worm-like polymer chains with a broad class of external potentials, including electric and magnetic fields
[66]. Examples include polymer chains with induced or permanent electric or magnetic dipoles along the polymer backbone, and
anisotropic potential fields that can model liquid crystalline behavior. In this work, we use w(x,u) to model the electrostatic
energy of the dielectric polymer chain due to induced electric dipoles in the polymer segments in an externally applied electric
field.
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2.B. Spatial Dipole Distribution
The density operator ρ̂(x,u) for the WLC is defined as [66]:

ρ̂(x,u) :=

1∫
0

ds δ(x− r(s))δ

(
u− 1

Lc
r′(s)

)
δ(|u| − 1), (2.6)

The Dirac measures build in the kinematic definitions of x and u as constraints. The thermodynamically-averaged segment
density, ⟨ρ̂(x,u)⟩, is then obtained as [66]:

⟨ρ̂(x,u)⟩ = 1

4πV Q[w]

1∫
0

ds q(x,u,x0,u0, s)q∗(x,−u,x1,u1, 1− s). (2.7)

where ⟨·⟩ corresponds to the statistical average performed over all possible conformations of the polymer chain.
Next, we introduce the polarization operator p̂(x,u) as:

p̂(x,u) := 4πV

1∫
0

ds pseg(x,u) δ(x− r(s))δ

(
u− 1

Lc
r′(s)

)
δ(|u| − 1), (2.8)

where pseg(x,u) is the polarization response function, i.e., the induced polarization at the point (x,u) in configuration space.
Defining ⟨p̂(x,u)⟩ as the thermodynamically-averaged polarization of the polymer segment at (x,u) in configuration space,

we write:

⟨p̂(x,u)⟩ =

〈
4πV

1∫
0

ds pseg(x,u) δ(x− r(s))δ

(
u− 1

Lc
r′(s)

)
δ(|u| − 1)

〉

= 4πV pseg(x,u)

〈 1∫
0

ds δ(x− r(s))δ

(
u− 1

Lc
r′(s)

)
δ(|u| − 1)

〉
= 4πV pseg(x,u) ⟨ρ̂(x,u)⟩ , using (2.6) and (2.7).

(2.9)

We define p(x), the polarization at the spatial location x, as the average over u at the location x:

p(x) :=
1

4π

∫
du ⟨p̂(x,u)⟩ = V

∫
du pseg(x,u)⟨ρ̂(x,u)⟩ (2.10)

This final quantity p(x) will appear in the electrostatic equation in the bound charge density.

2.C. Electrostatics
We next obtain the electric field through the local electrostatics PDE, which is tractable numerically since the charge distribution
described through p(x) does not involve singular dipole distributions. This also lets us directly apply realistic boundary conditions
— i.e., specified potential on the boundary of the domain, corresponding to a given far-field applied electric field — without having
to compute the Greens function for a given geometry. As shown in the Appendix of [54], this ensemble is equivalent to prescribing
the average field over the domain. The interior field within the domain is a superposition of the electrostatic interaction between
the applied field and the induced dipole response of the polymer segments as well as the nonlocal dipole-dipole interactions among
the induced dipoles. The usual electrostatics PDE accounts automatically for all of these interactions.

We start from the electrostatic equation for the electrostatic potential ϕ(x):

−ϵ0∇2ϕ(x) = −div p on Ω, given ϕ(x) = −E0 · x on ∂Ω (2.11)

where p is obtained from (2.10); −div p is the bound charge density; E0 is the given average electric field; and Ω is the region of
space with boundary ∂Ω over which we solve the electrostatic problem.

The electric field E(x) is related to ϕ(x) through the classical relation:

E(x) = −∇ϕ(x). (2.12)
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In turn, the field w(x,u) is related to E(x) as [66]:

w(x,u) = − 4πV

2kBT
pseg(x,u) ·E(x) (2.13)

2.D. Monomer Dipole Response
We assume that the monomers that compose the chain have a dielectric response that is linear in the electric field1. However, the
response is necessarily nonlinear in the orientation u to satisfy rotation invariance of the monomer.

