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Quantum simulators have the potential to shed light on the study of quantum many-body systems
and materials, offering unique insights into various quantum phenomena. While adiabatic evolu-
tion has been conventionally employed for state preparation, it faces challenges when the system
evolves too quickly or the coherence time is limited. In such cases, shortcuts to adiabaticity, such
as spatiotemporal quenches, provide a promising alternative. This paper numerically investigates
the application of spatiotemporal quenches in the two-dimensional transverse field Ising model with
ferromagnetic interactions, focusing on the emergence of the ground state and its correlation prop-
erties at criticality when the gap vanishes. We demonstrate the effectiveness of these quenches
in rapidly preparing ground states in critical systems. Our simulations reveal the existence of an
optimal quench front velocity at the emergent speed of light, leading to minimal excitation energy
density and correlation lengths of the order of finite system sizes we can simulate. These findings
emphasize the potential of spatiotemporal quenches for efficient ground state preparation in quan-
tum systems, with implications for the exploration of strongly correlated phases and programmable
quantum computing.

I. INTRODUCTION

Modern quantum simulators hold immense potential
for studying fundamental aspects of quantum many-body
systems and materials. Recent experiments in ultracold
atoms [1–4], trapped ions [5–7], photonic systems [8–
10] and superconducting qubits [11, 12], among other
promising platforms [13–16] have successfully demon-
strated many novel quantum phenomena. These include
a variety of spin models [17–24], topological quantum
numbers [25–30], many-body localization [31–36], lat-
tice gauge theories [37–40], among others [41–46]. A
recent body of work has focused on simulating proper-
ties of two-dimensional systems [47–52]. These platforms
have also emerged as candidates for programmable quan-
tum computing [53–61]. A key application of such arti-
ficial quantum matter is to simulate strongly correlated
phases of electrons in conventional materials [62–65]. Al-
though Hamiltonians of many such systems can be ap-
proximately realized using a combination of fixed poten-
tials and driving, it remains a challenge to prepare the
system in a state corresponding to a low enough effective
temperature at which the ground state properties can be
reliably explored [62].

Traditionally, the state preparation process involves
adiabatic evolution [66], where the system is initially set
in the ground state or a close approximation of an easily
prepared Hamiltonian. By tuning the Hamiltonian pa-
rameters gradually, the state evolves towards the desired
target state, often the ground state of a target Hamilto-
nian [66]. If the evolution is slow enough, the quantum
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state remains in the ground state throughout. However,
adiabatic preparation time scales with the square of the
inverse of the smallest energy gap encountered during the
tuning process. Consequently, when the gap closes, exci-
tations are inevitably produced, and adiabatic techniques
fail to reliably generate the target state.

In situations where adiabatic evolution is unsuccessful
or too slow compared to the coherence time of the quan-
tum simulator, shortcuts to adiabaticity become neces-
sary. One such method is counter-diabatic driving, which
employs auxiliary time-dependent Hamiltonians to coun-
teract excitation production [67–69]. Optimal control
protocols, including bang-bang protocols, have been de-
veloped and rely on classical optimization of the proto-
col [54, 70–72]. Another approach involves spatially inho-
mogeneous quenches, where certain regions of the system
act as sinks for excitations [73, 74].

For systems exhibiting emergent Lorentz symmetry,
an efficient strategy for preparing the ground state of
Hamiltonians is through spatiotemporal quenches [75–
80]. These protocols enable the rapid production of
ground states, even in critical cases characterized by lin-
early dispersing modes and vanishing energy gaps. In
this protocol, the system starts in a low-entanglement
state corresponding to the ground state of a Hamilto-
nian with a gapping perturbation. The perturbation is
then tuned to zero along a quench front that moves at a
time-dependent velocity greater than the speed of light.
The simplest version of this protocol involves a constant
velocity that optimally cools the system as it approaches
the speed of light. Similar velocity thresholds have also
been observed in systems with mobile defects [81, 82].
This approach has potential applications in simulating
low-energy states of the Hubbard model in two dimen-
sions [62, 83] and one-dimensional quantum gases de-
scribed by a low-energy Luttinger liquid [84].
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FIG. 1. The quench front acts as a source of excitations, pop-
ulating modes in a chiral way. At the end of the quench, the
modes left in the wake of the front are populated according
to Doppler shifted temperatures. Modes counter-propagating
with or transverse to the front are populated at cold red-
shifted temperatures, while modes copropagating with the
front are populated according to a hot blue-shifted tempera-
ture.

