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Abstract
The state-of-the-art proposes Life Care Annuities, that have been recently
designed as variable annuity contracts with Long-Term Care payouts and Guar-
anteed Lifelong Withdrawal Benefits. In this paper, we propose more general
features for these insurance products and refine their pricing methods. We name
our proposed product “GLWB-LTC”. In particular, as to the product features,
we allow dynamic withdrawal strategies, including the surrender option. Further-
more, we consider stochastic interest rates, described by a Cox-Ingersoll-Ross
process. As to the numerical methods, we solve the stochastic control problem
involved by the selection of the optimal withdrawal strategy through a robust tree
method, which outperforms the Monte Carlo approach. We name this method
“Tree-LTC”, and we use it to estimate the fair price of the product, as some rel-
evant parameters vary, such as, for instance, the entry age of the policyholder.
Furthermore, our numerical results show how the optimal withdrawal strategy
varies over time with the health status of the policyholder. Our findings stress
the important advantage of flexible withdrawal strategies in relation to insurance
policies offering protection from health risks. Indeed, the policyholder is given
more choice about how much to save for protection from the possible disability
states at future times.

Keywords: life care annuity, GLWB pricing, dynamic withdrawal strategy, tree
method, stochastic interest rate
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1 Introduction
As stressed by the World Health Organization1, every country in the world is expe-
riencing the phenomenon of population ageing, whose drivers are lower fertility and
higher survival prospects. Indeed, older people represent a growing share of the popu-
lation. For instance, it is estimated that the proportion of the world’s population over
60 years will nearly double from 12% to 22% by 2050.

While a longer life gives rise to several opportunities for older people and their
families, the quality of the added years of life highly depends on health.

Currently, it is estimated that more than 250 million people aged 60 years and
over have moderate to severe disability2. The progressive population ageing may
lead to more people experiencing age-related diseases/disorders and disability in their
more advanced stages of life (Petretto and Pili, 2022). Furthermore, as emphazised in
OECD/European Union (2022), Long-COVID or “Post COVID-19 Condition (PCC)”
will likely make chronic diseases more prevalent in both younger and older people in
the coming years.

Ageing and disability cannot be disentangled. Enabling older people to receive
care and support in the face of declines in physical and mental capacity (e.g., granting
access to long-term-care) is indeed one of the targeted initiatives related to healthy
ageing3, being aligned with the 17 Sustainable Development Goals (SDGs) set in the
2030 Agenda for Sustainable Development4.

As populations grow old and the demand for LTC services is expected to increase
in the coming years and decades, governments seek to balance financial sustainability
with the provision of effective social protection against the financial hardship that
may be caused to individuals by LTC needs (Costa-Font and Zigante, 2020). Indeed,
institutionalized care may be very expensive on a daily basis and may be needed on
extended time horizons, thus implying dramatic costs. Public social protection systems
play a fundamental role in subsidising the total costs of LTC in a large majority of
OECD and EU countries, even for the people with higher incomes.

Private insurance can complement or supplement the public sector, e.g., by extend-
ing care options and filling the gaps in public coverage (OECD, 2021). Tipically,
long-term care insurance policies are designed to support the payment for assistance
(at home or in an institution) for individuals who experience difficulty accomplishing
“activities of daily living” (ADLS) because of physical and/or cognitive impairments.
Although the potential need for long-term care represents one of the greatest financial
risks for most older people and their families, private long-term care insurance has a
relatively small market penetration in OECD countries (OECD, 2011) and worlwide,
with significant welfare and public policy implications.

The literature has identified several reasons why individuals may decide not to
purchase private LTC insurance coverage, addressing, for instance, the main demand-
side factors that may drive such a behaviour (Eling and Ghavibazoo, 2019). Among
these (e.g., high premiums loadings, information asymmetry), as argued by Brown and

1https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
2https://www.un.org/development/desa/disabilities/disability-and-ageing.html
3https://www.who.int/initiatives/decade-of-healthy-ageing
4https://sdgs.un.org/goals
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Finkelstein (2009), the individuals’ lack of a proper understanding of LTC insurance
and of the LTC expenditure risk contribute to impose limits on the size of the private
LTC market.

Health shocks are very difficult to predict, in terms of both their severity and the
time when they occur. Liquidity needs due to perceived health cost risks have economic
effects. For instance, health cost risk is offered as a possible explanation to the low
annuitization rate being consistently observed in the private insurance market, the so-
called “annuitization puzzle” (Peijnenburg et al., 2017). Nevertheless, Xu et al. (2023)
show that, when health shocks are considered, access to LTC insurance mitigates the
reduction in the annuity demand induced by a higher level of risk aversion.

As discussed in Bär and Gatzert (2023), the issue of the optimal decumulation
of wealth during retirement is highly relevant. The most recent paradigms analyse
products and strategies for the decumulation of wealth under the perspectives of both
insurers and retirees to ensure that demand meets supply, thus accounting also for
risk perception and behavioral aspects.

The private insurance sector has explored the combination of LTC with other
insurance products, e.g., annuities, so that to bundle LTC with other risks as, e.g.,
in Webb (2009). Getzen (1988 Winter) proposed “longlife insurance” plans, combin-
ing deferred annuity benefits, health insurance and LTC. Such insurance coverage
was designed to match protection from the risks of chronic illness with protection
from the risks of higher longevity and thus to mitigate the adverse selection affecting
both LTC insurance and annuities. More recently, Chen et al. (2022) evaluated a life
annuity product with an embedded care option potentially supporting the financial
needs of dependent persons, by accounting for both the insurer’s perspective and the
policyholder’s willingness to pay for the care option.

Murtaugh et al. (2001), investigated the empirical features of “life care annuity”,
namely the combination of life annuity with LTC disability coverage at retirement.
This product has the potential to extend disability protection to a wider segment
of the population and to mitigate adverse selection, thus reducing its purchase cost.
Brown and Warshawsky (2013) provided an empirical examination of life care annuity
based on the data from the Health and Retirement Study (HRS).

One of the most recent innovations discussed in the state-of-the-art is the Variable
Life Care Annuity with Guaranteed Lifetime Withdrawal Benefits (LCA-GLWB), pro-
tecting downside risk, through guaranteed income streams, together with longevity
and LTC cost risk (Hsieh et al., 2018). Specifically, under the general scheme of a
GLWB variable annuity contract, the policyholder makes a single lump sum payment,
that is invested in risky assets, such as a mutual fund. The amount of the lump sum
payment typically represents the benefit base, or guarantee account balance. The pol-
icyholder is allowed to withdraw a given fraction of the benefit base each year until
she remains alive. The GLWB thus combines longevity protection, exposure to equity
markets and withdrawal flexibility. The valuation of these guarantees and the involved
technical problems are discussed, for instance, in Bacinello et al. (2011); Steinorth and
Mitchell (2015); Goudenége et al. (2016); De Angelis et al. (2022). Compared to a tra-
ditional GLWB variable annuity contract, a variable LCA-GLWB contract provides
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also LTC payouts if the policyholder incurs in defined frailty state levels (e.g., impair-
ments in ADLS). The evaluation of such insurance contract requires tackling three
sources of uncertainty: the occurrence of ADLs impairments, prospective longevity
(either in the healthy or disabled condition), and the performance of the financial
market.

In Hsieh et al. (2018), withdrawals are possible only at contractually defined
percentages of the benefit base. Furthermore, pricing relies on Monte Carlo valua-
tion methods, such as the variance reduction techniques (specifically, control variates
technique). In such a pricing framework, the interest rate is not stochastic.

The key idea of our paper is to provide more general features for the variable
annuity contract with LTC payouts and GLWB and to refine its pricing methods.
We denote our proposed product “GLWB-LTC”. The three characteristics that make
GLWB-LTC depart from the LCA-GLWB product of Hsieh et al. (2018), relative
to the product specification and pricing method: (i) stochastic interest rate model,
namely Cox-Ingersoll-Ross (CIR) as in Cox et al. (1985), (ii) dynamic withdrawal
strategy, as in Forsyth and Vetzal (2014), (iii) pricing based on a tree method, as in
Appolloni et al. (2015).

A stochastic framework for the interest rate model allows a more accurate descrip-
tion of the future evolution of interest rates, over the long time horizon implied by the
policy duration. Specifically, the underlying fund is supposed to evolve, under a risk
neutral measure, as a geometric Brownian motion, as in the Black-Scholes (BS) model,
but with stochastic drift given by the short interest rate. This latter, is supposed to
follow a CIR process, thus we term this the BS-CIR model.

A dynamic withdrawal strategy allows the policyholder to choose the amount to
be withdrawn. Accordingly, the benefit base may be increased if the policyholder
withdraws no funds in a given year (i.e., bonus or roll-up). Furthermore, the contract
may terminate if the policyholder opts for complete surrender, namely she withdraws
the whole residual amount in the investment account. As illustrated in Bacinello et al.
(2009), insurance products embedding a surrender option may be more attractive to
the demand side, as policyholders may be less prone to perceive insurance securities as
illiquid investments. This early exercise feature acquires even more relevance in light
of the fact that mis-perceptions of health cost and mortality-related risks may further
contribute to make long-term contracts such as annuities and LTC schemes poorly
attractive for individuals in their pre-retirement ages; see, e.g., O’Dea and Sturrock
(2023).

From a numerical point of view, the presence of a surrender option implies tackling
an American-style option enabling the policyholder to exit the contract and be paid
the surrender value. We solve the stochastic control problem involved by the evaluation
of this option, through an improved version of the tree method pricing technique in
Appolloni et al. (2015), as it is proven to be fast and efficient for pricing American
options in the BS-CIR model, without any numerical restriction on its parameters.
The employed method, which we term Tree-LTC, can be applied also in the case of
high volatility of interest rates and shows advantages over Monte Carlo methods.
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Finally, we perform several numerical experiments. As a first step, we validate the
Tree-LTC method, showing that it outperforms the traditional Monte Carlo simula-
tion approach when pricing a traditional LCA-GLWB insurance product. As a next
step, we focus on our proposed GLWB-LTC insurance product and carry out its evalu-
ation. Our numerical results describes how the fair prices and the optimal withdrawal
strategy vary with some features of the policyholder, such as her age and her health
status, and other factors such as market conditions (as expressed by the volatility of
the fund and of the interest rate). Our novel evidence shows an important advantage
of flexible withdrawal strategies, in relation to insurance policies offering protection
from health risks. Indeed, against a small increase in the fee, the policyholder is given
more choice about how much to save for protection from the possible disability states
at future times.

The paper is structured as follows. Section 2 introduces the product and the model
specifications. Section 3 presents in detail the principles and methods adopted for
the evaluation of the contract under examination. Section 4 discusses the numerical
results. Finally, Section 5 draws the conclusions.

2 Product and model specifications
In this Section, we illustrate how the GLWB-LTC product specification is designed
and we describe the underlying modelling framework.

