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Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many
applications. However, the potential has not yet been realized, with few claims of quantum advan-
tage and high resource estimates, especially due to the need for optimization in the presence of noise.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities
of near-term hardware for VQE or more broad applications of hybrid methods in which optimization
is required. To this goal, we look to use modern approaches developed in circuit simulations and
stochastic classical optimization, which can be combined to form a surrogate optimization approach
to quantum circuits. Using an approximate (classical CPU/GPU) state vector simulator as a sur-
rogate model, we efficiently calculate an approximate Hessian, passed as an input for a quantum
processing unit or exact circuit simulator. This method will lend itself well to parallelization across
quantum processing units. We demonstrate the capabilities of such an approach with and without
sampling noise and a proof-of-principle demonstration on a quantum processing unit utilizing 40
qubits.

I. INTRODUCTION

Preparing accurate ground states for quantum sys-
tems on quantum hardware is crucial for the fields of
high-energy and atomic physics [1–14] , biology [15, 16],
medicine [17–20], condensed matter [21–35], and quan-
tum chemistry [21, 36–61]. The large unknown costs of
constructing these states on both near-term and fault-
tolerant hardware is an open area of research [62–65].
While fault-tolerant hardware is still in development, it is
critical that short-depth efficient circuits for state prepa-
ration are available. The variational quantum eigensolver
(VQE) has shown promise for moderately sized systems
to efficiently construct the states where the circuits are
optimized on the quantum hardware.

VQEs are not without their faults; as the number of
parameters increases, these algorithms can become costly
and can have exponential scaling in the worst situa-
tions, such as in cases in which barren plateaus form [66–
70]. Other components of the algorithm must be care-
fully considered, such as numerical gradient evaluations
[71, 72], and choice of ansatz [73–78]. Many ideas exist
to improve and accelerate the reach of VQAs as it is an
active field of research [79–85].
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An option to bypass these issues is to adopt an ap-
proach in which no optimization is performed on the
quantum hardware [86]. One uses heuristic classical
computational approaches to optimize the parameters of
a quantum circuit before running on actual hardware.
Many different approaches can be realized, one of which
has been extensively explored with chemistry applica-
tions using approximate circuit simulators using up to 64
qubits with moderate computational resources [87, 88].

The no-optimization approach then leaves the question
of how to go beyond the classically optimized circuit ef-
fectively to find quantum advantage. In particular, after
optimizing classically as much as possible, what is the
best way to go forward and optimize the circuit further
with quantum resources? To answer this question, we
take inspiration from a geometry optimization algorithm
developed for noisy electronic structure calculations [89].
In [89], the authors use a surrogate model (in this case,
density functional theory) to calculate a Hessian for the
density functional potential energy surface, which is ex-
pected to be near the exact minimum geometry. The
approximate Hessian is then used to provide conjugate
directions for a line search using a noisy evaluation rou-
tine (diffusion Monte Carlo calculations); each line search
in a given conjugate direction uses a fixed number of
points. In the following work, we translate this to circuit
optimization for quantum computing applications. We
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FIG. 1. Diagram of the surrogate line search optimization procedure. The energy surfaces shown correspond to a 2D projection
of the energy surface for the Ising model studied in this work. The feedback loop between the classical computer and the
quantum processing unit (QPU) or quantum computer repeats for as many iterations as desired.

describe an approach that uses an approximate circuit
simulator [87, 88] to obtain an approximate Hessian for
the full VQE simulation.

In this work, we show how to apply the surrogate Hes-
sian algorithm to the optimization of quantum circuits.
Case studies for a selection of molecules and quantum
spin models will demonstrate this approach’s effective-
ness, including using an IBM quantum computer for the
transverse Ising model using 40 qubits.

II. THEORY AND MODELS

In this work we employ an optimization procedure laid
out in Ref. [89], which optimizes an accurate and noisy
cost function with the help of a cheap and noiseless sur-
rogate. The surrogate model is an approximation, but
it provides reasonable guesses for the most important
features of the optimization landscape, such as a start-
ing point and a Hessian at the minimum. Eigenvectors
of the (surrogate) Hessian form a basis of conjugate di-
rections along which the optimization can be solved in-
stantaneously, in principle. Each of the conjugate di-
rections can be optimized in parallel, and thus, a multi-
parameter optimization of any size can be treated in a
fast-converging series of parallel iterations. Typically, if
the surrogate is a good approximation to the high-level
function, only a few parallel iterations are necessary. The
conjugate directions are solved using a line-search ap-
proach, which is robust to noise and independent of gra-
dients: The function parameters are offset by a regular
grid of N shifts along the line, and then evaluated us-
ing the high-level theory. The minimum is located by

fitting a low-order polynomial, and the parameters are
shifted accordingly. The surrogate Hessian is kept fixed
throughout the iteration. The next iteration uses the
same conjugate directions and search window sizes since
the Hessian of the low-level theory is fixed. The entire
procedure is illustrated in Fig. 1.

The low-level surrogate, which is used to compute the
Hessian in this work, has multiple forms, including a
sparse wave function simulator [87, 90] and a tensor net-
work simulator [34]. The low-level Hessian computed
with our sparse wave function simulator (SWS) takes ad-
vantage of the sparsity of the electronic wave function to
simulate chemical systems of up to 64 qubits that would
otherwise be too costly [87]. The SWS makes large calcu-
lations tractable by truncating the wave function, which
is controlled by two input parameters, NMAX and NCUT.
After applying each operator in the factorized unitary
coupled cluster ansatz [91], we truncate the wave func-
tion to keep only the NCUT determinants, or computa-
tional basis states, with the largest magnitudes of the
wave function amplitudes if the wave function contains
more than NMAX determinants. This approximate treat-
ment allows us to keep the significant contributions of the
wave function and maintain a computationally tractable
calculation. This type of approximation has been used
to develop classical algorithms previously [65, 92–96]. In
addition, we allow for sampling noise to be included in
the simulations.

For this work, we look at two classes of models: molec-
ular Hamiltonians and the transverse field Ising model.
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TABLE I. Surrogate parameters for noisy simulations. Nshots(δE) corresponds to the number of shots per function call required
for a desired energy precision. NPAR is the number of parameters in the ansatz, NQUB is the effective number of qubits, and
NTOT is the total number of wavefunction determinants.