Intuitively, the spatiotemporal quench protocol ex-
ploits Doppler shifts to induce cooling. The quench front
excites modes in a chiral manner, with co-propagating
modes experiencing blue shifts and counter-propagating
modes undergoing red shifts, as seen in Fig. 1. As the ve-
locity of the front approaches the speed of light, counter-
propagating excitations are completely suppressed, and
all energy is carried by excitations propagating with
the quench front. Consequently, the resulting system
exhibits critical ground state correlations. In two di-
mensions, even the transverse modes experience Doppler
shifts, leading to the suppression of excitations, a fully
relativistic effect. This method enables the preparation
of ground states in critical models within a time that
scales linearly with the system size, providing a signifi-
cant advantage over adiabatic evolution, which requires
a quadratic time scaling [76].

In this paper, we investigate spatiotemporal quenches
in a two-dimensional system, focusing specifically on the
ferromagnetic interactions of the two-dimensional trans-
verse field Ising (2D-TFI) model. Previous theoretical
studies have explored similar quenches in short-range
and long-range TFI and Heisenberg models [75, 77, 80],
which exhibit Lorentz invariance and a maximal speed
of information propagation, as well as a linear causal
light-cone. Experimental studies have mainly focused
on anti-ferromagnetic interactions [22, 85]. Our simula-
tions demonstrate that the “Doppler-shift” cooling per-
sists when the ultraviolet modes remain unexcited by
the quench front. Furthermore, we observe a local min-
imum in the energy density of excitations as a function
of the quench front velocity, occurring around the speed
of light. In this instance, the correlation length saturates
with the system size, as confirmed by scaling collapse.
These findings emphasize the effectiveness of spatiotem-
poral quenches and highlight that optimal cooling occurs
when the quench front velocity approaches the emergent
speed of light.

This manuscript is organized as follows. In Sec. II, we
introduce the model studied and its critical properties.

In Sec. III, we show that the energy density and correla-
tions at the end of the quench are qualitatively consistent
with the heatwave picture and Doppler cooling. We ar-
gue that the system reaches criticality at the emergent
speed of light by doing an appropriate scaling collapse
of the energy density and spin correlations. We discuss
the growth of entanglement entropy during the quench,
and conclude with a summary of findings and potential
future directions in Sec. IV.

II. MODEL STUDIED

We study spatiotemporal quenches in the 2D-TFI
model of N = Lx × Ly spins with ferromagnetic interac-
tions, y-periodic boundary conditions and Hamiltonian

H = −J

 ∑
<i,j>

σx
i σ

x
j + gc

∑
i

σz
i

− h
∑
i

fi(t)σ
z
i , (1)

where < i, j > refers to nearest-neighbours, σµ
i are the

Pauli matrices, J is the interaction strength, gc is the
critical transverse field and h is the initial gapping per-
turbation. In what follows, we set J = 1, let h = 5gc
and Lx = 8Ly. The perturbation is quenched along
smooth fronts moving at velocity v such that fi(t) =
1
2 + 1

2 tanh
[
(|xi| − vt)/vτ

]
, where τ is the smoothing pa-

rameter. The quench is started at time t0 = −2τ ensur-
ing that fi(t0) ≈ 1 at every site. At t → ∞, fi(t) → 0∀i,
resulting in the critical Hamiltonian. The quench time is
halved by starting the quench in the center of the chain.
In this paper, we restrict the study of quenches in systems
up to Ly = 5, giving N = 200 spins.
The system is initialized in the ground state of the

paramagnetic phase with large h. The initial wavefunc-
tion is obtained using ITensor’s density matrix renor-
malization group (DMRG) algorithm [86]. The Hamil-
tonian is represented exactly as a matrix product op-
erator (MPO). Next, time evolution is carried out with
the fourth-order time-dependent variational principle [87,
88]. At every time step, the spin correlations, the (von
Neumann) entanglement entropy and the total energy are
calculated using standard matrix product state (MPS)
techniques [89]. All quantities presented in this paper
were found to converge for a maximum MPS bond di-
mension of χ = 512.
In this paper, we calculate the excitation energy den-