2.1 Health state model
LCA policyholders are characterized by complex mortality patterns. Health and mor-
tality risks play a substantial role within the actuarial modeling of health and life
insurance policies, and require a proper assessment, according to the regulatory
framework of the Solvency II Directive5 (Shao et al., 2017).

Pitacco (1995) illustrates how, in the framework of the mathematics of Markov
and semi-Markov stochastic processes, it is possible to develop a general approach
for the actuarial modelling of disability and related benefits, such as LTC annuities.
Indeed, the evaluation of life insurance policies with long term benefits is usually based
on probabilistic structures consistent with Markovian multi-state models, such as, for
instance, in Haberman and Pitacco (1998); Levantesi and Menzietti (2012); Tabakova
and Pitacco (2021). Interdisciplinary literature proposes a variety of statistical meth-
ods to estimate transition matrices of Markov chains from data, for instance Baione
and Levantesi (2014); Helms et al. (2005).

In our paper, we use the disability model proposed by the authors in Manton et al.
(1993); Pritchard (2006). According to their model, disability is defined in terms of
loss of instrumental activities of daily living (IADL, such as meal preparation, grocery
shopping, getting around outside, using the telephone), and loss of activities of daily
living (ADL, such as eating, getting in and out of bed, getting around inside, dressing,
bathing, getting to the bathroom or using the toilet). In particular, such a model
includes seven health states: healthy, impairment in only IADL, 1-2 impairments in

5https://www.eiopa.europa.eu/browse/regulation-and-policy/solvency-ii en
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ADLs, 3-4 impairments in ADLs, 5-6 impairments in ADLs, institutionalized and
dead.

Here are the main features of this model. Let Mt ∈ {1, 2, 3, 4, 5, 6, 7} be a random
variable which represents the health state of the policyholder (hereinafter PH) at time
t, being x0 her age at inception. Now, for 0 ≤ s ≤ t, we term P x0(s, t) the 7 × 7
transition probability matrix with entries

px0
i,j(s, t) = P (Mt = j|Ms = i) .

Transition rates can be used to define the process: let Qx0(t) be the 7 × 7 matrix,
given by

qx0
i,j = lim

∆t→0

px0
i,j(t, t + ∆t)

∆t
, i ̸= j,

qx0
i,i = −

∑
j ̸=i

qx0
i,j , i = 1, . . . , 7.

The matrices Qx0 are assumed to be time-homogeneous during each year, that is, for
each n ∈ N, Qx0(t) = Qx0(s) holds for all t, s such that n ≤ s ≤ t < n + 1. Then, the
transition probability matrix P x0(n, n+1) between two anniversaries can be computed
from the transition intensities via the matrix exponential operation, that is

P x0(n, n + 1) = eQx0 (n).

Furthermore, we obtain transition intensities Qx0(n) based on the parameter values
shown in Pritchard (2006) (Table 8, page 68), that were obtained by applying the
penalized likelihood methodology to the interval-censored longitudinal data from the
National Long-Term Care Study. For the sake of completeness, we report this Table in
the Appendix A. We stress out that this approach for modeling the health state of the
PH is also adopted by Hsieh et al. (2018), who, to the best of our knowledge, devel-
oped the most recent study on the evaluation of the LCA-GLWB insurance product.
Using the same underlying transition matrices as in Hsieh et al. (2018) allows us to
have a benchmark for validating some of the numerical outcomes shown in our paper
and to propose original developments based on alternative product specifications and
computation methods.
Remark 1. The model by Pritchard (2006) allows the generation of transition proba-
bilities between health states for any age of the PH, without placing an upper limit on
the age of the insured. Following common practice, see e.g. Forsyth and Vetzal (2014)
Goudenége et al. (2016), we limit the maximum age of the insured to 122. Conse-
quently, whatever her health state at 121, the probability of transition to health state
7 is equal to 1.
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2.2 Dynamics of the mutual fund and of the interest rate
Let us consider a risk-neutral measure Q. The risk neutral dynamics of the stochastic
processes describing the mutual fund Ft and the interest rate rt are as follows:{

dFt = rtFtdt + σF FtdW 1
t ,

drt = kr(θ − rt)dt + σr
√

rtdW 2
t ,

(1)

where the constant parameters kr, θ and σr are the rate of mean reversion, the long
run mean and the volatility of the interest rate, respectively. Furthermore, W 1 and
W 2 are Brownian motions such that their correlation equals ρ.
Remark 2. It is well-established in the literature the structural soundness of the CIR
model in preventing negative rates under normal conditions, with no negative interest
rates. Nevertheless, we remark that the CIR model can be adapted to accommodate
negative rates if necessary, through simple modifications such as shifting the rate dis-
tribution downward, making it a versatile tool in stochastic interest rate modeling (see,
e.g., Russo and Fabozzi (2017) and Orlando et al. (2019)).

2.3 The GLWB-LTC
The GLWB-LTC insurance product guarantees the PH the right to make guaranteed
withdrawals and can provide the payment of an annual disability allowance.

At time t = 0, the PH purchases the product through an initial one-off payment,
which we denote by P . This amount determines the initial value of the two indicators
governing the evolution of the contract: the account value A and the benefit base
B. In particular, the account value is used to calculate the maximum withdrawable
amount, as well as the death benefit. The benefit base, on the other hand, governs
the payments guaranteed by the contract, such as the LTC benefits and the minimum
amount withdrawable by the PH. The state parameters A and B are two stochastic
processes defined for each time instant between t = 0 and t = τ , the first anniversary
of the contract inception following the insured’s death.

2.3.1 Initiation of the contract
The initial values of A and B, denoted by A−

0 and B−
0 respectively, are both set equal

to P :
A−

0 = B−
0 = P.

Immediately after the initiation of the contract, the account value is charged with
some specified fees, while the benefit base remains unaffected. Adopting the approach
proposed by Hsieh et al. (2018), the decrement in the account’s value, owing to these
fees, is regulated by two parameters, α and β. These parameters are indicative of the
annual costs per unit for A and B respectively. Consequently, on each anniversary
of the contract, it is reduced by αA and βB as long as the account value remains
positive. Specifically, if we denote by A1+

0 and B1+
0 the value of A and B immediately

after the fees are taken, the following holds:

A1+
0 = max

(
A−

0 − αA−
0 − βB−

0 , 0
)

, B1+
0 = P.

7



At each anniversary n, hereafter, we will denote by A2+
n and B2+

n the values of A
and B after the payment of the LTC to the PH and, then, by A3+

n and B3+
n the values

of A and B after a withdrawal contingent on the choice of the PH at time n.
At contract inception, i.e., n = 0, no LTC is paid to the PH in case of disability.

Moreover, the PH is not entitled to make any withdrawal. Therefore, neither A nor B
is altered by a payment to, or a withdrawal from, the PH. Accordingly, the following
holds:

A3+
0 = A2+

0 = A1+
0 , B3+

0 = B2+
0 = B1+

0 .

2.3.2 Evolution of the contract between two anniversaries
During the time between the beginning of the contract and the first anniversary, and
similarly between any two consecutive anniversaries, the account value A varies in
proportion to the underlying fund, while the benefit base B does not change: for all
t ∈ ]0, 1[ it holds

dAt

At
= dFt

Ft
, dBs = 0. (2)

This holds also between any other two consecutive anniversaries.

2.3.3 Anniversary events if the PH is alive
On the first anniversary, but more generally on a generic anniversary thereafter, cer-
tain clauses of the contract are activated according to the PH’s health status. Let t
represent the time of the n-th anniversary and let A−

n and B−
n be the values of A and

B immediately before such a time. Thus, according to (2), we have

A−
n = A3+

n−1 · Fn

Fn−1
, B−

n = B3+
n−1.

At a generic anniversary n > 0, the account value is deduced by the fees.
Two payments can be received by the PH: the LTC benefit and the amount arising
from the PH’s withdrawal. Specifically, the LTC benefit and the guaranteed minimum
amount for withdrawal are computed proportionally to the inflation-indexed benefit
base and reduce the account value. We formalize the dynamics of A and B as follows.

1. Fees reduce the account value and do not alter the benefit base:

A1+
n = max

(
A−

n − αA−
n − βB−

n , 0
)

, B1+
n = B−

n .

2. The PH receives the LTC payment, Ln(Mn), if her health state at this time corre-
sponds to a disability condition covered by the contract. The amount of the LTC
protection is proportional to the benefit base and is indexed by an inflation rate,
denoted by π, as follows:

Ln (Mn) =
{

0 if Mn ∈ {1, 2, 3} ,

cB1+
n (1 + π)n if Mn ∈ {4, 5, 6} .

(3)
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Accordingly, the values of A and B after the LTC payment are given by:

A2+
n = max

(
A1+

n − Lt (Mn) , 0
)

, B2+
n = B1+

n .

3. Guaranteed withdrawals Gn from the account value are possible at contractually
defined percentages g of the inflation-indexed benefit base, as follows:

Gn = g (1 + π)n
B2+

n , (4)

but the PH may also withdraw more or less than Gn. In this regard, let Wn ∈[
0, max

(
A2+

n , Gn

)]
be the amount that the PH withdraws. We stress out that the

maximum admissible withdrawal is given by max
(
A2+

n , Gn

)
, that is the greater

between the account value after the payment of the LTC and the minimum
guaranteed withdrawal.

In order to distinguish whether or not Wn exceeds the guaranteed amount, we make
use of an auxiliary parameter γ, as in Forsyth and Vetzal (2014), whose value expresses
the choice made by the PH with respect to the amount to be withdrawn at anniversary
n. Specifically, Wn is controlled by the parameter γn ∈ [0, 2] as follows:

Wn =
{

γnGn if γn ≤ 1,

(2 − γn) Gn + (γn − 1) A2+
n if γn > 1.

While Wn represents the chosen withdrawal by the PH, let us denote by Yn the actual
amount the PH receives, at time t. In this respect, we distinguish three cases:
• if γn = 0, no money is withdrawn from the account. In this case, the PH renounces

making a withdrawal and she is rewarded with a proportional bonus b that increases
the benefit base. Specifically:

Yn = Wn = 0,

A3+
n = A2+

n ,

B3+
n = B2+

n (1 + b) .

• if 0 < γn ≤ 1 the performed withdrawal is less than or equal to the minimum
guaranteed one (the latter case corresponds to γn = 1):

Yn = Wn = γnG2+
n ,

A3+
n = max

(
A2+

n − Wn, 0
)

,

B3+
n = B2+

n .

(5)

• if 1 < γn ≤ 2 the performed withdrawal is greater than the minimum guaranteed
one. A proportional cost κn is applied to the part of the withdrawal exceeding the
guaranteed amount, this implying that the amount Yn that is actually received by
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the PH is smaller than Wn:

Wn = (2 − γn) · Gn + (γn − 1) A2+
n ,

Yn = Gn + (Wn − Gn) (1 − κn) ,

A3+
n = max

(
A2+

n − Wn, 0
)

,

B3+
n = B2+

n (2 − γn) .