Molecule Basis NPAR NQUB NCUT NMAX NTOT Nshots(δE = 10−3) Nshots(δE = 10−4) Nshots(δE = 10−5)

H2O STO-3G 28 14 10 10 1225 7 × 105 7 × 107 7 × 109

N2 STO-3G 55 20 60 80 14,400 4 × 106 4 × 108 4 × 1010

N2 cc-pVDZ 50 36 200-500 200-500 3 × 107 2 × 108 2 × 1010 2 × 1012

H4 cc-pVDZ 193 40 50 50 36,100 4 × 105 4 × 107 4 × 109

The molecular Hamiltonians are written in the form:

Ĥ =

orb.∑
i,a

cai (â
†
aâi + h.c.) +

orb.∑
i,j,a,b

cabij (â
†
aâ

†
bâj âi + h.c), (1)

where the coefficients cai , and cabij are a function of the
constituent atoms and their positions. The primary
molecules investigated were H2O and N2 in the STO-
3g basis, and H4 chain and N2 in the cc-pvdz basis. The
H4 simulations use an intermolecular distance of 1.27Å
while all other electronic structures are taken from the
NIST computational chemistry database [97]. The H4

molecule uses a stretched interatomic distance because
it is a more strongly correlated distance. We provide
information regarding the surrogate parameters in Tab.
I.

The transverse field Ising model we investigated in this
work has a Hamiltonian of the form:

Ĥ = J1

Ns∑
i=1

σ̂z
i σ̂

z
i+1 + J2

Ns∑
i=1

σ̂z
i σ̂

z
i+2 + ht

Nz∑
i=1

σ̂x
i . (2)

For this model, we set the parameters J1 = 1.0, J2 =
0.9, ht = 0.4, and the number of sites, Ns = 40, with
periodic boundary conditions. As shown in later sections,
benchmark simulations were performed for other system
sizes.

Most of our simulations use the unitary coupled cluster
singles and doubles (UCCSD) ansatz,

|ΨUCC⟩ = eT̂−T̂ †
|Ψ0⟩, (3)

where |Ψ0⟩ is a reference state, |ΨUCC⟩ is the target state
for the VQE optimization, and T̂ is the singles and dou-
bles cluster operator:

T̂ =

occ.∑
i

vir.∑
a

θai â
†
aâi +

occ.∑
i,j

vir.∑
a,b

θabij â
†
aâ

†
bâj âi. (4)

The summations in the previous equation extend over
the occupied and virtual orbitals. The coefficients, θ, are
variational parameters that are optimized so that the en-
ergy E = ⟨ΨUCC |Ĥ|ΨUCC⟩ is minimized. We use the
trotterized form of Eq. (3) with the order of the opera-
tors according to the coupled cluster singles and doubles
amplitudes.

III. SAMPLING NOISE STUDIES IN
ELECTRONIC STRUCTURE

In this section, we present results on the feasibility
and efficacy of the surrogate line search method. We use
the molecular Hamiltonians from Eq. (1) to investigate
the feasibility of the surrogate line search method and
its performance compared to other traditional optimiz-
ers. Furthermore, the effects of surrogate accuracy using
the molecule N2 and modifications of the line search al-
gorithm using the H2O molecule are examined.
In Fig. 2a, we show a comparison for noisy optimiza-

tions of N2 in the cc-pvdz basis using the line search
and five traditional classical optimizers: SLSQP, BFGS,
Powell, conjugate gradient (CG), and COBYLA. All op-
timization alternatives start with the same initial pa-
rameters determined by the surrogate. Compared to the
other choices of optimizers, the surrogate line search con-
verges more quickly and with significantly greater accu-
racy. These results show that the surrogate line search
offers a significant reduction in function calls compared
to other classical optimizers.
In light of these results, we investigated the efficacy

of the surrogate line search compared to the noise re-
silient optimizer (Powell) [98–101] for three molecules,
H2O and N2 in the STO-3G basis, and H4 in the cc-pvdz
basis. These simulations were performed using various
levels of sampling noise, as discussed below. Additional
simulations conducted without noise are provided in the
supplemental material.
The Powell and line search methods use initial param-

eters determined by the surrogate method. The initial
search directions for Powell are conjugate directions de-
termined from the approximate optimization’s Hessian.
The choices for NCUT, NMAX as well as the number of
parameters NPAR, number of qubits NQUB, and total
number of wavefunction determinants without trunca-
tions NTOT are provided in Table I. For each molecule,
we consider optimization with error bars (for the energy
cost function) δE = O(10−3), O(10−4), and O(10−5).
The surrogate line search method is then compared with
the Powell optimizer.
We show the comparison between the surrogate line

search algorithm and the Powell optimizer in Fig. 2b-d
for H2O, N2, and H4. For H2O, we find that the line
search converges within three iterations for δE = 10−3

but at least four iterations for higher sampling rates. At



4

a

b c d

e

FIG. 2. a: A comparison of the performance of surrogate line search, SLSQP, BFGS, Powell, COBYLA, and conjugate gradient
(CG) for the N2 molecule in the cc-pvdz basis using the 18 lowest orbitals and 50 terms from the CCSD expansion with the
largest coefficients. The resolution on the energy is δE = 10−5. b-d: Comparison of Powell optimizer to the surrogate line search
using 7 points per search direction for three molecules and bases: H2O in STO-3G basis (left), N2 in STO-3G basis (middle),
H4 chain in cc-pvdz basis with interatomic distance 1.27Å (right). Solid markers correspond to the surrogate line search, and
open markers correspond to the Powell optimizer. The details of each simulation are provided in Table I. e: Comparison of
different values of NCUT for a truncated N2 simulation using the parameters from Table I and energy uncertainties δE = 10−5.

least 607 function calls using the surrogate line search
algorithm are required to begin converging. In contrast,
the Powell optimizer takes between 830 and 850 func-
tion calls. Unsurprisingly, as the sampling rate increases,
both the Powell and surrogate line search accuracies im-
prove. The Powell optimizations converge after two iter-
ations and agree with the line search. Due to the greater
number of function calls, later portions of the Powell op-
timizations are not shown.