sity ϵ(t) = 1
N (⟨H(t)⟩ − E0(t)) where E0(t) is the instan-

taneous ground state energy. We similarly compute the
spatial distribution of the energy. The local energy den-
sity is defined over each bond between sites (i, j), (i+1, j),
as the expectation value of the operator

hi,j(t) =− σx
i,jσ

x
i+1,j −

1

2

(
gi,jσ

z
i,j + gi+1,jσ

z
i+1,j

)
− 1

4

(
σx
i,jσ

x
i,j+1 + σx

i+1,jσ
x
i+1,j+1

+σx
i,j−1σ

x
i,j + σx

i+1,j−1σ
x
i+1,j

)
(2)
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FIG. 2. The critical properties of the 2D-TFI model are ver-
ified by doing a scaling collapse of the energy density near
the minimum gap. The collapse is obtained for the known
critical field gc = 3.04438, critical exponent ν = 0.629971 and
dynamical critical exponent z = 1. Inset The uncollapsed
gap energy is shown.

where i ∈ [1, Lx − 1], j ∈ [1, Ly] and gi,j = gc(1 +
hfi,j(t)), which corresponds to the instantaneous trans-
verse field. The final term in this expression is a two
dimensional interpolation of the energy contribution of
the vertical bonds. In this manner, the spatial distribu-
tion of the excitation energy is defined as ϵ(xi, yj , t) =
⟨hi,j(t)⟩ − ϵ0(xi, yj , t), where ϵ0(xi, yj , t) is the instan-
taneous ground state energy density. Note that at the
boundaries, terms 1

2gi,jσ
z
i,j must be added to hi,j for

i = 1, N − 1 such that
∑

i,j hi,j = H. Thus, the local
energy density sums up to the total energy.

The 2D-TFI model has a second order phase transi-
tion separating a ferromagnetic phase for g < gc and
paramagnetic phase for g > gc. The critical point of the
Hamiltonian in Eq. (1) is verified by performing a scal-
ing collapse of the energy gap calculated with DMRG
as a function of the transverse field, for system sizes up
to Ly = 6. We find that our data agrees well with the
known calculated critical field gc = 3.04438 and critical
exponent ν = 0.629971 obtained through exact diagonal-
isation, quantum Monte Carlo, DMRG and experimental
investigations [22, 90–95], as shown in Fig. 2.

Dynamical phase transitions have been studied in the
ferromagnetic 2D-TFI model for homogeneous quenches
of the transverse field across the critical point. These
studies reveal that local spin excitations are the energet-
ically dominant quasiparticles [96] and exhibit Kibble-
Zurek scaling of the correlations for fast quenches across
the critical point [97–100]. The latter also revealed that
the adiabatic limit is reached for slow quenches, such
that the ground state of the 2D-TFI can be prepared in
a time scaling quadratically with the linear size of the
system L. The critical point has dynamical critical ex-
ponent z = 1, such that emergent low-energy theory has
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FIG. 3. The ground state of the 2D-TFI for Ly = 5 at criti-
cality (gc = 2.8202) is perturbed at site (x, y) = (Lx/2+1, 1)
and is time evolved. The von Neumann entanglement entropy
is calculated at every time step at the MPS bonds that bisect
the cylinder along its length. A light cone appears, which
allows the estimate of the speed of light by doing a linear fit
to the white line, giving c ≈ 3.06(1). Inset The speed of
light is shown for system sizes up to Ly = 6 with error bars
corresponding to the small range of velocities that reasonably
represented the boundaries of the light cone. The red line is
a linear fit to c(Ly) = agc(Ly) + c∞.

relativistic linearly dispersing modes. In this work, the
velocity of excitations is estimated from the time evolu-
tion of a perturbation on the lattice. The bipartite von
Neumann entanglement entropy shows the emergence of
a light cone from which a velocity can be extracted, as
seen in Fig. 3. Indeed, the white line in Fig. 3 repre-
sents a light cone with speed of light c ≈ 3.06(1). The
system size scaling of the speed of light is observed to
be approximately linear in gc(Ly) as can be seen in the
inset of Fig. 3. A linear fit gives a speed of light in the
thermodynamic limit of c∞ ≈ 3.2(6)