(6)

Usually, the cost κn decreases over time and goes down to zero after a few years.
We stress out that the case γn = 2 implies total lapse and the end of the contract.

In this particular case,

Wn = A2+
n , Yn = Gn +

(
A2+

n − Gn

)
(1 − κn) , A3+

n = B3+
n = 0.

We denote by ℓ the anniversary, if it exists, such that γℓ = 2. If γn is always different
from 2, we define ℓ = +∞.

2.3.4 Anniversary events if the PH is dead
If the PH has died during the last year, i.e. n = τ , her heirs receive a death benefit,
calculated as follows, and the contract ends:

Yτ = Wτ = gτ B−
τ + max

(
0, A−

τ − gτ B−
τ

)
, A+

τ = B+
τ = 0.

We stress out that the contract may be terminated for two reasons: total lapse,
or the death of the PH. If we denote with T the anniversary of contract termination,
then T = min (τ, ℓ).
Remark 3. Fees are paid since time n = 0; the first withdrawal takes place at time
n = 1. No fees are paid at the first anniversary after the death time, and no LTC
payments are made as well (Lτ (7) = 0).

3 Pricing the GLWB-LTC contract
The value of the contract at any time t depends on four state variables, namely
At, Bt, rt and Mt, so we denote it as a function of these four state variables by
V(At, Bt, rt, Mt, t). In addition, at the n-th anniversary, we write n−, n1+, n2+ and
n3+ to indicate the value of the contract just before the n-th anniversary, after the
withdrawal of fees, after the payment of the LTC and after the withdrawal of the
annuity, respectively.

3.1 Withdrawal strategy
The withdrawal strategy performed by the PH is a crucial point in the evaluation
of the contract. Following the classification introduced by Bacinello et al. (2011),
we consider three particularly relevant strategies: “static”, “mixed” and “dynamic
withdrawal”. Moreover, we also investigate a fourth strategy, termed “full dynamic”.

10



Under the static withdrawal strategy, the PH has only one choice, that resides in
withdrawing the minimum guaranteed sum, i.e., γ = 1, at each anniversary in which
the PH is alive. This static strategy is the only one considered in Hsieh et al. (2018).
In this particular case, the benefit base never changes and is always equal to the
premium P paid by the PH at time zero. Consequently, the fees associated with the
benefit base are constant at each anniversary and equal to βP .

According to risk neutral valuation, under the static withdrawal strategy, the initial
value of the contract is the expected value of future cash flows:

V(P, P, r0, M0, 0−) = EQ

[
τ∑

n=1
e

−
∫ n

0
rs ds (Ln(Mn) + Yn)

]
.

The mixed strategy implies that the PH continues to draw at the guaranteed
minimum rate until she dies or decides to terminate the contract early. Compared to
the static strategy, there is thus the possibility of a total lapse, which can be achieved
by choosing γ = 2.

In the case of the mixed withdrawal strategy, the initial value of the contract is the
expected value of future cash flows, obtained by using the optimal stopping strategy:

V(P, P, r0, M0, 0−) = max
ℓ∈T

EQ

min(τ,ℓ)∑
n=1

e
−

∫ n

0
rs ds (Ln(Mn) + Yn)

 , (7)

with T the set of optimal stopping times. The optimal stopping time ℓ can easily be
computed by means of dynamic programming. Specifically, ℓ is the first anniversary
such that the value of the whole position in case of total lapse is larger than the
continuation value. Let us write A3+

n (γn) , B3+
n (γn) , W 3+

n (γn) and Y 3+
n (γn) to denote

the values of A3+
n , B3+

n , W 3+
n and Yn for a specific value of γn. Then:

ℓ = min
{

n = 1, . . . , τ − 1 s.t. Yn(2) ≥ Yn(1) + V
(
A3+

n (1), B3+
n (1), rn, Mn, n3+)}

.

Under the dynamic withdrawal strategy, the PH can freely choose the value of γ
∈ [0, 2], for each withdrawal opportunity. Then, she can choose not to withdraw, or
to withdraw more or less than the minimum guaranteed amount, with the maximum
withdrawal implying the early termination of the contract. Equation (7) also holds in
this case. Here, we suppose that the PH chooses the value of γn that maximizes the
total wealth she received, so that the value of γn is defined as:

γn = arg max
γ∈[0,2]

[
Yn(γ) + V

(
A3+

n (γ), B3+
n (γ), rt, Mn, n3+)]

.

Finally, let us consider the full dynamic strategy, which extends the dynamic strat-
egy by admitting that PH can perform total surrenders even in the time between two
anniversaries. In this case, as usual, at any time t ≥ 0 which is not an anniversary,
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the following equation holds

V (At, Bt, rt, Mt, t) = max
{

At

(
1 − κ⌊t⌋

)
, C (At, Bt, rt, Mt, t)

}
,

where C (At, Bt, rt, Mt, t) is the continuation value, that is the expected value of future
discounted cash flows if the surrender option is not exercised at time t.
Remark 4. The criterion for selecting the optimal strategy is based on maximizing
the expected value, under risk-neutral probability, of the payment from the insurer to
the insured. Alternatives have been proposed in the literature (see e.g. Choi (2017)
or Moenig (2021)), which are based, for example, on maximizing expected utility.
Our model can be adapted to consider these cases as well. In particular, in this case,
the value of the policy should be calculated separately according to the insurer and
according to PH. The latter determines the optimal withdrawal strategy, which is then
used in the assessment of the cost of cover according to the insurer.
Remark 5. Bacinello et al. (2023) prove by backward induction that, if the optimality
criterion is the maximisation of the value of total wealth, the optimal exercise strat-
egy always consists of one of these three actions: to withdraw nothing, to withdraw
the guaranteed minimum amount or to withdraw the maximum possible (by ending the
contract). Such a feature of GLWB contracts is also known as the bang bang condi-
tion. From the results of the numerical experiments, we found the same result for our
product. Although the numerical method we propose has no difficulty in handling even
intermediate withdrawal values, limiting the choice of possible range values would lead
to a more efficient numerical procedure.
Remark 6. We calculate the price of our insurance products based on a risk-neutral
valuation approach. In this framework, we assume that the risks associated with death
and disability can be diversified, as supported by Milevsky and Salisbury (2006). If
this assumption does not hold, the risk-neutral valuation can be modified through an
actuarial premium principle, as noted by Gaillardetz and Lakhmiri (2011).

3.2 Similarity reduction
GLWB-type variable annuities are interesting from a computational point of view as
their value is proportional to the ratio of the account value to the benefit base. In
mathematical terms, for every positive constant η,

η · V (At, Bt, rt, Mt, t) = V (ηAt, ηBt, rt, Mt, t) .

This property, which has already been exploited in the literature (see e.g. Shah and
Bertsimas (2008), Forsyth and Vetzal (2014) or Goudenége et al. (2016)) also applies
to the contract we consider in this paper, since all cash flows are proportional to the
account value and to the benefit base. This useful property makes it possible to reduce
the size of the problem, assuming B to be constantly equal to its initial value P . In
fact, taken η = P

Bt
, one obtains

V (At, Bt, rt, Mt, t) = Bt

P
· V

(
At

Bt
P, P, rt, Mt, t

)
.
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As a result, the evaluation of the contract is more efficient from a numerical point of
view.

3.3 The numerical method
The numerical method, termed Tree-LTC, we propose to evaluate the GLWB-LTC
contract in the BS-CIR model is an adapted and improved version of the tree model
introduced by Appolloni et al. (2015), that is suitable to our purposes in that it
allows the evaluation of American derivative instruments in the considered stochas-
tic model framework. Furthermore, the method in Appolloni et al. (2015) proves to
be robust and stable from a numerical point of view. In a nutshell, the method con-
structs two trees that discretize the short interest rate and the underlying respectively.
Subsequently, these structures are combined to obtain a two-dimensional tree. The
transition probabilities relative to the nodes of the tree are computed by matching
the conditional mean and the conditional covariance between the continuous and the
discrete processes.

3.3.1 The tree for the interest rate
The first step of the algorithm is to create a lattice to discretize the stochastic rate
r. Appolloni et al. (2015) suggest using a variation of the tree proposed by Nelson
and Ramaswamy (1990), which matches a first-order approximation of the first two
moments of the process r. Such a tree works rather well when the maturities involved
are relatively short, but the computational cost can become high in the case of long
maturities, such as those involved by our product. So here we propose an updated
version of that tree that allows us to limit the number of nodes considered in the
discretization. In practice, thanks to the properties of the CIR process, it is necessary
to consider only nodes between zero and a maximal value that depends only on the
discretization step, in order to obtain a Markov chain that converges weakly to the
continuous process r.

Specifically, we consider a binomial tree which is used to define a Markov chain
which matches a suitable approximation of the first and the second moment of the
continuous time process r. This feature guarantees weak convergence to the CIR
process, as reported by Nelson and Ramaswamy (1990). First of all, let T ∈ N be the
maximum duration in years of the GLWB-LTC contract. For example, if the age of the
PH at contract inception is 60, then T = 122 − 60 = 62. Let us divide such period in
NT time steps, so that the time increment is ∆t = 1/N . We approximate the process
r in [0, T ] with a discrete time process r̄ = {r̄i}i=0,...,NT , so that r̄i approximates ri∆t.
The possible values of the process r̄ are defined as follows: for i = 0, 1, . . . , NT and
k = 0, 1, . . . , i we set with

Ri,k =
(

max
(√

r0 + (2k − i)σr

√
∆t, 0

))2
.
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In particular, we observe that, if i is even, the initial interest rate r0 is included among
these values as Ri,i/2 = r0. Moreover, we observe that, if we set

k(i) =
⌊

i

2 − 1
σr

√
r0

∆t

⌋
,

then for all values k = 0, . . . , k(i), it holds that Ri,k = 0, so one can consider only the
values k = kmin(i), . . . , i, where kmin(i) = max {0, k(i)}. With respect to Appolloni
et al. (2015), we thus manage to reduce the number of nodes to be processed during
contract evaluation, by avoiding zero-value duplication.

Let us now proceed to discuss the possible state transitions between time steps and
their probabilities. First of all, we define (µr)i,k = kr (θ − Ri,k) as the drift coefficient
at Ri,k. Then, for a node Ri,k, Appolloni et al. (2015) define the level of the upcoming
two nodes as

kACZ
d (i, k) = max

{
k∗ : 0 ≤ k∗ ≤ k and Ri,k + (µr)i,k ∆t ≥ Ri+1,k∗

}
∪ {0} , (8)

kACZ
u (i, k) = min

{
k∗ : k + 1 ≤ k∗ ≤ i + 1 and Ri,k + (µr)i,k ∆t ≤ Ri+1,k∗

}
∪ {i + 1} .