The N2 molecule has almost double the number of

parameters as the H2O molecule and shows a starker
contrast between the two optimization methods. Both
optimizers will require more function calls because the
number of parameters has increased. As seen in the fig-
ures, both methods converge within 2 to 3 iterations;
however, the Powell optimizer takes approximately 5000-
8000 function calls to converge, whereas the line search
only takes 1500-2000, which is a 2.5 to 4 times reduc-
tion in cost. The energy can increase because all the
search directions are updated simultaneously, as seen in
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FIG. 3. Comparison between the surrogate line search using
the 10 steepest of the 29 total set of search directions for H2O
in the STO-3G basis versus all available search directions with
energy precisions δE = 10−4. Points displayed are the infinite
sampling limit and error bars are calculated using statistical
bootstrap from the uncertainties on the parameters. The gold
line indicates the optimal result for the truncated search di-
rections.

this example. Improved techniques might involve updat-
ing search directions sequentially rather than simultane-
ously. Testing such an approach will be studied in future
work, which must be considered regarding the implica-
tions for parallelizing the line searches.

The stretched H4 simulation results are also quite stark
and are shown in Fig. 2d. We expect that the stretched
H4 has difficulty with convergence, as it is likely a more
strongly correlated system. Convergence to the desired
result also happens within 2 to 3 iterations, requiring
between 2000 and 4000 function calls. In contrast, the
Powell optimizer takes nearly 6000-9000 function calls;
this is a cost savings of approximately three times by
using the surrogate line search approach.

Until now, tunable parameters for the surrogate line
search have been fixed for specific problems. An impor-
tant choice as problem sizes are scaled up is how the
accuracy of the surrogate will impact the efficacy of the
surrogate line search. It will be expected that if the surro-
gate is too coarse, then changes to the potential energy
surface will be quite discontinuous, and estimations of
the Hessian, and by analogy, the conjugate search direc-
tions, will be negatively affected; in principle, the numer-
ically calculated Hessian could have negative eigenvalues
falsely indicating that the system is not in a local mini-
mum. We show the effects of a line search using values

of NCUT = 200, 225, 250, 300, 400, and 500 using the
cc-pvdz basis for the N2 in Fig. 2e. To keep resource
costs manageable for this molecule, we use only the 18
lowest orbitals and keep only 50 operators for the UCC
ansatz corresponding to the terms from the coupled clus-
ter singles and doubles expansion with the largest coeffi-
cients. For suitably large values of NCUT > 300, we find
that the Hessian is accurate enough to provide a suit-
able surrogate line search and generally converges to a
within 2× 10−3 Hartree. However, there is a break-over
point, NCUT < 300, where the Hessian is ill-defined and
does not provide accurate search directions. The inac-
curate search directions are a by-product of the Hessian
being discontinuous in parameter space for the surrogate
model.

Another question we can ask is whether we can reduce
the required function calls by limiting the line searches
to a subset of the steepest search directions. We look
specifically at the STO-3G basis H2O simulation for this
case. The Hessian calculated using SWS has 10 eigen-
values around 80 and 19 eigenvalues around 5; a larger
eigenvalue indicates a steeper search direction. We limit
the surrogate line search to the conjugate directions cor-
responding to the 10 largest eigenvalues. A comparison
of this truncated search with the entire search in Fig. 3
using a fixed energy error δE = 10−4. The truncated
search method converges with fewer function calls than
the full line-search. Because the truncated search direc-
tion optimization has a lower energy than the full search
at early times, this suggests that one could dynamically
include search directions as the optimization improves.

FIG. 4. 40 qubit simulation on ibm brisbane using the ansatz
in Eq. (6) using only 2 steepest search directions. The QPU
expected points are the results from an MPS simulation with
bond dimension 400 using the parameters determined from
the corresponding QPU simulation.
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FIG. 5. Energy calculated on ibm brisbane using dynamic
decoupling (DD), readout error mitigation (readout), zero
noise extrapolation (ZNE), and probabilistic error cancella-
tion (PEC), compared to MPS simulator with bond dimen-
sion 40 with parameters fixed from the potential minimum of
the surrogate model.

IV. TRANSVERSE ISING MODEL USING A
QUANTUM COMPUTER

We used the transverse Ising model from Eq. (2) as
a prototypical example for simulations on quantum pro-
cessing units (QPUs). We used this Hamiltonian as an
example case to avoid issues measuring long correlated
strings of Pauli matrices, such as those appearing in the
fermion-to-qubit mapping for quantum chemistry prob-
lems. We use a nearest-neighbor ansatz, which is easily
implemented on many quantum platforms. This ansatz
uses repeated layers of entangling rotations given by the
operator

Ûi,j(θ) = e−iθ(σ̂y
i σ̂

z
j+σ̂z

i σ̂
y
j ). (5)

The explicit form of the ansatz used in our work is

V̂ (θ⃗) =

(
Ns/2∏
i=0

Û2i,2i+1(θ1)

)(
Ns/2∏
i=0

Û2i+1,2i+2(θ2)

)
(

Ns/2∏
i=0

U2i,2i+1(θ3)

)(
Ns/2∏
i=0

Û2i+1,2i+2(θ4)

) (6)

We performed a surrogate line search on IBM’s
ibm brisbane. The system we simulate uses the param-
eters J1 = 1.0, J2 = 0.9, ht = 0.4, and Ns = 40 and is in
the gapped phase but is close to a phase transition.

The surrogate model was a matrix product state
(MPS) simulator whose maximum bond dimension was
set to 4. After calculating the Hessian using the MPS
simulator, we found that two search directions are rela-
tively shallow with eigenvalues of 3× 10−2 and 4× 10−2.
For this reason, we chose to perform the line search across

the two steepest search directions. The results from the
QPU after three iterations are shown in Fig. 4. Although
the energies extracted from the simulation are well above
the expected values, the parameters have converged to
2.5 standard deviations of the expected result and, in
the absence of noise, give results within 1% of the ansatz
minimum.
Several error mitigation strategies have been leveraged

for these simulations, including dynamical decoupling
(DD) [102–107], randomized compilation (RC) [108–115],
and Clifford rescaling [116–118]. A brief overview of these
methods can be found in the supplemental information.
These simulations show that decoherence and amplitude
damping are substantial noise sources and that Clifford
renormalization does not account for all errors. Each
simulation used 20k shots for each basis measurement in
the Hamiltonian.
To have confidence in the validity of any simulations,

we compared the energy calculated using a variational
circuit on a QPU to an MPS representation of the cor-
responding state for lattices with 12, 20, 24, 28, and 32
sites. We calculate the energy of the ibm brisbane QPU
using the parameters corresponding to the surrogate min-
imum. The discrepancy between the surrogate result and
various error mitigation techniques is shown in Fig. 5, in-
cluding probabilistic error cancelation (PEC) [119, 120]
and zero noise extrapolation (ZNE) [119, 121, 122], which
were not included in the production calculations. These
results are discussed further in the supplemental infor-
mation. There are linear trends in the divergence of the
QPU simulations from the expected results. Since the cir-
cuit depth does not increase with increased system size,
this indicates that the primary source of systematic error
is either coherent or depolarizing errors from the entan-
gling gates as opposed to decoherence effects from the
qubit lifetime.

