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The effects of different forms of weak measurements on the nature of the measurement induced phase transi-
tion are theoretically studied in hybrid random quantum circuits of qubits. We use a combination of entangle-
ment measures, ancilla purification dynamics, and a transfer matrix approach to compute the critical exponents,
the effective central charge, and the multifractal spectrum of the measurement induced transitions. We compare
weak measurements with an infinite number of discrete outcomes to a protocol with only a pair of outcomes and
find that to within our numerical accuracy the universal critical properties are unaffected by the weak measure-
ment protocols and are consistent with the universality class found for strong projective measurements.

I. INTRODUCTION

Measures of quantum entanglement, such as Reyni en-
tanglement entropies1–5, provide critical insights into a vari-
ety of equilibrium and non-equilibrium properties in quan-
tum many-body systems. In hybrid quantum circuits6,7,
where generic unitary dynamics competes with disentan-
gling random local measurements, a measurement induced
phase transition (MIPT) takes place in the structure of the
entanglement8–14. The critical point has been shown to be
Lorentz invariant8,11,15,16 and can be described by a logarith-
mic conformal field theory (log-CFT)17,18 in one-dimensional
chains (though several perturbations, such as long-range
gates19 or static measurement profiles that are disordered20

or quasiperiodic21, can dramatically modify this critical be-
havior to no longer be Lorentz invariant). The properties of
the log-CFT depends crucially on the quantum nature of the
problem and can be numerically investigated through a bulk or
boundary transfer matrix approach18,22. In both stabilizer cir-
cuits and qudits of local Hilbert space size q → ∞, the MIPT
does not have multifractal correlations18,23 that reflect the dis-
crete nature of Clifford gates and the classical nature of the
percolation problem, respectively. In Haar random gates on
qubit chains on the other hand, the multi-fractal correlations
are strongly pronounced providing a qualitative distinction be-
tween these problems18,24.

A monitored circuit with weak, as opposed to strongly pro-
jective, measurements that extract only partial information
from the system provide a much more versatile implementa-
tion of an open quantum system. Microscopically, a generic
example of a means to implement a weak measurement is via
an ancilla degree of freedom (e.g. a qubit) coupled to the sys-
tem25. Upon measurement of the ancilla, the state of the sys-
tem is updated based on the outcome of the ancilla measure-
ment. Such measurements are generically given by a mea-
surement strength J which can be used to tune between no
observation (J = 0) and projective measurements (J → ∞)
of some system observable. At intermediate strengths, only
partial information of the systems observable that is being
weakly measured can be obtained. Unlike projective measure-
ments, which are described by projection-valued measures,
weak measurements are described by positive operator valued
measures (POVMs)25. The size of POVMs may be larger than

the dimension of the Hilbert space of the qubit being measured
(because its elements are not necessarily orthogonal), which
leads to the possibility of making simultaneous measurements
of non-commuting observables26,27. Putting such weak mea-
surements into a hybrid random quantum circuit, as depicted
in Fig. 1, thus represents an interesting class of models that
have more entanglement than its strongly projective counter-
part. Previous work has shown that the MIPT can remain in
the presence of weak measurements provided the strength of
the measurement is not too weak11,28,29.

For the generic MIPT it is commonly believed that the na-
ture of the universality class is independent of the type of ran-
dom local measurements being strongly projective or weak7.
This question is directly investigated in this work through a
detailed numerical study of the effects of weak measurements
on the MIPT in Haar random hybrid quantum circuits. We
compare and contrast two distinct models for a weak mea-
surement; one representing an infinite number of measure-
ment outcomes, with one that has a binary outcome. We focus
on dual Haar random gates as this reduces the error in the
analysis of the transfer matrix as shown in Ref.18. The uni-
versality class of the MIPT in Haar and dual Haar models are
expected to be the same and we further verify this by comput-
ing the remaining (straightforwardly accessible) unknown ex-
ponents with strong projective measurements in Appendix A.
Using purification based probes on an auxiliary ancilla qubit
we provide unbiased estimates of the location of the MIPTs
as a function of the measurement strength. Across the MIPT
we use finite size scaling of the entanglement entropy of an
ancilla qubit, and the mutual information between a pair of
ancilla qubits to extract several critical exponents and show
that the transition remains Lorentz invariant. This allows us to
apply the bulk transfer matrix construction of Ref.18 to study
the universal properties of the log-CFT.