III. DOPPLER COOLING IN THE 2D-TFI
MODEL

The heatwave picture developed in Ref. [76] summa-
rizes the relativistic cooling mechanism for superlumi-
nal quench fronts presented in this section. Modes are
excited corresponding to a Doppler shifted temperature
that depends on the angle θ at which they are emitted
relative to the front trajectory. In one dimension, this
creates a well demarcated hot and cold regions depend-
ing on whether that region is illuminated by waves trav-
eling against the quench front (cold) or with the quench
front (hot). In two and higher dimensions, waves can be
excited in more directions and are Doppler shifted by a
factor η(θ) that is dependent on the angle with respect
to the quench front at which they are radiated. The cool-
ing effect is expected to persist in the higher dimensional
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x

x = vt

t

y θ

FIG. 4. The spatial distribution of energy can be theoretically
estimated by integrating over excitations emanated from the
quench front whose populations are Doppler shifted according
to the angle of emission θ; see Eq. (4). Here blue indicates
colder waves excited against the quench front, and red indi-
cates hotter waves copropagating with the quench front.

case as well since even waves that are excited orthogonal
to the quench front are Doppler shifted downwards, by
a Doppler factor η(π/2) = γ, where γ > 1 is a Lorentz
dilation factor. In general, we expect a spatially varying
energy density profile, as indeed observed in our simula-
tions; see Fig. 5(a). In particular, we expect a “hot” re-
gion for ct < x < vt populated by blue-shifted modes and
a “cold” region for x ≪ ct, with the energy density con-
tinuously varying between the two extremes. The “hot”
and “cold” regions are also identified in the spin correla-
tions. The colder regions correspond to slow, power-law
decay of correlations, while the hot regions exhibit expo-
nentially decaying correlations with a small correlation
length, as shown in Fig. 5(b).

For free relativistic fermions, as pertains to the nearest-
neighbour one dimensional critical TFI model, one can
perform detailed calculation of these mode popula-
tions [80]. In the two dimensional case, the 2D TFI
model cannot be mapped to free fermions; the natural
interpretation is instead in terms of interacting bosons.
For free bosons, the result for the mode population in
two dimensions and for τ = 0 is given by [77]

Nθ(k) ≈

{
m

4η(θ)ωk
for η(θ)ωk ≪ m

e−2η(θ)ωkm for η(θ)ωk ≫ m
(3)

where ωk = c|k|, m is the mass associated with the initial

gap, γ = 1/
√
1− β2 is the Lorentz factor with β = c/v

and η(θ) = γ(1−β cos θ) is the relativistic Doppler factor
associated with modes propagating at an angle θ relative

to the quench front trajectory. Here, η(π) ≡ η =
√

1+β
1−β

is associated with counterpropagating modes, η(0) = 1/η
is associated with copropagating modes and transverse
modes receive a factor η(π/2) = γ. As v → c+, the
Doppler factor diverges and the region left in the wake
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FIG. 5. (a) Spatial distribution of the energy density during a
spatiotemporal quench at time tq = 1

2
(Lx−1)/v shows a heat-

wave picture consistent with two-dimensional calculations for
quenches in free bosonic theory. The observed oscillatory be-
haviour potentially corresponds to UV modes being excited
non-chirally. The dashed lines correspond to the theoretical
curves for the energy density at time tq after a spatiotempo-
ral quench in 2D free fermions. (b) The spin correlations at
time tq show correlation lengths that are consistent with the
“cold” and “hot” regions that explain the energy density in
the heatwave picture.

of the quench front is left completely unexcited.
The energy density associated with modes emitted at

angle θ during a quench is obtained by integrating the
population of bosons carrying energy ωk at angle θ over
the momentum k. This yields

ϵ(θ) ∝
∫ m/η(θ)