V. OUTLOOK

This work shows that the surrogate Hessian line search
method from [89] is amenable to the optimization of vari-
ational quantum eigensolver circuits in chemistry and
condensed matter. The line search method has been
shown to work both for hardware efficient and unitary
coupled cluster type ansatzë. In particular, this new op-
timizer outperforms the Powell optimizer by a factor of
2 to 4 in the cases we studied in the presence of sam-
pling noise. The efficacy of this line search optimization
is contingent upon accurate conjugate search directions
being obtained from Hessian in the low-level theory; in
particular, if negative eigenvalues appear in the surro-
gate’s Hessian due to discontinuities in parameter space,
the line search algorithm struggles to perform an ade-
quate optimization. We also investigated the effects of
truncating the search directions using only the steep-
est conjugate directions. We found that the line search
can optimize the circuit faster than using all the line
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search directions at the expense of some degree of accu-
racy. In addition, a proof of principle demonstration was
performed on ibm brisbane for a transverse Ising model
using 40 qubits.

While the studies here investigate standard example
cases, this method opens up the possibility of investi-
gating frustrated quantum spin systems, which are chal-
lenging for both tensor network simulators and quan-
tum Monte Carlo methods. Example models encompass
a broad range, for example, including Kitaev spin liq-
uids [27, 28, 123–125], geometrically frustrated Kagome
antiferromagnets [126–128], and downfolded models of
molecules [129].

It is important to investigate methods to mitigate the
problems that arise from ill-defined Hessian directions;
is it possible to truncate search directions whose Hes-
sian eigenvalues are negative or near zero as a first-pass
optimization and then use a traditional optimizer or a
modified version of the line search to improve the opti-
mization.
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Appendix A: Sparse Wave Function Simulator

The sparse wave function simulator (SWS) used for the electronic structure wave function optimizations performed
in this work leverages the sparsity of electronic wave functions to simulate systems using up to 64 qubits [87] and is
inspired by the adaptive configuration interaction (CI) algorithms developed for classical hardware[92]. Using this
approach, we can find good approximations of the electronic energy, gradients, and Hessians using a UCCSD ansatz in
a VQE calculation for molecular systems with double zeta and larger basis sets. This is beyond the reach of standard
VQE approaches, which typically require minimal basis sets. The SWS is not only appropriate as a low-cost surrogate
level of theory described in this manuscript, but it is also a convenient way to benchmark VQE calculations with large
basis sets on classical hardware before the availability of suitable quantum hardware as well as a suitable method for
generating initial quantum states that can be further refined on quantum hardware.

We employ the factorized form of the UCCSD ansatz given by

|ΨUCCSD⟩ =
∏
I

ÛI |Ψ0⟩ (A1)

where the UCCSD factors UI are either based on either the single (âai ) or double (âabij ) excitation operators of second
quantization where orbitals i and j refer to occupied orbitals in the reference wave function |Ψ0⟩, and orbitals a and
b refer to unoccupied orbitals. The UCCSD single excitation factors are given by

Ûa
i = exp

[
θai
(
âai − âia

)]
(A2)

and the UCCSD double excitation factors are given by

Ûab
ij = exp

[
θabij

(
âabij − âijab

)]
(A3)

Each UCCSD factor can be evaluated using expressions reported by Chen et al.[90] that are assessed efficiently on a
classical computer.

Two key approximations account for the efficiency of the SWS that limits (1) the size of the wave function and (2) the
size of the ansatz. First, we limit the number of Slater determinants saved during the evaluation of the ansatz. After
evaluating each UCCSD factor, we sort the wave function amplitudes by their magnitude. If the number of nonzero
amplitudes is greater than the input parameter NMAX, then we set the amplitudes with the smallest magnitude to
zero so that there is only NCUT nonzero amplitudes. In this way, we limit the number of nonzero amplitudes we need
to keep in memory and the number of determinants we must consider when evaluating each UCCSD factor. Second,
we limit the number of UCCSD factors we permit in the ansatz based on the MP2 or CCSD T1 and T2 amplitudes.
If we employ an MP2 guess as the initial values of the variational parameters θ, then we order the UCCSD double
excitation factors in decreasing order based on the magnitude of the MP2 T2 amplitudes followed by the UCCSD
single excitation factors in order based on the orbital indices with the associated parameters set to zero. We limit the
size of the UCCSD ansatz by limiting the number of UCCSD double excitation factors to NDoubles with the largest
magnitude of the initial MP2 amplitudes. When we employ the CCSD initial guess for the variational parameters,
we sort the UCCSD factors, both single and double excitations, based on the CCSD T1 and T2 amplitudes instead of
strictly separating the doubles and singles as in the initial MP2 guess. To limit the size of the ansatz with the CCSD
initial guess, we only keep NGates of the UCCSD factors with the largest magnitude of the initial CCSD amplitudes.
We also used point-group symmetry to eliminate the variational parameters that are necessarily zero, which reduces
the size of the ansatz that must be considered in the VQE optimization.[130]

A new feature added to the SWS from the original simulator described in [87] is the inclusion of sampling errors.
One can include Gaussian random noise shifts to calculated energies; this mimics the effects of sampling noise from
a quantum computer. A more robust method would involve performing a fermion-to-qubit basis transformation; we
found this to be computationally more expensive without yielding a noticeable effect on results.