(9)

Here, for k = kmin(i), . . . , i, we set

kd(i, k) = max
{

kACZ
d (i, k), kmin(i + 1)

}
, (10)

ku(i, k) =
{

kACZ
u (i, k) if Ri,k < θ,

kd(i, k) + 1 otherwise.
(11)

Moreover, it is possible to prove (see Appendix B) that for each time step i, there
exist an index, denoted by kmax(i) so that all nodes Ri,k with k > kmax(i) cannot
be reached when starting from R0,0 = r0. Therefore, one can discard from the tree
those nods. Therefore, the only useful nodes for defining the tree are those that verify
the relation kmin(i) ≤ k ≤ kmax(i). We stress out that this observation improves
the efficiency of the algorithm, as it reduces drastically the computational cost, in
particular when a high number NT of time steps is employed.
The transition probabilities among the nodes are defined to match the first order
approximation of the first moment of the CIR process. Starting from the node (i, k),
the probability that the process jumps to (i + 1, ku(i, k)) is defined as

pR
i,k = max

{
0, min

{
1,

(µr)i,kh + ri,k − ri+1,kd(i,k)

ri+1,ku(i,k) − ri+1,kd(i,k)

}}
. (12)

Of course, the probability that the process r jumps to (i + 1, kd(i, k)) is 1 − pR
i,k.

3.3.2 The tree for the account value
The second step of the Tree-LTC algorithm is to create a lattice to discretize the
underlying, i.e. account value A. Specifically, we approximate the process A in [0, T ]
with a discrete time process Ā =

{
Āi

}
i=0,...,NT

, so that Āi approximates Ai∆t. In
Appolloni et al. (2015), this grid of values, generated from a uniform mesh of values
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for the log-price of the account value, is time-dependent: the number of nodes grows
linearly with the number of time steps, as usual in any tree structure. In our case, this
fact hampers the evaluation of the GLWB-LTC contract because, as payments are
made, the account value may experience downward movements due to withdrawals,
thus assuming values outside the mesh of nodes in the tree. Consequently, we prefer
to discretize the account value by a complete grid of values, which does not change
over time and which defines the support for a Markov chain. Specifically, we set two
values, Amin ≈ 0 and Amax >> P (P is the initial value for A), and create a uniform
mesh between the logarithm these two values. Specifically, we set

jmin = − min
{

j∗ ∈ Z s.t. P · exp
(

j∗ · σ
√

∆t
)

≥ Amin

}
+ 1,

jmax = max
{

j∗ ∈ Z s.t. P · exp
(

j∗ · σ
√

∆t
)

≤ Amax

}
+ jmin,

and for j = 1, . . . , jmax, we define the node values as

Aj = P · exp
(

(j − jmin) σ
√

∆t
)

,

so that A1 ≈ Amin, Ajmin = P, and Ajmax ≈ Amax. Moreover, since the account value
can also be empty, we include zero among the possible values by setting A0 = 0.
Finally, we define GA = {Aj , j = 0, 1, . . . , jmin, . . . , jmax} as the set of the nodes of the
lattice for A.

3.3.3 The joint distribution
The marginal transition probabilities for the lattice for A are not defined directly.
Instead, joint probabilities are defined for the pair (Aj , Ri,k). Specifically, suppose that
at the i-th time step the location of the couple

(
Āi, r̄i

)
is given by

(
Āi, r̄i

)
= (Aj , Ri,k).

We begin the definition of the transition probabilities by assuming j > 0, so that
Aj > 0. We define

jd(i, j, k) = max {j∗ s.t. 1 ≤ j∗ < j and Aj · (1 + Ri,k∆t) ≥ Aj∗} ∪ {1} ,

ju(i, j, k) = min {j∗ s.t. j < j∗ ≤ jmax and Aj · (1 + Ri,k∆t) ≤ Aj∗} ∪ {jmax} .

Moreover, it is possible to prove that, as ∆t tends to zero, jd(i, j, k) and ju(i, j, k)
converge respectively to j and j + 1 for all j = 2, . . . , jmax − 1 (see Appendix C). The
probability of an up-movement of the tree for Ā is set as:

pA
i,j,k = max

{
min

{Aj · (1 + Ri,k∆t) − Aid(i,j,k)

Aju(i,j,k) − Ajd(i,j,k)
, 1

}
, 0

}
.

To simplify notation, we write jd, ju and pA
u instead of jd(i, j, k), ju(i, j, k) and pA

i,j,k

respectively, leaving the dependence on i, j and k, taking it as for granted. Moreover,
let pA

d = 1 − pA
u the probability for a down movement.
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Now, let us denote with kd and ku the position of future nodes from Ri,k (also in
this case we omit the dependence on i and k), and let pR

d and pR
u be the probabilities

for a down and an up movement of the process r, respectively.
Starting from an assigned node, the discrete time processes Ā can move to two

future nodes, and so does the process r̄. Thus, the future nodes associated with the
pair (Aj , Ri,k) are four, namely:

(Ajd
, Ri+1,kd

) , (Ajd
, Ri+1,ku) , (Aju , Ri+1,kd

) , (Aju , Ri+1,ku) ,

and let
pd,d, pd,u, pu,d, pu,u,

be the corresponding probabilities. These probabilities are determined as the unique
solution of the following linear system, whose equations correspond to imposing the
matching of the first two moments for both the processes r and A, and of the covariance
between the two processes:

pd,d + pd,u + pu,d + pu,u = 1,

pd,d + pd,u = pA
d ,

pd,d + pu,d = pR
d ,

md,dpd,d + md,upd,u + mu,dpu,d + mu,upu,u = ρσrσF

√
Ri,kAj∆t,

(13)

with

md,d = (Ajd
−Aj)(Ri+1,kd

−Ri,k) , mu,d = (Aju −Aj)(Ri+1,kd
−Ri,k) ,

md,u = (Ajd
−Aj)(Ri+1,ku −Ri,k) , mu,u = (Aju −Aj)(Ri+1,ku −Ri,k) .

This system always admits one and only one positive solution, as discussed in
Appendix C. Finally, we discuss the case i = 0, which corresponds to A0 = 0. The
value 0 is an absorbing class for the account value: once A is depleted, it can no longer
become positive again. Therefore, if

(
Āi, r̄i

)
= (A0, Ri,k), then the nodes reachable by

the process at the next instant are (A0, Ri+1,kd
) and (A0, Ri+1,ku), with probabilities

equal to pR
d and pR

u respectively.

3.4 Pricing
We apply the Tree-LTC method to compute an approximation V̄ of the GLWB-LTC
contract value V. First of all, we set N , the number of time steps per year (as defined
in Subsection 3.3.1), Amin and Amax, the limits for the positive nodes of GA (as
defined in Subsection 3.3.2). In addition, we recall that T is the difference between
122 (maximum age) and the initial age x0 of the insured. At each time step i of the
Tree-LTC algorithm, we define a grid of values to diffuse the processes Ā, r̄ and M :

Gi = GA × Gi
r × {1, . . . , 7} , (14)
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where the set {1, . . . , 7} describes the health states of the PH. For each anniversary
n = 0, . . . , T , we define a function V̄n which approximates the real contract fair value
at the year n. Specifically, for any point (Aj , RnN,k, k) ∈ G we have

V̄n (Aj , RnN,k, h) ≈ V (Aj , RnN,k, h, n) .

We stress out that, by similarity reduction discussed in Section 3.2, we can assume
Bn = P for all anniversaries, so, hereinafter, Gn and Ln (Mn) are computed according
to B1+

n = B2+
n = P . The computation of the function V̄n is achieved by proceeding

backward in time. At maturity, i.e. n = T and i = NT , no PH is longer alive, so we
set:

V̄T (Aj , RNT,k, h) = GT + max (0, Aj − GT ).
Let us now consider a general anniversary n ∈ {0, . . . , T − 1} and assume that we

have already calculated the function V̄n+1 at the anniversary n + 1. To compute V̄n

on the grid GnN for h = 7, just set

V̄n (Aj , RnN,k, 7) = Gn + max (0, Aj − Gn) .

As far as the health state h ̸= 7 is considered, the following actions are carried out
in this specified order.

1. Mix the values of V̄n+1 according to the health transition probability ph,h′ (n, n + 1)
(from state h at year n to state h′ at year n + 1). Specifically, we define:

V̄mix
n+1

(
Aj , R(n+1)N,k, h

)
=

7∑
h′=1

ph,h′ (n, n + 1) V̄n+1
(
Aj , R(n+1)N,k, h′) .

2. Compute the discount expected value of the mix, by using the Tree-LTC algorithm.
Specifically, we divide the time lapse [n, n + 1] into N sub-intervals. Let us term:

V̄n,N

(
Aj , R(n+1)N,k, h

)
= V̄mix

n+1
(
Aj , R(n+1)N,k, h

)
,

as the contract value at time n + 1 before any payment is performed. For each
sub-time step i = (n + 1)N − 1, . . . , nN we employ the Tree-LTC algorithm. We
distinguish some cases.

(a) If j = 0, that is Aj = 0, then

V̄n,i

(
A0, Ri,k, h

)
= e−∆tRi,k

[
pR

d V̄n,i+1
(
A0, Ri+1,kd(k), h

)
+pR

u V̄n,i+1
(
A0, Ri+1,ku(k), h

)]
.

(b) If j = 2, . . . , jmax − 1,
V̄n,i

(
Aj , Ri,k, h

)
= e−∆tRi,k [ pd,dV̄n,i+1

(
Ajd(j,k), Ri+1,kd(k), h

)
+ pd,uV̄n,i+1

(
Ajd(j,k), Ri+1,ku(k), h

)
+ pu,dV̄n,i+1

(
Aju(j,k), Ri+1,kd(k), h

)
+pu,uV̄n,i+1

(
Aju(j,k), Ri+1,ku(k), h

)]
.
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(c) If j = 1 or j = jmax, we use linear interpolation to estimate V̄n,i (Aj , Ri,k, h).
That is because the points A1e−σF

√
∆t and AjmaxeσF

√
∆t are not included in

the grid GA, and therefore it is necessary to impose some boundary conditions
to determine the value of the contract at these points. This condition can be
justified by the fact that when the account value is very large or very small, the
contract value tends to behave as a linear function of the account value itself,
as already remarked and exploited by Forsyth and Vetzal (2014). Specifically,
we set

V̄n,i (A1, Ri,k, h) =
V̄n,i (A3, Ri,k, h) − V̄n,i (A2, Ri,k, h)

A3 − A2
(A1 − A2) + V̄n,i (A2, Ri,k, h) ,

V̄n,i (Ajmax , Ri,k, h) =
V̄n,i (Ajmax−2, Ri,k, h) − V̄n,i (Ajmax−1, Ri,k, h)

Ajmax−2 − Ajmax−1
(Ajmax − Ajmax−1)

+ V̄n,i (Ajmax−1, Ri,k, h) .