0

ωkNkkdk ∝ m

L2

1

η(θ)3
, (4)

where L is the linear length of the system.
For spatiotemporal quenches in the 2DTFI, the anal-

ysis is complicated on multiple fronts—i) the low energy
theory should correspond to interacting bosons and ii)
there is a natural UV cutoff associated with the finiteness
of the local Hilbert space. The latter particularly implies
that the UV modes deviate from the perfect linear disper-
sion and will generally not get excited in a chiral fashion.
Therefore, their population must be controlled. We en-
able this by using a finite quench time τ . Assuming the
UV cutoff Λ > 1/τ , this effect can be introduced by ap-
proximately changing the cutoff of the integral in Eq. (4)
to min

[
m/η(θ), 1/τ

]
. This is particularly relevant for
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FIG. 6. (a) The total energy density in a system of size Ly =
5 at time tq is shown for different τ . The energy density∫
ϵ(θ)dθ averaged over the entire system is plotted as a black-

dotted line for c = 3.0625. For every τ , the energy density
at the end of a uniform quench (v = ∞) is plotted using
a diamond marker. (b) The average energy density in the
center of the cylinder in a region of size Ly × 2Ly is shown.
The expected energy density

∫
ϵ(θ)dθ averaged over the same

region is plotted as a black-dotted line.

waves that are Doppler shifted to higher energies, for
which the energy density will scale as ∼ 1/η(θ).

One can now compute the energy density at any point
in space by integrating over the contributions from waves
emitted at all different angles from the quench front and
arriving at that point in space at some fixed time; see
Fig. 4 for a visual description of this computation. In all
our calculations, we compute the spatial energy distribu-
tion at time t = tq = Lx/2v at which point the quench
front reaches the ends of the system. We denote the cor-
responding result for the energy density ϵth(x); we plot
these results in Fig. 5(a). In addition, we compute the
average energy density in the total system at the end of
the quench, and the average energy density in a finite
region of length 2Ly in the x-direction and Ly in the
y−direction centered at x = 0. We show these results in
Fig. 6.

Comparing with numerical results, we see reasonably
good agreement of the data for the spatial distribution of
the energy density shown in Fig. 5 (a) in the region x < ct
where we anticipate cooling and thus less of an issue with
UV modes. The theoretical curves are normalized to
match the energy density for v = 10 at time tq in the
center of the hot region. In the hot regions ct < x < vt,
the energy density is lower than the heatwave prediction
due to the finite time scale τ preventing the excitation
of blue-shifted high momentum modes, along with fact
that the calculations for free bosons assume infinite di-
mensional local Hilbert space (which theoretically allows
for an unboundedly large energy density), which is not
applicable to the spin model we consider. The presence
of hot and cold regions is also seen in the decay of the
spin-spin autocorrelations; see Fig. 5 (b), with correla-
tions showing slower decay in the colder regions and fast
exponential decay as the hot region is approached.

In Fig. 6 (a) and (b), we show the total and central re-
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FIG. 7. (a) The energy density at time tq is shown for dif-
ferent Ly and τ . (b) A scaling collapse of the energy density

according to the critical scaling L
−(2−ν)
y found in Appendix A.

gion’s average energy density as a function of the quench
front velocity v, for various quench parameters τ . The
theoretical curve appearing from free boson calculation
for τ = 0 is plotted as a dashed line for reference. The nu-
merical results generally agree with the theoretical curve
for small τ , where adiabatic effects owing to this parame-
ter may be ignored, and larger front velocities v ≫ c. As
v → c+, we note that the numerical results deviate from
the theoretical predictions which predict stronger cool-
ing. This can be explained by the fact that at velocities
closer to the speed of light, UV modes are more strongly
excited; since these modes deviate from linear disper-
sion which belies relativistic Doppler cooling physics, the
cooling becomes less efficient. The results for the veloci-
ties closer to the speed of light appear to agree better for
larger τ , where UV modes should be more suppressed.
We note that at small τ , we also observe a minimum in
the central region’s energy density as a function of quench
velocity—we expect cooling to become inefficient in the
subluminal case for similar reasons to the superluminal
case [80].