To formulate the free energy of the log-CFT18 based on the
entropy of the measurement record and further the Lyapunov
spectra of the transfer matrix, we find that it is essential to
have discrete, not continuous, measurement outcomes. To
make this construction explicit we review a model for weak
measurements with continuous outcomes to then show how
we can effectively “bin” the measurement outcomes to a width
ϵ allowing us to construct a model with a discrete but infinite
number of measurement outcomes. Using this approach we
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compute the leading Lyapunov spectrum of the transfer ma-
trix to extract the effective central charge of the log-CFT, the
typical scaling dimension of the order parameter, and the mul-
tifractal spectrum of the order parameter. To summarize, all of
the typical critical exponents agree well with the strong pro-
jective case while the leading multifractal exponent that we
have computed does have a slightly larger deviation. Taken to-
gether, our results strongly suggest that the universality class
of the MIPT is unaffected by going from strong to weak mea-
surements and they are ultimately described by the same log-
CFT.

The remainder of this paper is organized as follows: In
Sec. II, we introduce the models of the monitored circuits
including the Haar dual unitary entangling gates and three
different protocols for weak measurements. In Sec. III, we
compute the phase diagram of the entanglement transition
as a function of the measurement strength J and measure-
ment rate. We provide numerical evidence of Lorentz invari-
ance at the transition and compute several critical exponents.
In Sec. IV, we study the log-CFT governing the transition
through a transfer-matrix based approach and calculate the
effective central charge, the typical scaling dimension of the
order parameter, and the multifractal spectrum. We conclude
and provide outlook for future works in Sec. V. In Appendix A
we compute critical exponents of the strongly projective dual
unitary Haar model, while in Appendix B and C we provide
additional details on the models with an infinite number of
measurement outcomes. Lastly in Appendix D we show that
introducing a discrete measurement outcome does not affect
our estimate of the critical properties.

II. MODELS

In the following section, we will describe the models we use
for the entangling unitary gates and the various forms of weak
measurements. We consider a class of hybrid random quan-
tum circuits, depicted in Fig. 1(a), consisting of a chain of
qubits where the unitary dynamics is generated by the entan-
gling gates (blue squares) that we take to be either randomly
drawn from the Haar random or dual Haar random distribution
(defined below). Random local measurements are applied to
each site with probability p and the red circles in Fig. 1(a)
denote where a measurement has taken place. We define one
timestep as one layer of gates, followed by one layer of mea-
surements. With increasing p, for both strong projective mea-
surements8,30 and (certain strengths of) weak measurements28,
this hybrid circuit exhibits a MIPT in its entanglement struc-
ture. In the following, we explore the effects of different forms
of weak measurements on the nature of the universality class
of the MIPT. In particular, we consider three models that differ
in the nature (or protocol) of the weak measurement we apply.
The first two models involve weak measurements with an in-
finite number of outcomes that can be continuous or discrete.
The third model involves only two outcomes but a “softened”
projection operator.

A. Entangling Unitary gates

We aim to study the most generic quantum many body cir-
cuit of qubits. At the level of the unitary gates this is achieved
by sampling each gate randomly from the Haar distribution
of random U(4) matrices. Importantly, previous work18,22 has
shown that we can restrict this generic gate set to a smaller
subset of “dual-unitary” Haar (HDU) gates31–33, which are
unitary along the space and time direction, and still probe the
same transition while obtaining more accurate numerical re-
sults for the free energy of the log-CFT (explained in more de-
tail in Sec. IV and see Refs.18,22). In Appendix A, we explore
this universality class further to provide additional evidence
beyond Ref. 18 that the strong projective MIPT in random
HDU and random Haar circuits are within the same univer-
sality class. As a result, for the majority of the paper, we use
two site HDU qubit gates between neighboring sites (unless
otherwise specified) that are given by,

U = eiϕ(U+ ⊗ U−) · V [θ] · (V− ⊗ V+) (1)

where ϕ, θ ∈ R are chosen randomly from [0, π) and
U±, V± ∈ SU(2), are randomly chosen from the Haar mea-
sure, and

V [θ] = exp

[
−i

(
Π

4
σx ⊗ σx +

Π

4
σy ⊗ σy +

Π

4
θσz ⊗ σz

)]
.

(2)
Here, σx, σy, σz are the Pauli spin-1/2 matrices.