We define the polarization response of a segment of the polymer chain as:

pseg(x,u) := ϵ0β(u)E(x). (2.14)

where β is related to the molecular polarizability tensor of the chain segment, and depends on the orientation of the chain segment
u. We model the polarizability tensor β as transversely isotropic [52, 53] with the expression:

β(u) = β∥u⊗ u+ β⊥ (I − u⊗ u) . (2.15)

where β∥ and β⊥ are the polarizabilities of the segment along the segment orientation and transverse to the segment orientation,
respectively.

2.E. Model Summary
The external field w(x,u) connects to the PDEs for the partial partition functions q and q∗ in (2.2) and (2.3). The solutions for
q and q∗ in turn relate to the partition function Q[w] and average segment density ⟨ρ̂(x,u)⟩ using (2.1) and (2.7), respectively.
Finally, to close the loop, the polarization, p(x), is related by (2.10) to Q[w], ⟨ρ̂(x,u)⟩, and pseg .

3. Numerical Method
3.A. Self-consistent Iteration

Algorithm 1 Self-consistent iterative algorithm to compute the equilibrium properties of a polymer chain
while ∆Q > ϵ = 10−3 do

Compute p(x) = V

∫
du pseg(x,u)⟨ρ̂(x,u)⟩ ▷ pseg(x,u) = ϵ0β(u)E(x)

Solve for ϕ(x): ∇2ϕ(x) =
1

ϵ0
div p(x), given ϕ(x) = −E0 · x on ∂Ω

Compute E(x) = −∇ϕ(x)

Compute w(x,u) = − 4πV

2kBT

[
ϵ0β(u)E(x)

]
·E(x)

Compute q and q∗, by solving (2.2) and (2.3), respectively
Compute Q[w] and ⟨ρ̂(x,u)⟩, using (2.1) and (2.7), respectively

end while
Outputs: Eeq(x), Qeq, ⟨ρ̂(x,u)⟩eq,peq(x)

Algorithm 1 shows the iterative procedure in the proposed self-consistent field theory formulation to obtain the equilibrium
properties of a polarizable polymer chain.

To initialize, i.e., guess the electric field for the initial step, we simply use ϕ(x) = −E0 · x, and use this to compute p from
(2.14). To continue the numerical iteration from step n to step n+ 1, we use pn(x), the polarization at iteration step n, to obtain
the electric potential at the next iteration step, ϕn+1(x), using:

∇2ϕn+1(x) =
1

ϵ0
div pn(x), given ϕn+1(x) = −E0 · x on ∂Ω (3.1)

ϕn+1(x) is used to obtain wn+1(x,u) using (2.12) and (2.13). Using wn+1(x,u), we again solve (2.2) and (2.3) to compute
Q[wn+1] and ⟨ρ̂(x,u)⟩n+1 using (2.1) and (2.7), respectively. This in turn lets us compute pn+1(x) using (2.9) and (2.10),
which is used in the equation above to continue the iteration. The self-consistent iteration procedure is continued until the energy
term −kBT logQ has converged, which we check by using the change in Q across successive iterations.

1 While we use a dielectric response that is linear in the electric field for this paper to perform explicit numerical calculations, it is equally easy to incorporate
more general nonlinear responses.
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3.B. Finite Element Formulation
We use FEM to solve the PDEs (2.2) and (2.3) for the partial partition functions as in [72]. We use FEniCS, an open-source FEM
framework, for the numerical implementation [73, 74]. We work in 2 spatial dimensions (i.e., x = (x1, x2) ∈ Ω ⊂ R2) and
restrict the unit orientation vector to the unit circle (i.e., it can be represented as u = (cosϕ, sinϕ), where ϕ ∈ [0, 2π)). The
configuration space in (x,u) is 3-dimensional, enabling us to use standard FEM meshing and shape functions.