Appendix B: Surrogate Line Search Algorithm

The surrogate line search algorithm originally proposed in Ref [89] takes a computationally cheap theory, known
as the surrogate, and uses it to provide target input information for the more computationally intensive high-level
theory. The surrogate provides a priori information that helps speed up and constrain the optimization of the high-
level theory. This prior information includes initial conditions, optimized search windows, improved search directions,
and efficient sampling weights. All of these priors together help stabilize the optimizer against many noise sources.
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b

a c

FIG. 6. a: Isocurves of constant parameter error δθconjugate as a function of total energy error, δE and window size, L for a
fiducial conjugate direction of the H4 square using a bound of δE = 0.001. The black line is the isocurve of constant parameter
error, and the black point corresponds to the optimal window size and energy error. b: Quadratic and quartic fits to the line
search of an example direction for the H4 square with target energy error δE = 10−3 Hartree. The inset indicates the difference
between the quadratic and quartic fits. c: Energy convergence of the line search algorithm vs. function calls for H4 square
with an error rate δE = 10−4

Before optimizations can happen using the high-level theory, one needs the initial search directions and optimal
search windows. These directions are found by calculating the Hessian of the potential energy surface along all
parameter directions; the eigenvalues of the Hessian are measures of the floppiness of the direction, and the eigenvectors
are the improved (conjugate) search directions. If one finds eigenvalues relatively close to zero, one can, in principle,
remove these search directions since they could negatively impact the eventual optimization.

The optimization of the search windows is a slightly trickier task. The eigenvalues are used as an initial guess for the
curvature of the potential energy surface and relative search window sizes for the line searches. The preoptimization
procedure uses some target input precision for either the parameters or the overall energy and attempts to find the
search window size for a given tolerance that maximizes the sampling noise. These optimizations are performed over
all of the conjugate search directions. The search window sizes are then fixed for the remainder of the optimization.

Finally, one can continue to optimize using the high-level theory. A proposed set of 1 + (M − 1)Ndir sets of
parameters are proposed corresponding to M points along each of the Ndir search directions. Once determinations of
the energies of each point are performed, a low-order polynomial, between cubic and quartic, is fit to the data points
along a given search direction. The minimum of the fit along each direction is stored and used as the starting point
for the next round of line searches. The line searches are then performed iteratively until a satisfactory convergence
is seen.
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Appendix C: Simulations for Chemistry Models

We will use the H4 square as the example case to detail the entire optimization procedure. The cases for N2, H2O,
and the H4 chain follow similarly. The optimization procedure consists of five steps: finding a surrogate solution,
calculating the Hessian, optimizing search windows for energy constraints, evaluating via a line search, and updating
this line search. We set the sparse wavefunction simulator (SWS) to keep 50 Slater determinants and optimize the
system across all 193 parameters. At this point, the Hessian is calculated numerically and then diagonalized. We
found that one of the 193 eigenvalues was within 10−4 of zero and eliminated this direction from the search.

The next step used is an optimization procedure to minimize the total energy error along an isocurve of constant
parameter error, δθconjugate, as shown in panel a of Fig. 6. The window optimization is carried out across all conjugate
directions used. Once the search window sizes are optimized, we perform noisy line searches along each conjugate
direction. A quartic polynomial is then fit to the sampled energies along the line search directions. An example of
these fits is shown in Fig. 6.b. The minimum for each conjugate direction is then used as the starting point for the
next round of line searches. This is then repeated until satisfactory convergence is reached. We show the convergence
for an error rate δE = 10−4, 10−5 in panel c of Fig. 6. Ncalls denotes the number of calls to the quantum computer
normalized by the number of shots. Additionally, Eexact is the expected minimum of the VQE ansatz.

Appendix D: Shot Count Analysis

There are many proposed algorithms for reducing the number of shots required in energy evaluation [131–136].
These methods have trade-offs between additional circuit depth, total shot count, classical processing complexity, and
implementation difficulty. In this work we estimated the number of required shot counts using an approach based on
the SortedInsertion algorithm of Crawford et al. [135], a strategy that provides a reasonable balance between these
trade-offs.

First, during the surrogate coupled cluster calculations, we calculated the exact number of shots required for the
surrogate wavefunction under the assumption that every term in the Hamiltonian H =

∑
aiPi is calculated separately

on the quantum computer. The resulting quantity is

Nungrouped =
1

ϵ2

(
M∑
i

ai
√
Var[Pi]

)
(D1)

where Var[Pi] = 1−⟨Pi⟩, because each Pi is a Pauli string. But in practice, one can simultaneously measure multiple
commuting terms at the same time. Hence, Nungrouped is a worst-case “baseline” for the number of shots. This
baseline calculation allows one to obtain shot count estimates for different term grouping strategies, even after the
surrogate simulation.

To obtain a partitioning of the Pauli terms into commuting sets, we consider full commutation (as opposed to
qubit-wise commutation [132]) before sorting the Pauli terms into sets using the SortedInsertion algorithm. This
produces a partitioning into Ok operators each with mk terms, where each Ok =

∑mk

l aklPkl and the ai have simply

been relabeled as akl. We then calculate the scalar quantity R̂ [135],

R̂ :=

 ∑
k=1

∑mk

l=1 |akl|∑
k=1

√∑mk

l=1 |akl|
2

2

. (D2)

R̂ has been shown to provide a reasonable estimate for reducing shot counts, with respect to the worst-case Nungrouped.

Hence, our final estimate in total shot counts is reported as Nshots = Nungrouped/R̂. For our two smaller Hamiltonians
(H2O/STO-3G and N2/STO-3G), this partitioning strategy led to approximately an order of magnitude reduction
in shot counts. In comparison, for the two larger Hamiltonians (N2/cc-pVDZ and H4/cc-pVDZ) the decrease was
approximately two orders of magnitude.
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Appendix E: Quantum Simulations

1. Quantum noise and error mitigation

Real-life implementation of quantum algorithms will inevitably suffer from the effects of noise. The ideal model
of usual quantum computation involves sampling from probability distributions that can be modeled as originating
(via Born’s rule [137]) from pure input states that are evolved through unitary dynamics, and followed by projective
measurements [137]. However, in the presence of noise, the distribution that is sampled on a quantum device (for a
fixed circuit) can significantly differ from the ideal, and in general should be described using more general formalism of
mixed states, non-unitary dynamics (quantum channels [138] for gate-based model and Lindbladians for continuous-
time description [138]), and generalized measurements [137].

In the context of variational optimization, one usually uses measurement results (samples) to construct a cost
function that is an estimator of some quantity of interest, such as the expected value of the energy of the Hamiltonian
evaluated on the variational state. Modeling the effects of noise on the energy landscapes for variational optimization
is an active area of research [66, 139–141], and not many analytical results are currently known, except for the simplest
noise models, such as global depolarizing noise that simply flattens the landscape (by rescaling the energy values)
[116].