Moreover, if the full dynamic approach is considered, at each sub-time step i, we
replace V̄n,i (Aj , Ri,k, h) with

max
{

Aj (1 − κn) , V̄n,i (Aj , Ri,k, h)
}

to account for the possibility of a total surrender at time t = i∆t.
3. Account for the possible withdrawal (only if n > 0). We term V̄3+

n = V̄n,nN

the contract value at anniversary n after all payments are performed. Let γ =
γn (Aj , RnN,k, h) be the value determined according to the withdrawal strategy
considered, for the withdrawal at the n-th anniversary, for An = Aj , Bn = P ,
r = RnN,k and Mn = h. The contract value before the withdrawal takes place,
denoted by V̄2+

n is computed as follows. So
• If γ = 0, then

V̄2+
n (Aj , RnN,k, h) = (1 + b) V̄3+

n

(
Aj

1 + b
, RnN,k, h

)
. (15)

• If 0 < γ ≤ 1, then

V̄2+
n (Aj , RnN,k, h) = V̄3+

n (max (Aj − Wn, 0) , RnN,k, h) + Yn, (16)

with Wn and Yn as in (5).
• If 1 < γ ≤ 2, then

V̄2+
n (Aj , RnN,k, h) = (2 − γ) V̄3+

n

(
max (Aj − Wn, 0)

(2 − γ) , RnN,k, h

)
+ Yn, (17)

with Wn and Yn as in (6).

We stress out that in equations (15), (16) and (17), the post-withdrawal value of
A may not be in the grid GA. In this case, interpolation is used to compute V̄3+

n .
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4. Pay the LTC (only if n > 0). We term V̄1+
n the contract value at anniversary n

before the payment of the LTC. Then

V̄1+
n (Aj , RnN,k, h) = V̄2+

n (max (Aj − Ln(h), 0) , RnN,k, h) + Ln(h).

5. Fees adjustment. We term V̄−
n the contract value at anniversary n before fees are

withdrawn. Then

V̄−
n (Aj , RnN,k, h) = V̄1+

n (max (Aj(1 − α) − βP, 0) , RnN,k, h) .

Through the above equations, by moving backward in time, it is possible to calculate
the price of the contract up to the initial time t = 0. Specifically, the initial price
V (P, P, r0, M0, 0−) is approximated by V̄−

0 (Ajmin , R0,0, M0).
Remark 7. In the case of dynamic withdrawal, the identification of the optimal with-
drawal strategy can be done by comparing, for different γ values on a mesh from γ = 0
to γ = 2, the one that maximizes the overall value of the contract V̄2+

n , which can be
computed by equations (15), (16) or (17).
Remark 8. The previously described procedure, which is valid for the stochastic BS-
CIR model, can be easily readapted to the Black and Scholes sub-model. Indeed, it will
be sufficient to assume a constant interest rate.
Remark 9. A common practice in the field of variable annuities is to calculate the
value of the α parameter that makes the contract fair, that is V̄−

0 (Ajmin , R0,0, M0) =
P . This calculation can be done easily by iterating the initial price calculation for
different values of α, based on an appropriate zero-search scheme, such as the secant
method we employed.
Remark 10. The proposed evaluation technique has several advantages in itself:
the number of nodes used at each time-step to discretise the continuous processes
is bounded. In addition, the interpolation technique allows for simple and efficient
handling of jumps in the account value due to withdrawal payments. Furthermore, var-
ious exercise strategies, such as the dynamic strategy, can be handled with very little
computational effort.

4 Numerical results
In this Section, we present the results of some numerical tests in which we test the
evaluation procedure based on the Tree-LTC algorithm. Specifically, we calculate the
fair value of the fee parameter α (see Remark 9) as certain parameters change, such
as, for example, the age x0 of the PH at inception or the withdrawal strategy. Under
the static withdrawal strategy, we compare the fair fee α arising from the Tree-LTC
against the ones obtained by implementation of a classical Monte Carlo method. Such
tests are performed under the assumption of stochastic interest rates, but also within
the Black-Scholes model framework. In this simpler setting, indeed, we are able to
compare more closely the performance of our algorithm against the performance of
the Monte Carlo method with control variates that is used by Hsieh et al. (2018) for
the pricing of the considered contract.
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In Table 1, we report a brief description of the parameters that characterize the
contract and the underlying stochastic models, along with the respective symbols and
the values we assigned to them within our numerical experiments. We also point out
that, for the tests performed with the Black-Scholes model, we assume r = r0 = 5%.
Furthermore, the guaranteed minimum withdrawal rate g is indexed to the age of the
PH: 3% for a 60-year-old with an increase of 0.1% for each additional year of age.
This choice is made to make the value of the contract more homogeneous: a person
aged 80 has a shorter life expectancy than one aged 60, so to make the contract more
equitable we need to increase the guaranteed amount for withdrawals.

As far as the BS-CIR model is considered, we assume a negative value for the
correlation parameter ρ, specifically ρ = −0.25. In fact, in financial markets, the rela-
tionship between stock market performance and interest rates can vary, but typically
exhibits a negative correlation. However, in the following we will analyse different
values for ρ and their effects on the value of the contract (see Figure 1).

Before presenting the numerical results, we point out that both the Tree-LTC
algorithm and the Monte Carlo methods are implemented in the C language and were
run on the same machine (i5-1035G1 CPU processor, 8 GB RAM) in order to compare
computation times.

Symbol Name Value Symbol Name Value

P initial account value 100 α fees proportional to A variable
σF volatility of the fund 0.20 β fees proportional to B 0.003
σr volatility of the i.r. 0.10 x0 entry age 60, 65, 70, 75 or 80
kr speed of mean rev 0.5 g withdrawal rate 0.03+(x0 −60)·0.001
θ long mean i.r. 0.05 c LTC withdrawal rate 0.06 or 0.00
r0 initial interest rate 0.05 π inflation protection 0.05
ρ correlation −0.25 b bonus g + 0.005

M0 (0) initial health state 1 κn penalty for γn > 1 0.01 · max(0, 8 − t)
Table 1 Parameters employed for numerical experiments.

4.1 The Black-Scholes model
In this Subsection, we work in the framework of the Black-Scholes model for the
description of the dynamics of the underlying fund, without any stochastic assumption
about the interest rate. Indeed, Hsieh et al. (2018) consider a non-stochastic interest
rate and a static withdrawal strategy and their approach to the contract evaluation
relies on the Monte Carlo method with control variates (MC-CV). Accordingly, choos-
ing the most simple setting for the interest rate and the withdrawal strategy allows us
to preliminarly validate the Tree-LTC, by comparing its pricing performance against
the one of the Monte Carlo and the MC-CV methods. Specifically, MC-CV is a Monte
Carlo algorithm that exploits the following four control variates to reduce the variance
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of the results:

C1 = A−
τ e−rτ − EQ [

A−
τ e−rτ

]
,

C2 = Fτ − EQ [Fτ ] ,

C3 =
τ∑

n=1
(Gn + Ln (M(n))) − EQ

[
τ∑

n=1
(Gt + Ln (M(n)))

]
,

C4 = τ − EQ [τ ] .

(18)

Please, observe that τ is the anniversary year immediately after the PH’s death.
First of all, we test the convergence of the three considered algorithms by changing

the number of discretization steps. In particular, we consider four parameter config-
urations, denoted by the letters A, B, C and D, as shown in Table 2. In particular,
as far as the Monte Carlo algorithms are considered we report the number of simula-
tions and the number of time discretization steps (in the Black-Scholes model, exact
simulation is possible, so we always consider only one step per year). As far as the
Tree-LTC algorithm is employed, we report first the number N of time steps per year,
and then the factor fA which is used to compute Amin and Amax as Amin = P/fA and
Amax = P · fA.

Convergence results are displayed in Table 3. Specifically, we compute the fair value
of α for a PH with entry age x0 = 60, by changing the parameter setup. Moreover,
we consider both a GLWB product that includes a LTC guarantee amounting to 6%
of the inflation-indexed benefit base, i.e., c = 0.06, and, for comparison purposes,
a GLWB product that does not include a LTC guarantee, i.e., c = 0 (traditional
GLWB annuity). The findings outlined in Table 3 indicate that the point estimate of α
obtained via the Tree-LTC method lies within the confidence intervals established by
the first two Monte Carlo methods. This consistency underscores the compatibility of
the three numerical techniques in determining the estimated values of α. The MC-CV
method turns out to be more effective than the MC method: the confidence interval
amplitudes are smaller for approximately the same computational time. The results
produced by the Tree-LTC method are much more stable than the results related to
the other two methods, and the computational times are significantly shorter. For all
the considered numerical methods, setup D, the most accurate by far, was also used
in the other numerical tests, presented below.

In Table 4, we show the fair values of α at different entry ages for the PH, being
five years apart. Also in this case, we consider both the case where the LTC payment
is provided and the case where no LTC benefit is granted. We see that the outcomes
of the tree numerical methods point to the same pattern of the fair value of α as age
increases. Furthermore, we remark that embedding the LTC component increases the
fair value of α, but to a small extent, never exceeding 120 basis points of the value
of the traditional GLWB annuity. In Table 5, we show the fair values of α under
the same BS assumption for the dynamics of the mutual fund, but under different
cases for the withdrawal strategy, either static, or mixed or dynamic or full dynamic.
This implies the exclusive use of the Tree-LTC algorithm. Indeed, according to the
previous evidence, the proposed algorithm turns out to be the most accurate and the
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fastest among the competing methods. Furthermore, among the considered numerical
methods, the Tree-LTC is the only one able to tackle, in a straightforward way, the
stochastic control problem involved by the the dynamic withdrawal strategy. The age
being fixed, the more numerous the withdrawal options for the PH the higher the fair
value of the fee α. Nevertheless, such an increase in α appears modest and the total
cost never exceeds 250 basis points.

To conclude this battery of tests, we investigate what impact the LTC and the
withdrawal strategy have on the initial contract price. Table 6 shows the prices, cal-
culated using the Tree-LTC method, of the GLWB-LTC contract as the age of the
PH, the withdrawal strategy and the amount of the LTC change. In the cases con-
sidered here, for each value of x0, α is set equal to the fair value in the case of static
withdrawal, for c = 0%. For this reason, the price in the seventh column of Table 6 is
always 100.00. More generally, the prices for c = 0 are all close to 100. We then observe
that the values for all the strategies with respect to c = 6% are greater than 100, as
to be expected, but never exceed 10 monetary units with respect to the relative cases
for c = 0. This cost is not very large if one takes into account that LTC significantly
increases the guaranteed minimum payment in the case of disability. This small price
difference may be attractive to buyers, incentivizing them to purchase policies with
LTC.