In terms of q(x1, x2, ϕ, s), we can rewrite (2.2) as:

∂q

∂s
= −wq − Lc

(
cosϕ

∂q

∂x1
+ sinϕ

∂q

∂x2

)
+

Lc

2λ

(
∂2q

∂ϕ2

)
, (3.2)

The contour coordinate s is treated as a time-like variable. Derivatives with respect to s in (2.2) and (2.3) are approximated
using a Crank-Nicolson finite difference method. We discretize in s using a uniform discretization with 100 steps along the chain
contour. We can then write:

qi+1 − qi

∆s
=

f i+1 + f i

2
, with f i = −wqi − Lc

(
cosϕ

∂qi

∂x1
+ sinϕ

∂qi

∂x2

)
+

Lc

2λ

(
∂2qi

∂ϕ2

)
(3.3)

where the superscripts i and i+ 1 represent the discretized quantities along s.
The domain in configuration space is discretized using first-order Lagrange family finite elements. We use a mesh with 20× 40

finite elements to discretize in x and 30 finite elements to discretize in ϕ, which is sufficiently refined that the quantities of interest
are independent of the mesh. The spatial mesh is finer around the chain ends, and the Dirac delta functions in (2.4) and (2.5) are
approximated as peaked Gaussians. The mesh is uniform in the u discretization.

Following the usual FEM procedure, we first multiply (3.3) by a test function v(x1, x2, ϕ); second, integrate over x and u; third,

use integration-by-parts and the divergence theorem to convert the second derivatives
∂2q

∂ϕ2
to a product of first derivatives; and,

fourth, eliminate the boundary terms using the assumed Neumann boundary condition in (x1, x2, ϕ) to get the FEM weak form:∫
x̃,ϕ

(
qi+1v +

∆s

2
wqi+1v +

∆s

2
cosϕ

∂qi+1

∂x̃1
v +

∆s

2
sinϕ

∂qi+1

∂x̃2
v +

Lc∆s

4λ

∂qi+1

∂ϕ

∂v

∂ϕ

)

=

∫
x̃,ϕ

(
qiv − ∆s

2
wqiv − ∆s

2
cosϕ

∂qi

∂x̃1
v − ∆s

2
sinϕ

∂qi

∂x̃2
v − Lc∆s

4λ

∂qi

∂ϕ

∂v

∂ϕ

)
,

(3.4)

where x̃ = (x̃1, x̃2) =

(
x1

Lc
,
x2

Lc

)
is the nondimensional spatial coordinate.

4. Results and Discussion
In this section, we apply the model to examine the effect of dipole-dipole interactions; specifically, we compare the electric field
and dipole distributions with and without accounting for dipole interactions. Then, we examine the effect of the orientation of the
applied electric field, relative to the chain orientation, on the elastic response, the electric field, and the dipole distribution.

Various quantities are either nondimensionalized or rescaled, and will then be denoted by an overhead tilde ·̃. The chain
is assumed to have N = 100 polymer segments, each having length of a = Lc/N . The length scales in the problem are
nondimensionalized by chain contour length Lc. The computational domain is chosen to be −0.1 ≤ x̃1 ≤ 0.1,−0.2 ≤ x̃2 ≤ 0.2.

The electric field and polarization are both rescaled by dividing by

(√
2kBT

L3
c

)
, i.e., Ẽ =

E√
2kBT
L3

c

and p̃ =
p√
2kBT
L3

c

. For the

polarizability tensor, we use β∥ = 1 and β⊥ = 0.5 following [52]. The angle between the applied electric field E0 with ê1 is
denoted by θE0

.

4.A. Field and Dipole Distributions: Comparing with and without Dipole-dipole Interaction
We fix the chain end-to-end vector length to 1.5aN1/2 by fixing the chain ends at ±0.075 e2 as shown in Figure 3(b). We apply a
far-field electric field Ẽ0 = ê2 by using the appropriate electric potential on the boundaries of the computational domain.

Figure 3 shows the electric field, chain segment density, and polarization for the baseline case when the dipole-dipole interactions
are neglected. We observe that the average segment density of the chain is highest at the constrained ends, and largely concentrated
along the chain end-to-end vector. We also observe that the induced dipoles are essentially all oriented along Ẽ0.