Further insight into the critical properties of the fi-
nal state is obtained by performing a scaling collapse
with system size scale Ly of the energy density and
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FIG. 8. (a) The spin correlations for v ≈ c(Ly) are shown
at time tq for various τ and system sizes Ly. (b) A scaling
collapse of the spin correlations with Ly is shown for different
τ . The critical exponent of the autocorrelator 2∆ = 1 + η,
where we use the known critical exponent η = 0.629971. The
scaled autocorrelator of the instantaneous ground states (GS)
at tq are plotted for Ly = 5.

spin-spin correlations. As seen in Fig. 7 (b), near the
speed c(Ly), the total energy density appears to scale

as L
−(2−ν)
y where the critical exponent agrees with that

seen at DMRG simulations of the system near the criti-
cal field. The Ly scaling of the spin correlations at v = 3
is tested for different τ as shown in Fig. 8(a). Quantita-
tively, we examine the autocorrelator using the following
ansatz

Cx(x, tq) = ⟨σx
0σ

x
r ⟩ = L−2∆

y FC

(
r

Ly

)
, (5)

which identifies the scaling of the correlation length with
the system size Ly and critical exponent 2∆ = 1 + η,
where η = 0.0363 is the known critical anomalous dimen-
sion of the 2D-TFI [93, 100]. We note that the autocorre-
lation function shows good collapse with Ly in the colder
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vN

2vt/Lx

~ t
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v = 2
v = 3
v = 5v = 5
v = 10

DMRG

FIG. 9. The growth of the von Neumann entanglement en-
tropy during the quench is shown for τ = 0.4 and different
quench velocities. The entanglement entropy shows approxi-
mately logarithmic growth for velocities v ≤ 3. The quench
ends at 2vt/Lx = 1, but the data shows the entanglement
entropy keeps increasing until v = Lx/2c, after which it satu-
rates and oscillates (data not shown). Inset: the entanglement
entropy at time t = Lx/2c is shown for different τ as a func-
tion of front velocity when computationally accessible. The
circles represent data at χ = 256. The black-dotted line shows
the entanglement calculated at criticality using DMRG.

region where critical scaling is expected to be seen, and
for larger τ , as seen in Fig. 8(b). The scaled autocorre-
lator of the ground state for Ly = 5 obtained by DMRG
(labeled as the instantaneous GS) is plotted as a solid
line against that obtained from the quench in Fig. 8(b).
It reveals that as τ is increased, the system is quenched
more efficiently to the ground state of the critical theory.
This scaling collapse shows that near v = 3, our quench
protocol indeed produces correlations close to the critical
correlations of the 2D-TFI model.

Finally, we also study the growth of the bipartite von
Neumann entanglement entropy, with x = 0 being the
position of the partition. For the quench, the entan-
glement entropy (SvN) appears to increase much more
slowly in time for v ≈ c as compared to the expected
linear growth for a homogeneous quench [101, 102]; see
Fig. 9. For v ≫ c, we indeed observe a much stronger
growth in entanglement entropy that is almost linear in
t. We can interpret the result as follows. Entanglement
between the two halves of the system increases as one
of the excitations emitted in the direction of the par-
tition x = 0 from the quench front crosses the parti-
tion. Assuming there’s a maximum speed c setting causal
speed limit on information flow in this system, the region
x ≥ xc = ct/(1 + c/v) will generically be causally decou-
pled from the region x < 0 and will not contribute to
entanglement in the system. Assuming next that the re-
gion x < xc is found at the zero temperature critical
state of the 2DTFI model, we may expect the entangle-
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ment entropy, SvN, to scale as Lylogxc ∝ log t. If the
region x < xc is heated to a finite temperature, then we
can expect volume law entanglement SvN ∼ Lyxc ∝ t.
Our numerical findings thus suggest that for v ≲ c, one
approaches very close to the ground state of the system.
Our results in fact appear to go a step further and suggest
(see inset) that the entanglement entropy at the point
where excitations produced at t = 0 reach the system’s
boundary, saturates to the ground state entanglement en-
tropy (as obtained by DMRG) in the 2DTFI model for
the full system. We do not fully understand this result.