Setup MC MC-CV Tree-LTC

A 1 · 106, 1 1 · 106, 1 100, 100
B 2 · 106, 1 2 · 106, 1 200, 200
C 4 · 106, 1 4 · 106, 1 400, 400
D 8 · 106, 1 8 · 106, 1 800, 800

Table 2 Parameter setup for the numerical algorithms when the Black-Scholes model is considered.

c = 0.06 c = 0

Setup MC MC-CV Tree-LTC MC MC-CV Tree-LTC

A 154.70 ± 1.60
(34)

154.71 ± 0.66
(31)

154.37
(0.3)

55.07 ± 1.35
(27)

54.95 ± 0.45
(27)

54.62
(0.2)

B 154.76 ± 1.13
(53)

154.36 ± 0.46
(66)

154.44
(0.6)

55.27 ± 0.95
(61)

54.67 ± 0.32
(53)

54.76
(0.4)

C 154.84 ± 0.80
(128)

154.30 ± 0.33
(111)

154.46
(0.8)

55.25 ± 0.67
(113)

54.64 ± 0.22
(107)

54.80
(1.0)

D 154.83 ± 0.56
(212)

154.49 ± 0.23
(213)

154.47
(1.7)

55.12 ± 0.48
(229)

54.76 ± 0.16
(224)

54.81
(1.8)

Table 3 The fair values of α (in basis points), in the Black-Scholes model, by changing the
numerical setup and by assuming the presence (c = 6%) or absence (c = 0) of LTC. The values in
parentheses indicate computational time in seconds.
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Entry c = 0.06 c = 0

age MC MC-CV Tree-LTC MC MC-CV Tree-LTC

60 154.65 ± 0.56
(228)

154.49 ± 0.23
(233)

154.46
(0.8)

55.12 ± 0.48
(229)

54.76 ± 0.16
(224)

54.80
(0.9)

65 166.68 ± 0.61
(165)

166.77 ± 0.25
(170)

166.86
(0.9)

55.18 ± 0.50
(155)

55.28 ± 0.17
(182)

55.36
(0.7)

70 166.55 ± 0.63
(144)

166.73 ± 0.25
(174)

166.80
(0.8)

48.89 ± 0.52
(158)

49.13 ± 0.17
(148)

49.13
(0.6)

75 156.88 ± 0.65
(128)

156.94 ± 0.24
(150)

156.93
(0.6)

38.14 ± 0.54
(138)

38.25 ± 0.15
(133)

38.24
(0.5)

80 140.67 ± 0.67
(112)

140.40 ± 0.22
(175)

140.27
(0.6)

25.11 ± 0.56
(130)

25.12 ± 0.12
(124)

25.04
(0.5)

Table 4 The fair values of α (in basis points), in the Black-Scholes model, by changing the entry
age of the PH and by assuming the presence (c = 6%) or absence (c = 0) of LTC. The values in
parentheses indicate computational time in seconds.

c = 0.06 c = 0
Entry strategy: strategy:

age static mixed dynamic full dyn static mixed dynamic full dyn

60 154.46 217.02 229.62 244.55 54.80 82.14 85.74 88.06
65 166.86 211.19 222.85 233.86 55.36 74.64 77.63 79.33
70 166.80 195.30 205.67 212.76 49.13 61.33 63.62 64.76
75 156.93 173.33 182.20 186.09 38.24 45.06 46.70 47.38
80 140.27 148.44 155.74 157.49 25.04 28.28 29.38 29.74

Table 5 The fair values of α (in basis points), in the Black-Scholes model, by changing the entry
age of the PH, the presence (c = 6%) or absence (c = 0) of LTC, and the withdrawal strategy (static,
mixed, dynamic or full dynamic). The values in parentheses indicate computational time in seconds.

Entry c = 0.06 c = 0

age α static mixed dynamic full dyn static mixed dynamic full dyn

60 54.80 108.11 109.20 111.70 111.84 100.00 101.94 102.41 102.56
65 55.36 107.56 108.22 110.42 110.52 100.00 101.27 101.60 101.71
70 49.13 106.97 107.32 109.20 109.26 100.00 100.75 100.97 101.04
75 38.24 106.31 106.47 108.04 108.07 100.00 100.40 100.53 100.57
80 25.04 105.57 105.63 106.87 106.89 100.00 100.18 100.25 100.27

Table 6 The contract price at time t = 0 in the Black-Scholes model, when α is set as the fair
value for c = 0 and for the static withdrawal strategy.

4.2 The Black-Scholes CIR model
We enrich our discussion, by assuming that the mutual fund evolves according to
the Black-Scholes CIR model, namely by adding to the previous modelling setting a
stochastic representation of the underlying short interest rate. In this respect, it is not
possible to use the Monte Carlo control variates technique in Hsieh et al. (2018), since
there are no closed formulas for the expected values in (18) (with the only exception of
EQ [τ ]). Therefore, we test the performance of the Tree-LTC only against the standard
Monte Carlo method.
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Also in this model, we begin by testing the convergence of the Tree-LTC algo-
rithm by comparing it with a standard Monte Carlo method. Again, we consider four
numerical configurations, that are defined by the numerical setups provided in Table
7, with the same arrangement used for the BS model: as far as the MC method is
considered, we report the number of simulations and then the number of simulation
time steps per year. As far as the Tree-LTC method is considered, we report the num-
ber of time steps and the factor fA. In this model, given that the valuation of the fair
value of α requires a greater computational effort, in order to speed up the contract
valuation procedure, for both numerical methods, we first perform a rough estimation
of fair α using configuration A, and then run the procedure around this approxima-
tion using the reference configuration (B, C or D). The fair values of α, computed
with respect to the four setups, are reported in Table 8. The results obtained here
have similar characteristics to those obtained in the Black-Scholes model: both models
produce compatible results, but the Tree-LTC method produces more stable results
in less computational time. Table 9 presents the outcomes as the PH’s age varies,
and whether LTC is included or not. The two numerical methods deliver very similar
results about the age pattern of the fair value of α. When considering the impact of
the PH’s starting age, it is evident that making the withdrawal rate g vary with the
initial age x0 of the insured results in fair values of α that are closely aligned across
the considered ages. Furthermore, when comparing the cases for c = 6% and c = 0,
it is clear that the addition of LTC to the insurance policy does lead to a higher fair
value for α. However, in the examined scenario, this increase never surpasses 130 basis
points, a value that is generally considered acceptable.

We deepen our analysis on the fair value of α by assessing how it changes with
several factors changing: the PH’s initial age, the withdrawal strategy (static, mixed,
dynamic and full dynamic), and the fund volatility σF . We report the results in Table
10. We can observe that the fair value of α increases when considering a withdrawal
strategy with a wider range of withdrawal possibilities. Moreover, the inclusion of
advanced withdrawal strategies does not penalize the computational cost of the algo-
rithm: when switching from the static strategy to the full dynamic strategy, in most
cases, the computational times do not significantly increase. We also observe that the
fair value of α increases as σF increases. The increase does not depend much on the
initial age of the insured. Instead, it is more sensitive to the withdrawal strategy: the
greater the volatility, the greater the opportunities to exploit a flexible strategy effi-
ciently. This can have implications on the attractiveness of the insurance products
due to higher contract value and thus higher contract fees. For this reason, the use of
volatility risk mitigation techniques to limit σF (see, for example, Berardi and Tebaldi
(2024)) can be an effective choice.

As a further step in our analysis, we assess also how the fair value of α changes
with the volatility of the interest rate, namely σr. We report the outcomes in Table
11, where we show four possible values for σr. We can notice that the fair values
of α for σr = 0.001 are very close to those for the BS model, reported in Table 4,
since for σr = 0 the BS-CIR model reduces to the nested BS model. Moreover, for
this particular case, the computational times are higher than usual: this is due to the
fact that the smaller σr is, the greater the number of nodes of the interest rate tree
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between r0 and zero. However, in line with standard practice, we report this very
particular parameter setting only for comparison purposes between the BS-CIR and
the BS models, since it is not interesting from a practical point of view when the
stochastic interest rate is considered. Secondly, we observe that, as σr increases, the
fair value of α initially tends to decrease slightly, and then to increase. This particular
dynamics is related to the specific choice of a negative correlation coefficient ρ, that
has been set equal to −0.25. Such a choice is consistent with market observations, as
previously explained in the beginning of Section 4. In this respect, we study the effect
of correlation coefficient ρ on the fair value of α. Figure 1 represents the fair value of
α as a function of σr for different values of the correlation parameter ρ, when a static
withdrawal strategy is employed. We emphasize that the values used to generate this
Figure was calculated using the Tree-LTC algorithm, but, as a robustness check, they
were also validated by the Monte Carlo method. As it can be seen, when the correlation
parameter is negative, the fair value of α (and thus the price of the contract) initially
tends to decrease and then grows, whereas when ρ is positive there is only growth.
This aspect is important when selecting the fund to which to link the policy, preferring
funds that are negatively correlated with interest rate trends.

As a further analysis, we assess what the optimal withdrawal strategy should be
under different assumptions about the amount of the account value, the interest rate,
the health status of the PH and the time of contract evaluation. The results are
presented in the Figure 2. In this Figure, we display the dynamic optimal withdrawal
strategy for a GLWB-LTC contract, as a function of the account value A2+

n (x-axis)
and of the interest rate rn (y-axis), varying the anniversary n and the health status
of the PH, Mn. The green region denotes the points for which it is convenient not
to withdraw (γn = 0), the white region for which it is convenient to withdraw at the
guaranteed minimum rate (γn = 1), and the orange region for which it is convenient
to terminate the contract (γn = 2). Looking at the various cases analysed, we can
see that when the account value takes high values, surrendering is the best choice:
the cost of fees is not worth the insurance coverage provided by the contract. When
analysing the effect of interest rates, we notice that the higher the interest rate, the
more convenient the choice of surrender option. On the other hand, when the interest
rate is low and the account value takes on values close to the initial premium, the
most convenient choice is not to withdraw and thus to let the benefit base increase
in its value. This implies to reserve a higher LTC payment in case of disability at
the subsequent anniversaries and/or a higher withdrawal. This aspect emphasizes
an important advantage of flexible withdrawal strategies, especially in relation to
insurance policies offering protection from health risks. Indeed, the PH is given more
choice about how much to save for protection from the possible disability states at
future times. When analyzing the optimal withdrawal strategy with respect to time,
we notice that as the PH grows old, the most convenient is for her to withdraw at
the minimum guaranteed rate and thus to undertake a decumulation strategy as the
component of disability protection becomes more and more important. The passing
of time has a further effect: in the early years it is less convenient to terminate the
contract early because of the cost charged for withdrawals beyond the guaranteed
minimum. After seven years this penalty disappears and it is then more convenient to
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surrender. Finally, when the PH is very old, the most convenient choice is a standard
withdrawal, almost always: it is neither worthwhile to give up a withdrawal (the cost
of giving up does not pay off over time) nor to terminate the contract (the PH loses
the insurance coverage).