Figure 4 shows a direct comparison of the polarization, p̃, obtained without and with the dipole-dipole interactions for the
extreme cases of the relative orientation between the applied field and the chain orientation. We observe that the polarization with
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(a) Electric field distribution Ẽ (b) Chain segment density ρ̃ (c) Polarization distribution p̃

Figure 3. The baseline case with dipole-dipole interactions neglected, with externally applied electric field Ẽ0 = ê2. The arrows show the
direction of the vector field, and the background color shows the magnitude. (a) The electric field distribution Ẽ, which is constant in space
and equal to Ẽ0, as expected. (b) The chain segment density ρ̃. (c) The polarization distribution p̃. Both the electric field and polarization
distributions are close to zero on the scale of the plot, which is chosen to allow comparison with the results when dipole-dipole interactions are
included.

(a) Polarization distribution p̃ for θE0
= 0 (b) Polarization distribution p̃ for θE0

= π/2

Figure 4. Comparison of the polarization distribution p̃, comparing without and with accounting for dipole-dipole interactions for different
orientations of the applied electric field (a) θE0 = 0, and (b) θE0 = π/2, both with |Ẽ0| = 1. In both (a) and (b), the left panel is without
accounting for the interactions and the right panel is with accounting for the interactions. The polarization is at least one order of magnitude
larger when dipole-dipole interactions are accounted for. The arrows show the direction of the vector field, and the background color shows the
magnitude.

the interactions considered is at least an order of magnitude higher than the case that neglects the interactions. Further, when
the interactions are not considered, essentially all of the dipoles are oriented along Ẽ0, whereas there are much more complex
dipole distributions when the interactions are considered. When Ẽ0 is aligned with the chain end-to-end vector, the polarization is
largely concentrated around the chain ends. However, when Ẽ0 is orthogonal to the chain end-to-end vector, the polarization is
relatively uniformly distributed along the chain.

We conclude that the dipole-dipole interactions not only increase the polarization by orders of magnitude, but also changes the
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distribution, and depends strongly on the relative orientation of the applied electric field.

4.B. Effect of the Orientation of the Electric Field Relative to the Chain

(a) Electric potential ϕ̃ for θE0
= 0 (b) Electric field Ẽ for θE0

= 0 (c) Polarization p̃ for θE0
= 0

(d) Electric potential ϕ̃ for θE0
= π/2 (e) Electric field Ẽ for θE0

= π/2 (f) Polarization p̃ for θE0
= π/2

Figure 5. Effect of orientation θE0 of the applied electric field Ẽ0, with full accounting of the dipole-dipole interactions. We use |Ẽ0(x)| = 1.
(a), (d) plot the electric potential; (b), (e) plot the electric field; and (c), (f) plot the polarization, for θE0 = 0 and θE0 = π/2 respectively. The
arrows show the direction of the vector field, and the background color shows the magnitude.

Next, we study the effect of the orientation of the applied electric field on the properties of the polymer chain. As in the earlier
section, we fix the chain ends and fix the magnitude of the applied electric field |Ẽ0| = 1, and study the effect of the field being
orthogonal to the chain orientation compared to being aligned parallel to the chain orientation.

Figure 5 shows the electric potential, the electric field, and the polarization for θE0 = 0 and θE0 = 0π/2. When the applied
electric field is orthogonal to the chain end-to-end vector (θE0 = 0), we observe that the dipole distribution is approximately
uniformly distributed along the chain. However, when the applied electric field is aligned with the chain end-to-end vector
(θE0

= π/2), the dipole distribution is primarily concentrated near the chain ends. The electric field distribution follows from the
electric potential. Further, we observe that when the applied electric field is orthogonal to the chain end-to-end vector, the electric
field is roughly uniformly distributed along the chain. However, when the applied electric field is aligned with the chain end-to-end
vector, the electric field is largely concentrated near the chain ends. We also observe that the local strength of the electric potential,
the electric field, and the polarization is higher when the applied electric field is orthogonal to the chain end-to-end vector as
compared to when it is aligned.