B. Models for Weak Measurement

To implement a weak measurement locally in the circuit,
we use the generic description of the von Neumann model34,
where the system is first entangled with an ancilla locally, and
then a projective measurement is performed on the ancilla.
We consider three weak measurement models. In the first
two models, we consider a measuring device with a “clas-
sical pointer”28 having canonically conjugate position x̂ and
momentum q̂ operators, satisfying [x̂, q̂] = i (in units with
ℏ = 1). The classical pointer interacts with a qubit of the sys-
tem for a time δt with a coupling strength λ, which is then
followed by a readout of the pointer position. The readout lo-
cation xo is a continuous variable with an infinite number of
outcomes. This readout operation on the pointer updates the
state of the qubit in the system either partially or fully, being
controlled by λ. This implements a weak measurement on
the qubit with varying strength of measurement. We first pro-
vide a review of the continuous outcome model in Sec. II B 1.
However, we are unable (at present) to form a transfer matrix
description of this MIPT due to the infinitesimal Born proba-
bilities associated with it. To overcome this limitation, we bin
the measurement outcomes xo to a small window ϵ around
that point to form a discrete weak measurement model, that is
described in detail in Sec. II B 2.

We also find it interesting to contrast and compare these
models with a weak measurement model with only a pair of
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        Classical Pointer
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FIG. 1. Circuit model and different measurement protocols: (a)
We consider models of a hybrid quantum circuit with a bricklayer
geometry acting on a chain of length L of spin-1/2 qubits with peri-
odic boundary conditions. The two-site unitary gates (blue squares)
are interspersed with weak measurements at every site with proba-
bility p (red circles denote the location that a measurement has taken
place). (b) In both the models coupled to the classical pointer (see
Secs. II B 1 and II B 2), p(x) denotes the probability distribution of
the location of a classical Gaussian pointer coupled to a qubit. The
outcome of a readout operation on the pointer in the DGPM is shown
by the blue region of width ϵ. The strength of the measurement
depends on the ratio of the separation between the two Gaussian
peaks (λ) and the width of the Gaussian distribution (∆). (c) The
measurement set-up for the Softened Projective Measurement Model
(SPMM). For a single qubit oriented along the |+n⟩ direction in the
Bloch sphere, intermediate values of Λ interpolate between | + z⟩
and |+ n⟩.

outcomes. In subsection II B 3, we consider a weak measure-
ment model obtained from softening the projective measure-
ment of the z−component of the qubit, which implements a
weak measurement with two outcomes.

1. Continuous Gaussian pointer

In this section, we review a well known model for a weak
measurement model where the system is coupled to a classi-
cal pointer that can be measured continuously at position x28.
We dub this the continuous Gaussian pointer model (CGPM).
This will set the stage in the following section to define a sim-
ilar model with discrete measurement outcomes.

The wavefunction of the pointer is initialized in a Gaussian
state |ϕ(xc = 0)⟩ of width ∆ centered at xc = 0, which can
be expanded in terms of the position basis states |x⟩ as:

|ϕ(xc = 0)⟩ = 1√
∆

∞∫
−∞

a(x)|x⟩dx. (3)

The corresponding probability amplitudes are chosen from a
squared Gaussian distribution, namely |a(x)|2 = [G∆(x)]

2,

and

G∆(x) =
e

−x2

2∆2

π1/4∆1/4
(4)

is a Gaussian distribution of width ∆ centered at x = 0. On
the other hand, the system is initialized in a state |ψ⟩ which
can be written in terms of the 2L product states |ei⟩ spanning
the Hilbert space of L qubits with corresponding expansion
coefficients cis as,

|ψ⟩ =
2L∑
i=1

ci|ei⟩. (5)

Hence the system-pointer combined initial state at t = 0 is
given by,

|Ψ(t = 0)⟩ = |ψ⟩ ⊗ |ϕ(xc = 0)⟩. (6)

At the start of each measurement operation on a system qubit
(t = 0), we couple the system with the measuring device with
a tunable coupling strength λ via the Hamiltonian Ĥint,

Ĥint = λΘ(t)Θ(δt− t)σ(j)
z ⊗ q̂. (7)

Here the pointer interacts with the jth site of the system where
z-component of the spin is to be measured and Θ(x) denotes
the Heaviside step function. The system-pointer interaction
is turned on for an interval of time δt imposed by the theta
function. During this time interval, the system and pointer
jointly evolve under the unitary operator,