The field of error mitigation (EM) tackles the problem of reducing the effects of noise on the results of quantum
computation. While some error-mitigation methods aim to improve the samples from the probability distribution
of interest (so-called strong error-mitigation), a simpler task consists of constructing error-mitigated estimators of
the quantity of interest, such as energy (so-called weak error-mitigation). The main goal of weak error mitigation is
usually to arrive at estimators for which the mean is closer to the ideal value, often at the cost of increased variance
(see, for example, [142] for more discussion).

Let us now briefly discuss the EM techniques used in the main text (see Figs. 4 and 5), which include Randomized
Compilation (RC) [108–112, 114, 115], Dynamical Decoupling (DD) [102–107], Readout Error Mitigation (REM)
[143–145], Zero Noise Extrapolation (ZNE) [119, 121, 122, 146], Probabilistic Error Cancellation (PEC) [147] , as well
as Clifford Rescaling [116–118].

Randomized compilation (RC) is a strong EM technique that aims to reduce the effects of coherent noise on
the circuit. The technique assumes that available gates can be divided into ”easy” (usually 1-qubit gates) and ”hard”
(usually 2-qubit gates) sets. A subset of easy gates (twirling subset) is then inserted randomly in the circuit layers
(layers are defined w.r.t. the implementation of hard gates). The insertion of gates is designed in a way that the
effective noise channel acting on hard gates is transformed into Pauli noise, thus removing coherent noise effects.
Typically, the twirling subset consists of single-qubit Pauli gates – indeed, this is the subset used in our experiments.
Note that RC requires circuit randomization which does not generate sample overhead, but might be hard to implement
in practice.

Dynamical Decoupling (DD) is a strong EM method that aims to reduce the noise processes (usually dephasing)
affecting idle qubits, i.e., qubits on which, in a given moment, no quantum gates act. It consists of applying periodic
sequences of single-qubit pulses to the idle qubits to effectively average out spurious interactions, thus reducing
decoherence and, in some variants, cross-talk (typically ZZ interactions). There are multiple variants of DD [102–
107], in this work we use the XY − 4 sequence. Note that DD does not require the implementation of additional
circuits, and does not generate additional sample overhead.

Readout Error Mitigation (REM) is a general term to describe techniques that reduce the effects of the mea-
surement noise on the estimated quantities. Although a more general treatment might sometimes be required (see,
e.g., [148]), the measurement noise is usually modeled as a stochastic map Λ applied to the probability distribution
p(input) that would have been obtained if the quantum measurement was perfect, i.e., we obtain noisy distribution
p(noisy) = Λp(input). Since p(noisy) can be estimated directly from measurement samples obtained from a device,
the simplest REM method consists of applying Λ−1 to the estimated distribution (and projecting onto the space of
probability distributions in case of unphysical entries, see, e.g., [143]). Some methods exist that tackle scalability
issues and are based on applying Λ−1 on a reduced subspace that is in some proximity to the observed measurement
results (this requires the assumption that measurement noise is sufficiently weak) [149]. In this work, we use Qiskit
Runtime’s implementation of the Twirled Readout Error eXtinction (TREX) method [145]. This REM technique
symmetrizes the effective noise model Λ by introducing random combinations of X gates followed by appropriate
post-processing. Due to twirling, the noise effectively rescales the expected values of observables. This rescaling can
be characterized and reversed in the post-processing, at the cost of increased variance.

Zero Noise Extrapolation (ZNE) is a weak error-mitigation strategy that consists of estimating a given quantity
(such as energy) for multiple effective noise strengths (typically quantified by a single parameter γ(ZNE)), and extrap-
olating the results to the zero-noise regime. To perform ZNE, one needs 1) A way to increase noise strength in a
controllable manner, and 2) A choice of fitting model for extrapolation. One of the standard methods to perform 1) is
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so-called unitary-folding, where multiple sequences of the circuit and its inverse are appended to the circuit. Ideally,
they should not change anything, but in the presence of noise, the additional gates will increase the noise strength
[146]. In [122] a method to increase a certain type of local Pauli noise (so-called sparse Pauli–Lindblad model, see
[150]) was introduced that uses random insertions of Pauli gates. The 2) are usually chosen to be exponential decay
or low-degree polynomials. The simplest example is linear regression E

(
γ(ZNE)

)
= aγ(ZNE) + b, where it is easily

seen that the zero-noise value can be inferred as equal to the intercept b. In this work, we use a quadratic ansatz,
E(γ(ZNE)) = a(γ(ZNE))2+bγ(ZNE)+c Note that ZNE requires implementing multiple variants of the same circuit with
changing noise strengths, thus introducing a constant multiplicative overhead in the number of circuits (in the special
case of ZNE tailored to the Pauli-Lindblad model, it also requires randomized circuits’ implementation). Furthermore,
the constructed estimator can have a bias and an increased variance which generally introduces additional sample
overheads.

Probabilistic Error Cancellation (PEC) is a weak EMmethod that decomposes a (possibly approximate) inverse
of the noise channel (which, in general, is not a physical map) into a linear combination of some set of implementable
physical channels. The coefficients in the decomposition are given by quasiprobability distribution {qi} (with |qi| ≤ 1,∑

i qi = 1) which is used to sample the available physical channels and to construct estimators of quantities of interest
from gathered statistics. To perform PEC, one needs 1) Choose a model for the noise channel to invert, and 2) Find
a quasiprobability decomposition of the channels’ inverse. To perform 1), a standard process tomography [138] or
gate-set tomography [151] can be used. In the case of Pauli noise, methods tailored to its reconstruction can be more
efficient [152]. For the special case of the sparse Pauli–Lindblad model mentioned previously, a method based on Pauli
insertions was proposed in [122]. In this work, we use Qiskit’s implementation of such PEC. Note that PEC requires
noise characterization and randomized circuit implementation. The constructed estimators are (ideally) unbiased,
but they have an increased variance that scales like γ(PEC) =

∑
i |qi|, which introduces sample complexity overheads.

Since PEC is usually performed independently for local gates, the total overhead scales exponentially in circuit size.
Clifford rescaling is perhaps one of the simplest weak EM methods available. The technique approximates the

noise model as a global depolarizing channel acting just before measurement, characterized by error probability p(dep).
The effect of the global depolarizing channel on the expected value of energy is a simple linear transformation that
for traceless observables (such as Pauli Hamiltonians) reduces to rescaling. The error-mitigated estimator is then
constructed via multiplication by 1

1−p(dep) . Note that rescaling an estimator (by a number greater than 1) increases

variance.