These results demonstrate that spatiotemporal
quenches can efficiently produce critical ground states
in two-dimensional systems. In light of previous studies
[79, 80], we believe this quench protocol will be effi-
cient in current quantum simulators with short-range
interactions, making it immediately relevant to the field
of condensed matter physics. In particular, ultracold
Rydberg atom are a setup where such a protocol
could be used to realize ground states of interacting
Hamiltonians, starting from ground states that are
product states (as is the case with large transverse
fields). The ability to individually address the fields on
each atom in this setup should allow for the realization
of spatiotemporal quenches such as the ones we propose.
Trapped ion arrays are another promising avenue for the
realization of effective spin models but generally exhibit
long-range hopping and interactions decaying as 1/rα.
In two-dimensions, the tightest Lieb-Robinson bounds
predict that linear light-cones t ∼ r (indicating relativis-
tic low-energy dynamics) exist in these systems only for
α > 5 [103], which reduces the range of application of
this particular protocol to van der Waals interactions
(α = 6) implementable in ultracold Ryberg atoms. It
remains a matter of future investigation to determine
if other quench protocols v(t) can be implemented
to efficiently prepare the critical ground states of 2D
systems with long-range interactions.

IV. CONCLUSION

This work investigates the efficiency of preparing criti-
cal ground states of the two-dimensional transverse field
Ising (2D-TFI) model using spatiotemporal quenches.
The study demonstrates that the protocol effectively
leads to the rapid production of ground states, even in
critical cases characterized by linearly dispersing modes
and vanishing energy gaps. The results show that large
sections of the system are left unexcited when the quench
front velocity v ≈ c, the emergent speed of light, resulting
in critical ground state correlations. For smooth quench
fronts that leave UV modes unexcited, critical scaling
relations accompanied by a collapse of spin correlations
show that the correlation length saturates and decays on
the length scale Ly when v → c. For general v > c, a
heatwave picture emerges where one obtains hot and cold
regions in the system populated by excitations emanating

from the quench front. The optimal quench protocol also
shows a nearly logarithmic growth of the von Neumann
entanglement entropy.
The ability to prepare ground states in strongly corre-

lated systems is crucial for exploring the properties and
behavior of quantum materials. We have not here ad-
dressed the question of boundaries which inevitably will
play a role in the final cooling outcome. We assume that
since much of the hot region is unentangled with the other
half of the system, it can be effectively decoupled without
much gain in energy but this requires more careful in-
vestigation. Exploring the applicability of spatiotempo-
ral quenches in models with longer range interactions, as
relevant in trapped ion simulators, and the study of spa-
tiotemporal quenches with an accelerating/decelerating
quench front also represent interesting possibilities for
further inquiry. Finally, many of these protocols will
also have to be applied in concurrence with a number
of dynamical decoupling protocols [104–107] needed to
realize effective Hamiltonians of interest in these artifi-
cial atom/ion setups.
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Appendix A: Critical Properties of the 2D-TFI
Model on a Cylinder

We study the critical properties of the 2D-TFI model
with y-periodic boundary conditions to confirm the scal-
ing exponents of the energy density and auto-correlation
function. We begin by computing the ground state en-
ergy at criticality for different system sizes up to Ly = 8.
The critical transverse field at each Ly is determined by
using the scaling collapse in Fig. 2, giving

gc(Ly) = 3.04438 + aL1/ν
y , (A1)

where we found numerically that a = −2.88. At these
values of gc(Ly), the critical ground state energy density
is shown in Fig. 10. The ground state energy density
shows a significant scaling with Ly that vanishes in the
thermodynamic limit, an effect that can be attributed
to irrelevant fields. Indeed, a fit to the energy density
shows that the energy density decreases with a power law

L
−1.37(1)
y . We understand this scaling using the following

ansatz for the critical ground state energy

E0 = QL2 + bLν
y , (A2)
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FIG. 10. The ground state energy density of the 2D-TFI
model is shown at criticality over the entire system and within
the central region of the system. A fit is done to the data
showing the existence of a subleading term scaling as L−1.37

y .

where ν is the critical exponent. The energy density for
a system of size N = 8L2

y then scales as

ϵ0 =
E0

N
= Q′ + b′L−(2−ν)

y , (A3)

with the exponent 2 − ν ≈ 1.37 agreeing with the fitted
exponent. The energy density in a section of size 2Ly×Ly

in the center of the system shows a very similar behaviour
for Ly ≤ 6. We were unable to calculate the local energy
density and spin correlations at criticality for systems
larger than Ly = 6.
We also calculate the spectral bandwidth at criticality,

which we use to normalize the energy in Fig. 5(a) and
Fig. 6. The spectral bandwidth is shown in the inset
of Fig. 10 and scales approximately as ∼ L2

y at larger
system sizes.