4.C. Elastic Response
To study the effect of chain stretch, we vary the length of the chain end-to-end vector, denoted L. The total free energy of the
polymer chain at equilibrium, F , is obtained as [75]:

F = −kBT logQ[w]− kBT

2

∫
dx du w(x,u)⟨ρ̂(x,u)⟩, (4.1)
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Figure 6. Elastic response (force against stretch) of the polymer chain for θE0 = 0. The insets show the electric field Ẽ and polarization p̃ for
L = aN1/2, 2aN1/2, 3aN1/2. The arrows show the direction of the vector field, and the background color shows the magnitude.

Figure 7. Elastic response (force against stretch) of the polymer chain for θE0 = π/2. The insets show the electric field Ẽ and polarization p̃

for L = aN1/2, 2aN1/2, 3aN1/2. The arrows show the direction of the vector field, and the background color shows the magnitude.

The first term is the free energy of the non-interacting polymer chain in the external field w(x,u), which double counts the
electrical energy due to dipole-dipole interactions. The second term in (4.1) corrects for this double counting. We define the

elastic force in the polymer chains by f :=
∂F

∂L
.

Figures 6 and 7 show the elastic force as a function of L for the applied electric field orthogonal and parallel to the chain
orientation respectively. The insets in the figures show the electric field Ẽ and polarization p̃. We observe that the elastic response
is linear, which is consistent with the Gaussian nature of the polymer chain, even with the applied electric field at different
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orientations. Further, the elastic force response is essentially unchanged even when we change the orientation of the applied
electric field. However, the distributions of the electric field and polarization change very significantly with the direction of the
applied electric field. When the applied electric field is orthogonal to the chain end-to-end vector (θE0

= 0, Fig. 6), we observe
that as the chain is stretched, the distributions of the electric field and polarization remain roughly uniformly distributed along the
chain, but are increasingly concentrated along the chain end-to-end vector with increasing stretch. However, when the applied
electric field is aligned with the chain end-to-end vector (θE0 = π/2, Fig. 7), the electric field and the polarization are primarily
concentrated near the chain ends, with the concentration changing with increasing stretch.

5. Concluding Remarks
We have developed a statistical field theory framework for polarizable polymer chains that overcomes key limitations of existing
approaches in accounting for the nonlocal dipole-dipole interactions between polymer segments. Our approach is applicable to
general nonlinear polarization-electric field responses, by reformulating the nonlocal dipole-dipole interactions through the local
PDE of electrostatics. Regardless of the nonlinearity of the polarization-field response, the PDE constraint is linear and directly
amenable to efficient numerical methods, such as boundary element methods that can account for unbounded domains [76] or very
efficient Fourier methods [77]. Our approach also enables the use of a more realistic ensemble that corresponds to a far-field
applied electric field.

There are several possibilities for further development. An immediate direction of study is to incorporate general nonlinear
polarization-electric field responses that go beyond the linear anisotropic model studied here. Another interesting direction would
be to apply the framework developed here to study cross-linked polymer networks, e.g. following [78]. This can provide key
physical insights into the effects of inter-chain dipole-dipole interactions on the response of electromechanical polymer networks
such as dielectric elastomers under external fields. Yet another interesting possibility is to study polymers in confined settings
with polarizable ambient media, which have been shown in other contexts to lead to unusual effects, e.g. [79, 80]. Further, by
including excluded volume interactions, it is possible to study the interplay between repulsive excluded volume interactions and
attractive dipole-dipole interactions to tailor the functional properties of polymeric soft matter. Furthermore, an important aspect
that we have not accounted for in our formulation is the role of fluctuations; recent developments in the statistical field theory
provide tools to make progress in this direction [81]. Finally, the dipole response can be generalized to account for screening,
rapid variations of the electric field, and so on [67]. In principle, these can be accounted for in our model — screening by using
the screened Poisson equation, for instance, and using gradients of the electric field in the monomer dipole response to account for
quadrupole and higher moments — but it is important to demonstrate these in practice.

Software and Data Availability. The code developed for this work and the associated data are available at
https://github.com/pkhandag/polarizable-polymer.git
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