2. Line Search Calculations

The line search calculations performed on the ibm brisbane quantum processing unit for the transverse Ising model
Hamiltonian are discussed in this section. The topology for the quantum hardware is provided in Fig. 7. Additional
hardware specifics are provided in an a supplemental json file. The model Hamiltonian we use is

Ĥ = J1

Ns∑
i=1

σ̂z
i σ̂

z
i+1 + J2

Ns∑
i=1

σ̂z
i σ̂

z
i+2 + ht

Nz∑
i=1

σ̂x
i . (E1)

where the parameters J1 = 1.0, J2 = 0.9, ht = 0.4, and the number of sites, Ns = 40. We use periodic boundary
conditions. We use a unitary coupled cluster like ansatz shown in Fig. 8. The ansatz in explicit equation form is

V̂ (θ⃗) =

(
Ns/2∏
i=0

Û2i,2i+1(θ1)

)(
Ns/2∏
i=0

Û2i+1,2i+2(θ2)

)(
Ns/2∏
i=0

U2i,2i+1(θ3)

)(
Ns/2∏
i=0

Û2i+1,2i+2(θ4)

)
, (E2)

where

Ûi,j(θ) = e−iθ(σ̂y
i σ̂

z
j−σ̂y

j σ̂
z
i ). (E3)

Since the model in principle should be translationally invariant we force all identical operators implemented in parallel
to have the same angle. For a gradient based optimization this may lead to a high sampling overhead for calculations
of derivatives. However for a gradient free method, such as the line search, this is less problematic.

First we look for the best parameters from the surrogate model. In this case a matrix product state simulator was
used to simulate the ansatz given in Eq. (E2). This simulator used a bond dimension of 4. While the ansatz itself is
simple enough to calculate with a classically tractable bond dimension of 100, this artificially small bond dimension
was used to provide a proof of principle demonstration on a quantum processor.
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FIG. 7. Topology for the ibm brisbane quantum processing unit. The orange markers denote the path of qubits used for
the line search calculations of the transverse Ising model. The faded out qubits and connections indicate unused qubits and
connections. The graphic is used from [153]
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FIG. 8. Circuit depiction of the ansatz for Eq. (E2)
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a

b
c

FIG. 9. Summary of the key aspects of the surrogate line search optimization for the transverse Ising model from Eq. (E1).

Panel a shows the search window optimization for conjugate parameters θ̃1 and θ̃2. Panel b shows the first (top panes) and
second (bottom panes) iterations of the line search. The orange line is the quadratic fit used to calculate the minimum along
the search direction. The black points correspond to the energies calculated on ibm brisbane, the orange curve corresponds
to the quadratic fit, and the green cross corresponds to the ansatz minimum. Panel c shows the movement of the conjugate
parameters (denoted by black circles) through the potential energy surface for Eq. E2.

After finding the optimal solution, the Hessian in parameter space was calculated. The Hessian has eigenvalues:
246.45, 118.49, 8.58, -8.26. Given the large spread between the two largest eigenvalues and the two smallest one, along
with a negative eigenvalue we decided to truncate to a line search along 2 conjugate directions. These directions are
denoted, θ̃1 and θ̃2. The search windows for θ̃1 and θ̃2 were optimized for an energy uncertainty of δE = 0.01. The
optimization is shown in Fig. 9a.

The step of performing the line searches was done asynchronously to minimize latent time on the quantum pro-
cessing unit. The line searches along with all necessary error mitigation circuits were submitted as a batch job to
ibm brisbane. When all the calculations in the job were received, the fits to the various line searches were performed.
A subset of these corresponding to the first and second iterations are shown in Fig. 9b. For all of the quantum
processing unit simulations we used the following error mitigation techniques: dynamical decoupling [102–107], ran-
domized compiling [108–112, 114, 115], and Clifford rescaling[116–118]. A brief overview of these and other error
mitigation methods can be found in Sec. E 1. The circuits used the XY-4 decoupling sequence innately provided by
the qiskit runtime library.



15

The movement of the conjugate parameters through the potential energy surface are shown in Fig. 9c. While
in principle the optimization should move relatively smoothly toward the global minimum. However the quantum
noise can introduce certain distortions to the potential energy surface including biases from coherent unitary errors.
Nevertheless the optimization appears to converge to a reasonable result given the possible distortion to the potential
energy landscape. This converged result is within 10% of the expected minimum from the ansatz.

3. Energy calculation on a QPU

We calculated the energy associated with the variational circuits using the parameters corresponding to the surrogate
minimum of the transverse Ising model using the ibm brisbane QPU. The data were obtained between 12-10-2023
and 01-01-2024. We error-mitigated the results shown in Fig. 5 in the main text with dynamic decoupling, readout
error mitigation, digital zero-noise extrapolation, and probabilistic error cancellation using Qiskit IBM Runtime
implementation [154] all of which are outlined in the prior section. The data points in the figure are averaged over
four identical QPU runs, each targeted for 8192 shots. (The exact number of shots is automatically adjusted by the
error mitigation algorithms such that the statistical error after error mitigation is estimated to be consistent with the
target of 8192 shots.) The error bars are given by one standard deviation of the four QPU runs. The qubits used for
each system size are listed in Tab. II. Calibration data for the various simulations are provided in an attached JSON
file.

Ns Qubits

12 0-4, 14, 15, 18-22

20 0-8, 16, 18-26

28 0-12, 14, 17-30

36 8-12, 16, 17, 26-28, 30-32, 35, 36, 41-47, 49-51, 53, 55, 60-68

44 0-12, 14, 17-28, 30-32, 35, 36, 45-47, 49-51, 54, 55, 64-68

52 0-8, 53, 41-43, 34, 18-24, 14, 16, 26-32, 36, 49-51, 55, 58-60, 66-68, 71, 73, 77-85

60
4-12, 14, 15, 17, 22-24, 28-30, 34, 35, 37-43, 47-49, 52, 55-58, 66-68, 71, 73, 75-77, 85-83, 90, 92, 94-96, 100-102, 109,

110, 114-118

68
0-12, 17-24, 28-30, 34, 35, 37-43, 45-47, 52, 54, 56-58, 62-64, 71, 72, 75-77, 79-81, 90, 91, 94-96, 98-100, 109, 110,

114-118

76 0-12, 14, 17-24, 28-30, 34, 35, 37-43, 47-49, 52, 55-62, 66-68, 72, 73, 75-81, 83-85, 90, 92, 94-96, 100-102, 109, 110, 114-118

84 0-12, 14, 17-20, 30-33, 36-39, 45-52, 54, 56-58, 64-66, 71, 73, 75-77, 79-84, 85, 90, 91, 94-96, 98-109, 112, 114-126

TABLE II. Qubit usage for various noise studies. Qubits are listed in numerical order.