Next, we calculate the spin correlations along the x-
axis of the system. The spin auto-correlations at critical-
ity for system sizes up to Ly = 6 are shown in Fig. 11.
The correlation functions collapse well according to the
critical scaling

Cx = L−2∆
y Fc(x/Ly) (A4)

where 2∆ = 1+ η, with η = 0.036298(2) [100]. The scal-
ing becomes increasingly better with larger Ly, due to a
vanishing contribution to the expected critical behaviour
in the thermodynamic limit, similar to the critical ground
state energy.

We finally characterize the critical ground state entan-
glement entropy for different Ly. As in Ref. [108], we
find that the von Neumann entanglement entropy grows
linearly with the area of the system Ly with a subleading
logarithmic correction. In Ref. [108], the subleading term
is obtained in the two-dimensional random TFI model
as arising from an interaction of spin clusters with the

1 10x

0.1

0.2

0.3

0.4

C
x

Ly = 3
Ly = 4
Ly = 5
Ly = 6

0 2 4x/Ly

1

1.5

2 Ly  Cx
Ly = 3
Ly = 4
Ly = 5
Ly = 6

2Δ

FIG. 11. The critical ground state autocorrelator is shown for
different system sizes. Inset A collapse of the autocorrelators
according to Eq. A4 is shown.

4 6 8Ly

0.7

0.8

0.9

1
S

vN
SvN(Ly) = aLy + b ln(Ly) + c

a = 0.0723(1)
b = -0.0781(5)
c = 0.5573(3)

FIG. 12. The von Neumann entanglement entropy computed
in the center of the system is shown. A fit to SvN = aLy +
b ln(Ly) + c is done, showing great agreement with the data
and precise estimates of the fit parameters.

boundaries of the system. We can expect that the pres-
ence of the logarithmic term in our system is also due to
boundary interactions.

The data presented in this section motivate the use of
Ly = 5 as a system of appropriate size such that the crit-
ical properties are close to those in the thermodynamic
limit. In summary, at Ly = 5, the critical transverse
field is given by gc ≈ 2.8202, with a ground state energy
density ϵ0 = −3.041 J, deviating slightly from the fitted
thermodynamic value of −3.249(2) J. While the critical
properties of systems with Ly = 6 were accessible, time
evolution using fourth order TDVP did not converge due
to the large size of the system and the larger bond di-
mension of the MPO representing the Hamiltonian. Even
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v/c(Ly)

×10-2

FIG. 13. The total energy density is scaled with L2−ν
y at

τ = 0.4 and plotted on a linear scale as a function of v/c(Ly).
It shows poor scaling for v/c(Ly) ≥ 1.5 and is added to com-
plement Fig. 7 of the main text.

for smaller lengths Lx = 4Ly, such that the system size
and quench times are halved, the time evolution did not
converge for every front velocity for system sizes above
Ly = 5.
To obtain data for larger Ly (comparable to Ref. [100]),

we would need a parallel implementation of the algorithm
or would need to decrease the aspect ratio of the system
to Lx = Ly or Lx = 2Ly. In that case, a heatwave pic-
ture similar to Fig. 5(a) is difficult to obtain because the
size of the region x < ct = cLx

2v would not be clearly
distinguishable for a large range of parameters and sys-
tem sizes. For example, for the largest quench velocity
presented in this paper (v = 10), the cold region x < ct
is distinguishable only above Ly = 10. Since the sys-
tem is highly excited within the region ct < x < vt, the
MPS bond dimension increases too quickly for such large
systems to be simulated.

Appendix B: Total energy density scaling at τ = 0.4

In the main text of this paper, the finite size scaling of
the energy density for quench velocities near the emer-
gent speed of sound in each system is shown in Fig. 10.
However, the total post-quench energy density does not
show a good scaling collapse for every quench velocities.
It is clearer when the energy is plotted on a linear scale,
as shown in Fig. 13. Instead, it indicates that the system
is excited for v/c(Ly) ≥ 1.5 and fails to scale as the equi-
librium critical theory. The region 0.3 ≤ v/c(Ly) ≤ 1.4
is where the data collapses well with L2−ν

y as a function
of v/c(Ly).
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