Setup MC Tree-LTC

A 1 · 106, 25 25, 100
B 2 · 106, 50 50, 200
C 4 · 106, 100 100, 400
D 8 · 106, 200 200, 800

Table 7 Parameter setup for the numerical algorithms when the BS-CIR model is considered.

c = 0.06 c = 0.00

Setup MC Tree-LTC MC Tree-LTC

A 157.16 ± 3.56
(32)

159.24
(3)

53.47 ± 3.05
(32)

54.61
(4)

B 159.14 ± 2.63
(151)

159.39
(14)

53.58 ± 2.24
(150)

54.92
(15)

C 158.76 ± 1.85
(699)

159.44
(81)

55.03 ± 1.54
(500)

55.00
(75)

D 159.84 ± 1.30
(1804)

159.45
(431)

55.17 ± 1.04
(1508)

55.02
(379)

Table 8 The fair values of α (in basis points), in the BS-CIR model, by changing the numerical
setup and by assuming the presence (c = 6%) or absence (c = 0) of LTC. The values in parentheses
indicate computational time in seconds.

Entry c = 0.06 c = 0.00

age MC Tree-LTC MC Tree-LTC

60 159.84 ± 1.30
(1804)

159.64
(81)

55.81 ± 1.09
(1885)

55.00
(75)

65 170.10 ± 1.40
(1736)

170.98
(60)

54.49 ± 1.12
(1706)

55.25
(61)

70 169.89 ± 1.45
(2251)

169.63
(55)

48.62 ± 1.17
(1581)

48.64
(55)

75 159.14 ± 1.49
(2042)

158.45
(50)

38.06 ± 1.21
(1478)

37.43
(52)

80 140.32 ± 1.51
(1285)

140.70
(45)

23.97 ± 1.26
(1277)

24.06
(44)

Table 9 The fair values of α (in basis points), in the BS-CIR model, by changing the entry age of
the PH and by assuming the presence (c = 6%) or absence (c = 0) of LTC. The values in
parentheses indicate computational time in seconds.
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Entry BS CIR-with σF = 0.15 BS CIR-with σF = 0.20 BS CIR-with σF = 0.25
age static mixed dynamic full dyn static mixed dynamic full dyn static mixed dynamic full dyn

60 121.61
(89)

150.88
(110)

162.81
(134)

168.43
(143)

159.64
(81)

220.69
(80)

234.38
(111)

249.25
(77)

198.98
(51)

305.88
(72)

321.49
(86)

353.65
(84)

65 133.88
(80)

153.75
(104)

165.03
(125)

169.18
(132)

170.98
(60)

213.79
(394)

226.45
(96)

237.26
(112)

210.45
(47)

286.56
(66)

300.81
(80)

324.15
(85)

70 134.09
(74)

146.09
(95)

156.19
(114)

158.79
(120)

169.63
(55)

196.81
(68)

208.03
(87)

214.90
(101)

208.09
(43)

258.22
(60)

270.83
(75)

286.12
(73)

75 124.94
(66)

131.39
(81)

140.03
(104)

141.42
(107)

158.45
(50)

173.91
(71)

183.48
(85)

187.21
(91)

195.35
(39)

225.34
(54)

236.13
(63)

244.91
(64)

80 109.63
(58)

112.68
(73)

119.81
(91)

120.48
(101)

140.70
(45)

148.31
(58)

156.18
(77)

157.83
(87)

175.50
(35)

191.08
(47)

199.98
(52)

204.06
(57)

Table 10 The fair values of α (in basis points), in the BS-CIR model, for a GLWB-LTC with
c = 6%, by changing the entry age of the PH, the withdrawal strategy and the volatility σF of the
fund. The values in parentheses indicate computational time in seconds.

Entry BS CIR-with σr = 0.001 BS CIR-with σr = 0.05
age static mixed dynamic full dyn static mixed dynamic full dyn

60 154.35
(801)

216.78
(1044)

229.35
(1308)

244.12
(993)

153.72
(66)

213.91
(84)

226.70
(85)

240.84
(86)

65 166.75
(801)

210.99
(959)

222.64
(1201)

233.52
(1265)

165.97
(60)

208.45
(74)

220.30
(88)

230.71
(98)

70 166.70
(814)

195.14
(885)

205.49
(1056)

212.50
(1094)

165.69
(60)

192.87
(68)

203.42
(82)

210.10
(96)

75 156.84
(761)

173.20
(793)

182.06
(953)

185.91
(996)

155.62
(52)

171.19
(64)

180.22
(74)

183.87
(86)

80 140.19
(577)

148.34
(715)

155.63
(859)

157.37
(885)

138.84
(45)

146.56
(54)

154.00
(65)

155.65
(115)

BS CIR-with σr = 0.10 BS-CIR with σr = 0.15
static mixed dynamic full dyn static mixed dynamic full dyn

60 159.64
(81)

220.69
(80)

234.38
(111)

249.25
(77)

171.59
(63)

237.22
(105)

252.52
(110)

269.54
(113)

65 170.98
(60)

213.79
(394)

226.45
(96)

237.26
(112)

181.77
(58)

226.99
(88)

241.01
(107)

253.12
(103)

70 169.63
(55)

196.81
(68)

208.03
(87)

214.90
(101)

178.42
(57)

206.84
(76)

219.18
(96)

226.76
(94)

75 158.45
(50)

173.91
(71)

183.48
(85)

187.21
(91)

165.21
(52)

181.25
(52)

191.70
(83)

195.77
(83)

80 140.70
(45)

148.31
(58)

156.18
(77)

157.83
(87)

145.67
(46)

153.50
(61)

162.04
(73)

163.81
(75)

Table 11 The fair values of α (in basis points), in the BS-CIR model, for a GLWB-LTC with
c = 6%, by changing the entry age of the PH, the withdrawal strategy and the volatility σr of the
interest rate. The values in parentheses indicate computational time in seconds.
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Fig. 1 The fair value of α (in basis points), in the BS-CIR model, for a GLWB-LTC with c = 6%,
X0 = 60, and different value of ρ. The withdrawal strategy is assumed to be the static one. The black
dotted line has a constant y-value equal to the fair value of alpha in the Black-Scholes model.
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Fig. 2 Dynamic optimal withdrawal strategy for a GLWB-LTC contract, as a function of account
value A2+

n (x-axis) and interest rate rn (y-axis), varying the anniversary n and the health status
of the insured Mn. The green region denotes the points for which it is convenient not to withdraw
(γn = 0), the white region for which it is convenient to withdraw at the guaranteed minimum rate
(γn = 1), and the orange region for which it is convenient to terminate the contract (γn = 2).
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5 Conclusions
Ageing and disability cannot be disentangled. Private insurance sector can fill the
gaps of public social protection systems. It is important to overcome the small market
penetration of LTC private insurance, by making insurance products more attractive
to the demand-side.

The state-of-the-art has proposed insurance products that bundle longevity, dis-
ability and downside risks. For instance, Hsieh et al. (2018) proposed the LCA-GLWB
insurance contract, namely variable long-term care annuities, granting the policy-
holder to withdraw a contractually defined fraction of the benefit base until she
remains alive. The key idea of our paper is to provide more general features for this
insurance product and to refine its pricing method. In particular, we depart from the
existing literature on variable long-term care annuities by introducing the opportunity
for the policyholder to choose how much to withdraw (dynamic withdrawal strat-
egy), including the surrender option. We name “GLWB-LTC” the insurance product
embedding LTC payouts and dynamic withdrawals.

The state-of-the-art emphasizes, in relation to GLWB variable annuity contracts,
that the surrender option is generally attractive to the demand side, as policyholders
may be less prone to perceive insurance securities as illiquid investments. Through
our numerical results, coming from the pricing of the GLWB-LTC product, we show
that the dynamic withdrawal strategy acquires even more relevance within the GLWB
annuity product that offers protection from disability risks.

Our numerical analysis leads to interesting and original findings with important
implications on both the social value and the attractivity of the GLWB-LTC product.
These findings mainly relate to the advantages of the dynamic withdrawal strategy,
also under the policyholder’s perspective. In particular, the policyholder can choose
more flexibly how much to save for protection from the possible state of disabled at
future times.

Future research paths could explore how the fund volatility impacts on the valua-
tion of the GLWB-LTC product and methods to refine its design for better protection
against this risk. This could be important since this kind of products combines
insurance and investment components.
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A Appendix: transition intensities
Following Pritchard (2006), the intensities for the health state transitions are com-
puted from the coefficient reported in Table 12. Specifically, depending on which
provides a better fit, for i ∈ {1, . . . , 6} and j ∈ {1, . . . , 6, 7} \ {i}, the transition
intensities are defined as

qx0
i,j = Ai,j + Bi,j · exp (Ci,j (x0 + t − 68.5))

or
qx0

i,j = Ai,j + Di,j · (x0 + t)
with a lower bound of zero on all intensities at all ages. In addition for i ∈ {1, . . . , 6}

qx0
i,i = −

∑
j ̸=i

qx0
i,j .

Finally, for j ∈ {1, . . . , 7} , qx0
7,j = 0.
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Parameters

From state To state A B C D

IADL Only −3.22 · 10−2 5.19 · 10−2 4.35 · 10−2 −
1-2 ADLs 9.58 · 10−3 2.11 · 10−3 1.74 · 10−1 −

Healty 3-4 ADLs −2.34 · 10−2 − − 3.85 · 10−4

5-6 ADLs −1.37 · 10−4 3.16 · 10−3 8.01 · 10−2 −
Inst’d −9.05 · 10−4 3.15 · 10−3 1.32 · 10−1 −
Dead −1.62 · 10−1 − − 2.64 · 10−3

Healty 1.04 · 10−0 − − −1.13 · 10−2

1-2 ADLs −3.38 · 10−1 − − 8.32 · 10−3

IADL 3-4 ADLs 2.94 · 10−2 − − −1.59 · 10−4

Only 5-6 ADLs −9.89 · 10−2 1.33 · 10−1 8.16 · 10−3 −
Inst’d −1.81 · 10−1 − − 2.90 · 10−3

Dead −3.19 · 10−2 8.80 · 10−2 1.60 · 10−2 −

Healty 1.74 · 10−1 − − −1.45 · 10−3

IADL Only 5.45 · 10−1 − − −4.71 · 10−3

1-2 3-4 ADLs 1.85 · 10−1 5.62 · 10−3 1.33 · 10−1 −
ADLs 5-6 ADLs −6.10 · 10−2 1.04 · 10−1 −1.11 · 10−2 −

Inst’d −5.61 · 10−2 7.72 · 10−2 3.48 · 10−2 −
Dead −4.68 · 10−2 − − 1.93 · 10−3

Healty 1.03 · 10−1 − − −1.11 · 10−3

IADL Only −4.26 · 10−3 2.14 · 10−3 1.48 · 10−1 −
3-4 1-2ADLs 1.61 · 10−0 − − −1.69 · 10−2

ADLs 5-6 ADLs 1.64 · 10−2 2.13 · 10−1 4.51 · 10−2 −
Inst’d −9.20 · 10−2 1.09 · 10−1 3.52 · 10−2 −
Dead 1.27 · 10−1 − − −5.50 · 10−4

Healty 1.06 · 10−1 − − −9.93 · 10−4

IADL Only 2.85 · 10−1 − − −3.08 · 10−3

5-6 1-2ADLs −1.81 · 10−1 2.23 · 10−1 4.62 · 10−3 −
ADLs 3-4 ADLs 1.40 · 10−1 − − 3.16 · 10−4

Inst’d −2.00 · 10−1 − − 3.80 · 10−3

Dead 1.76 · 10−1 4.53 · 10−2 5.28 · 10−2 −

Healty 2.39 · 10−3 2.84 · 10−2 −1.19 · 10−1 −
IADL Only 2.89 · 10−2 − − −2.90 · 10−4

Inst’d 1-2ADLs −3.10 · 10−2 3.89 · 10−2 −1.02 · 10−2 −
3-4 ADLs −1.94 · 10−1 2.05 · 10−1 −3.68 · 10−4 −
5-6 ADLs 9.87 · 10−3 − − −6.85 · 10−5

Dead −5.71 · 10−1 − − 9.98 · 10−3

Table 12 Parameters reported in Pritchard (2006) for computing transition intensities.