The QPU results are compared to the MPS result with a bond dimension 40. While the circuit depth remains
constant with increasing system size Ns, the number of two-qubit and measurement gates increases linearly with
Ns. The two-qubit gate and readout errors account for the linear treads of the deviation between the QPU and
MPS results. These two error sources are partially mitigated by readout-error mitigation and PEC, with noticeable
improvements shown in the figure. The qubit decoherence is not a limiting factor in this calculation, as suggested by
the fact that ZNE does not improve the results.
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G. N. Perdue, and N. M. Tubman, Phys. Rev. Res. 5, 033071 (2023).

[28] A. Jahin, A. C. Y. Li, T. Iadecola, P. P. Orth, G. N. Perdue, A. Macridin, M. S. Alam, and N. M. Tubman, Phys. Rev.
A 106, 022434 (2022).

[29] L. Xu, J. T. Lee, and J. Freericks, Modern Physics Letters B 34, 2040049 (2020).
[30] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos,

et al., Nature 569, 355 (2019).
[31] N. Vogt, S. Zanker, J.-M. Reiner, T. Eckl, A. Marusczyk, and M. Marthaler, arXiv preprint arXiv:2007.01582 (2020).
[32] G. Gyawali and M. J. Lawler, Physical Review A 105, 012413 (2022).
[33] C. Bravo-Prieto, J. Lumbreras-Zarapico, L. Tagliacozzo, and J. I. Latorre, Quantum 4, 272 (2020).
[34] A. Khan, B. K. Clark, and N. M. Tubman, “Pre-optimizing variational quantum eigensolvers with tensor networks,”

(2023), arXiv:2310.12965 [quant-ph].
[35] L. Bassman Oftelie, K. Klymko, D. Liu, N. M. Tubman, and W. A. de Jong, Phys. Rev. Lett. 129, 130603 (2022).
[36] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson,

Physics Reports 986, 1 (2022), the Variational Quantum Eigensolver: a review of methods and best practices.
[37] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’Brien, Nature

Communications 5, 4213 (2014), arXiv:1304.3061 [quant-ph].
[38] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik, New Journal of Physics 18, 023023 (2016),

arXiv:1509.04279 [quant-ph].
[39] P. G. Anastasiou, Y. Chen, N. J. Mayhall, E. Barnes, and S. E. Economou, “Tetris-adapt-vqe: An adaptive algorithm

that yields shallower, denser circuit ansätze,” (2022), arXiv:2209.10562 [quant-ph].
[40] H. G. A. Burton, D. Marti-Dafcik, D. P. Tew, and D. J. Wales, “Exact electronic states with shallow quantum circuits

through global optimisation,” (2022), arXiv:2207.00085 [quant-ph].
[41] D. Claudino, J. Wright, A. McCaskey, and T. Humble, in APS March Meeting Abstracts, APS Meeting Abstracts, Vol.

2021 (2021) p. S34.006.
[42] H. L. Tang, V. Shkolnikov, G. S. Barron, H. R. Grimsley, N. J. Mayhall, E. Barnes, and S. E. Economou, PRX Quantum

2, 020310 (2021).
[43] D. Chamaki, M. Metcalf, and W. A. de Jong, “Compact Molecular Simulation on Quantum Computers via Combinatorial

Mapping and Variational State Preparation,” (2022), arXiv:2205.11742 [quant-ph].

http://arxiv.org/abs/2212.00782
https://doi.org/10.1103/PhysRevLett.79.2586
https://doi.org/10.48550/arXiv.2204.08605
https://doi.org/10.48550/arXiv.2204.08605
http://arxiv.org/abs/2204.08605
https://doi.org/10.22331/q-2023-11-07-1171
https://doi.org/10.1103/PhysRevD.106.114501
http://arxiv.org/abs/2208.12309
https://doi.org/10.1098/rsif.2022.0541
https://doi.org/10.1098/rsif.2022.0541
https://doi.org/10.1038/s43588-021-00024-z
https://www.genome.gov/about-genomics/educational-resources/fact-sheets/artificial-intelligence-machine-learning-and-genomics
https://www.genome.gov/about-genomics/educational-resources/fact-sheets/artificial-intelligence-machine-learning-and-genomics
http://arxiv.org/abs/2109.01831
https://doi.org/10.48550/arXiv.2306.13126
https://doi.org/10.48550/arXiv.2306.13126
http://arxiv.org/abs/2306.13126
http://arxiv.org/abs/2301.04201
https://doi.org/10.1103/PhysRevA.104.032610
http://arxiv.org/abs/2210.17548
https://doi.org/10.1103/physrevd.105.034515
https://doi.org/10.1039/d1ra07451b
https://doi.org/10.1103/PhysRevResearch.5.033071
https://doi.org/10.1103/PhysRevA.106.022434
https://doi.org/10.1103/PhysRevA.106.022434
http://arxiv.org/abs/2007.01582
http://arxiv.org/abs/2310.12965
https://doi.org/10.1103/PhysRevLett.129.130603
https://doi.org/https://doi.org/10.1016/j.physrep.2022.08.003
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1038/ncomms5213
http://arxiv.org/abs/1304.3061
https://doi.org/10.1088/1367-2630/18/2/023023
http://arxiv.org/abs/1509.04279
http://arxiv.org/abs/2209.10562
http://arxiv.org/abs/2207.00085
https://doi.org/10.1103/PRXQuantum.2.020310
https://doi.org/10.1103/PRXQuantum.2.020310
http://arxiv.org/abs/2205.11742


17

[44] J. Romero, R. Babbush, J. R. McClean, C. Hempel, P. J. Love, and A. Aspuru-Guzik, Quantum Science and Technology
4, 014008 (2019).

[45] J. Tilly, H. Chen, S. Cao, D. Picozzi, K. Setia, Y. Li, E. Grant, L. Wossnig, I. Rungger, G. H. Booth, and J. Tennyson,
Physics Reports 986, 1 (2022).

[46] Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferová, I. D. Kivlichan, T. Menke, B. Peropadre,
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