B Appendix: upper bound for the interest rate tree
In this Appendix, we demonstrate the existence of a value, denoted as Rmax(i), such
that for the interest rate tree, all nodes below Rmax(i) exclusively have successors that
are smaller than Rmax(i). To determine this value, we begin by solving the equation
presented below, with respect to k(i):

kd(i, k(i)) = k(i) − 1. (19)
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By solving equation (19), one obtains

k(i) =
⌈

−2 (∆t)3/2
kr

√
r0σr +

√
∆t2σ2

r (∆tkr (4θkr − σ2
r) + σ2

r) + ∆t2ikrσ2
r + ∆tσ2

r

2∆t2krσ2
r

⌉
.

We define Rmax(i) = Ri,k(i). It is possible to prove that

θ < Rmax(i) < R =

(√
∆t2σ2

r (∆tkr (4θkr − σ2
r) + σ2

r) + 4∆t2krσ2
r + ∆tσ2

r

)2

4∆t3k2
rσ2

r

(20)

so that Rmax(i) is bounded by a constant R which does not depend on i. Now, if
k ≤ k(i), then

Ri+1,kd(i,k) < Ri+1,ku(i,k) ≤ Ri+1,ku(i,k(i)) = Ri+1,k(i) < Ri,k(i),

as we exploited the relation ku(i, k(i)) = k(i) which comes from equations (10), (19)
and (20). Therefore, Ri,k ≤ Ri,k(i) implies that both Ri+1,kd(i) and Ri+1,ku(i) are
smaller or equal to Ri,k(i). Thus, starting from r0 < Rmax(i), it is not possible to reach
the nodes above Rmax(i). So, we have proved that at time i the discrete process r̄ can-
not assume value grater than Ri,k(i). Moreover, the node Ri,k(i) may be unreachable
itself if ku(i−1, k(i−1)) < k(i). Therefore, one can improve even more the selection of
the nodes by considering only the value of k smaller than k(i) and ku(i − 1, k(i − 1)).
Finally, we set kmax(i) = min

{
k(i), i, ku(i − 1, k(i − 1))

}
. To conclude, at time step

i, the only nodes to be considered are those with k between kmin(i) and kmax(i), with
kmin(i) defined in Section 3.3.1. Figure 3 shows an example of the tree construction.
The red points are nodes Ri,k that satisfy the relation kmin(i) ≤ k ≤ kmax(i) and are
those actually used in the Tree-LTC algorithm, while the blue points are the first order
approximation of their expected values at next time step. The green points are the
nodes that satisfy the relation kmax(i) < k ≤ k(i). These green nodes, although their
value is less than Rmax(i), are unreachable and can be discarded. The grey points are
the nodes that satisfy the relation k(i) < k ≤ i. The dotted black line corresponds to
the constant R which is greater than Rmax(i) for all values of i. Again, we stress out
that that all the grey and green nodes Ri,k cannot be reached from the initial node
R0,0, so they can be discarded and do not need to be processed, thus reducing the
computational cost of the Tree-LTC algorithm.

C Appendix: analysis of the transition probabilities
In this Appendix we discuss the transition probabilities of the proposed bi-dimensional
tree, employed within the Tree-LTC algorithm. In particular, our method differs from
the method of Appolloni et al. (2015) for 3 reasons: with reference to the tree for the
interest rate, the nodes with zero repeated value are discarded (we only keep one node
with zero value); furthermore, when Ri,k ≥ θ, the up node is defined as the down
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Fig. 3 An example of construction of the interest rate tree. Parameters used: r0 = θ = 0.02, kr =
1, σr = 0.05, T = 5, ∆t = 0.5.

node plus 1; finally, with reference to the tree for the underlying, all nodes between
two extreme values are considered and a linearity condition at the edges is exploited
to estimate the value of the contract outside the considered nodes. We go through
Lemma 2, Lemma 4 and Proposition 6 presented in Appolloni et al. (2015) and we
show step by step how to re-adapt the original proofs.
In the following, let us consider a node Ri,k such that kmin(i) ≤ k ≤ kmax(i).
Lemma 2. Let θ∗ < θ and θ∗ > θ be such that

0 < θ∗ <
θ ∧ r0

2 and θ∗ > 2(θ ∨ r0).

Then there exists a positive constant h1 = h1(θ∗, θ∗, k, θ, σr) < 1 such that for every
∆t < h1 the following statements hold.

(i) If 0 ≤ Ri,k < θ∗
√

∆t then kd(i, k) ∈ {k, k + 1} and ku(i, k) ∈ {k + 1, . . . , i + 1}.
Moreover, there exists a positive constant C∗ > 0 such that

|Ri+1,kd(i,k) − Ri,k| ≤ C∗ (∆t)3/4
, (21)
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and
|Ri+1,ku(i,k) − Ri,k| ≤ C∗ (∆t)3/4

. (22)
(ii) If θ∗

√
∆t ≤ Ri,k < θ∗

√
∆t then kd(i, k) = k and ku(i, k) = k + 1. Moreover, one

has
Ri+1,kd(i,k) − Ri,k = −σ

√
Ri,k∆t + σ2

4 ∆t, (23)

and
Ri+1,ku(i,k) − Ri,k = σ

√
Ri,k∆t + σ2

4 ∆t. (24)

Proof. The proof of (i) is very similar to the original one. We star by pointing out
that in this particular case, it has been proven that kACZ

d (i, k) = k, so, with respect
to our tree, kd(i, k) = max {k, kmin(i + 1)}.
• If Ri,k > 0, then Ri+1,k+1 > Ri,k > 0 and kmin(i + 1) ≤ k. Then kd(i, k) =

max {k, kmin(i + 1, k)} = kACZ
d (i, k) and the original proof about is not altered.

• If Ri,k = 0, then k = kmin(i, k) and Ri+1,k ≤ Ri,k = 0, so kmin(i + 1, k) ≥ k.
Moreover, since k ≥ kmin(i, k), then Ri,k+1 > 0 and kmin(i + 1, k) ≤ k + 1, so
kmin(i + 1, k) = k or kmin(i + 1, k) = k + 1.

– If kmin(i + 1, k) = k, then kd(i, k) = max {k, k} = kACZ
d (i, k), and one continues

as in the original proof.
– If kmin(i+1, k) = k+1, then kd(i, k) = max {k, k + 1} = k+1 and Ri+1,kACZ

d
(i,k) =

0, so |Ri+1,kd(i,k) − Ri,k| = 0 ≤ C∗ (∆t)3/4 and nothing changes for ku(i, k).

The proof of (ii) is direct. In fact, in this case Ri,k > 0, so, as discussed before,
kd(i, k) = kACZ

d (i, k), and, by definition, ku(i, k) = kACZ
d (i, k) + 1 = k + 1. The proof

of equations (23) and (24) follows as in the original reasoning.

Lemma 4. Let r∗ be fixed. Then there exists h2 = h2(r∗, σF ) < 1 such that for every
∆t < h2 and (i, k) such that Ri,k ∈ [0, r∗] one has

jd(i, j, k) = j − 1 and ju(i, j, k) = j + 1 (25)

for all j = 2, . . . , jmax − 1. As a consequence, for ∆t < h2 and for every (i, k) such
that ri,k ∈ [0, r∗] one has

Aju(i,j,k)−Aj = Aj

(
eσF

√
∆t − 1

)
and Ajd(i,j,k)−Aj = Aj

(
e−σF

√
∆t − 1

)
. (26)

Proof. First of all, we observe that Aj−1 = Aje−σF

√
∆t and Aj+1 = AjeσF

√
∆t.

Moreover, for j∗ < j one has Aj∗ ≤ Aj < Aj (1 + Ri,k∆t), so jd(i, j, k) = j − 1.
Concerning the up movement, one has to prove that for ∆t sufficiently small one has

Aj (1 + Ri,k∆t) ≥ AjeσF

√
∆t

or equivalently
Ri,k∆t ≥ eσF

√
∆t − 1.
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This is true since(
eσF

√
∆t − 1

)
− Ri,k∆t ≥ σF

√
∆t − Ri,k∆t =

√
∆t

(
σF − Ri,k

√
∆t

)
.

Finally, the last term of the previous equality is positive for ∆t < (σF /Ri,k)2.

Proposition 6. Let r∗ > 0 and A∗ > 0 be fixed and set I∗ = {(i, j, k) : 1 < j <
jmax, Ri,k ≤ r∗, Aj ≤ A∗}. Let θ∗ be as in Lemma 2 and (i, j, k) ∈ I∗. We set:

(i) if (i, j, k) ∈ I∗ and ri,k < θ∗
√

∆t then

pu,u = pA
i,j,kpR

i,k,

pu,d = pA
i,j,k

(
1 − pR

i,k

)
,

qd,u = pR
i,k

(
1 − pA

i,j,k

)
,

qd,d =
(
1 − pA

i,j,k

) (
1 − pR

i,k

)
;

(ii) if (i, j, k) ∈ I∗ and ri,k ≥ θ∗
√

∆t then the four transition probabilities are set as
the solutions of linear system (13).
Then there exists h3 < 1 and a positive constant C such that for every ∆t < h3

and (i, j, k) ∈ I∗ the above probabilities are actually well defined.
The proof of this result is based on the properties demonstrated in the previous

Lemmas 2 and 4. Below there are some details. Case (i) is handled by an approxima-
tion: when Ri,k is close to zero, no correlation is assumed, which is exactly the case
for Ri,k = 0. Case (ii) is solved by studying the linear system (13) directly: explicit
formulae for the solutions can be determined and it is shown that for sufficiently small
∆t, the four probabilities obtained are all non-negative.

To conclude, we observe that, thanks to the results of Lemmas 2 and 4, and
Proposition 6, Appolloni et al. (2015) prove the weak convergence of the discrete
process Ā, r̄ to the corresponding continuous processes.
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