Ûint(δt) = e−iĤintδt = Π
(j)
+ ⊗ e−iλδtq̂ +Π

(j)
− ⊗ eiλδtq̂, (8)

where

Π
(j)
± = [(I± σ(j)

z )/2]⊗i ̸=j I(i) (9)

projects the z−component of the jth spin onto the spin-up, or
the spin-down state. We set δt = 1 without any loss of gen-
erality. The unitary evolution under Ûint generates translation
of the position space wave-packet of the pointer and entangles
them with the spin at the jth site as,

|Ψ(δt)⟩ = Ûint|ψ⟩ ⊗ |ϕ(xc = 0)⟩
= Π

(j)
+ |ψ⟩ ⊗ |ϕ(xc = λ)⟩+Π

(j)
− |ψ⟩ ⊗ |ϕ(xc = −λ)⟩.

(10)

Here, |Ψ(δt)⟩ denotes the combined state of the system and
the pointer after the unitary evolution that consists of two
Gaussian states |ϕ(xc = ±λ)⟩ of the same width ∆ with their
centers shifted to xc = ±λ corresponding to the spin eigen-
states of σ(j)

z .

The next step is to perform a readout operation on the
pointer location by measuring the operator M̂C(xo) =
I ⊗ |xo⟩⟨xo|, where we use the C subscript to de-



4

note continuous measurement outcomes x0. These set
of Krauss operators25 satisfy the completeness relation:∫∞
−∞ M̂†

C(xo)M̂C(xo)dxo = 1, as required for a POVM. The
system-pointer state after the readout operation is given by,

|Ψ(δt)⟩ → M̂C(xo)|Ψ⟩
||M̂C(xo)|Ψ⟩||

(11)

=
1√

p(xo;λ/∆)

[
Π

(j)
+ G∆(xo − λ)

+ Π
(j)
− G∆(xo + λ)

]
|ψ⟩ ⊗ |xo⟩.

The probability of measuring the pointer at xo is given by

p(xo;λ/∆) = ⟨Ψ|M̂†
C(xo)M̂C(xo)|Ψ⟩ (12)

= ⟨ψ|Π(j)
+ |ψ⟩G2

∆(xo − λ) + ⟨ψ|Π(j)
− |ψ⟩G2

∆(xo + λ).

p(xo) is schematically shown in Fig. 1(b) which consists of
two overlapping Gaussians and hence, there is no one to one
correspondence between the pointer readout position and the
spin eigenstates of the qubit. As a result, a readout/projection
of pointer location to xo does not project the state of system
to one of eigenstates of σ(j)

z and the state of the spin is only
weakly measured. We recover projective measurements in the
limit of non-overlapping Gaussians (λ ≫ ∆), as the pointer
will only have nonzero probability to be in eigenstates |x⟩ near
the peaks of the Gaussian wavepackets, xc = ±λ.

To summarize this subsection, we implement a weak mea-
surement protocol on a qubit by entangling it to a classical
pointer whose position can be measured in a continuous ba-
sis. For any arbitrary strength of measurements determined by
the ratio λ/∆, we perform a readout operation on the pointer
with its location xo sampled from the probability distribution
p(xo;λ/∆) and update the system-pointer state governed by
Eq.(11). The two step weak-measurement operation is de-
noted by the operator

P̂CGPM = M̂C(xo)Ûint(δt). (13)

In the continuous model the probability density p(xo;λ/∆)
has the dimension of inverse length and is vanishingly small
as it has infinitesimal support in real space. That is, the Born
probability has a continuous set of outcomes and within an
infinitesimal spatial interval dx goes like

pCGPM
x = p(x;λ/∆)dx. (14)

As a result of the infinitesimal and continuous Born proba-
bility, it is not currently straightforward to define the free en-
ergy of the log-CFT based on the Born probabilities using this
measurement model (ellaborated on in Sec. IV). It is however,
natural to do so in the limit of a discrete number of outcomes
with a finite Born probability, and we now therefore turn to
constructing a discrete measurement model based on the con-
tinuous pointer outcomes.

2. Discrete Gaussian pointer

We now consider a weak measurement model where the
classical pointer can be measured in discrete positions, |xi⟩
separated by a distance ϵ. We call this the discrete Gaussian
pointer model (DGPM). The DGPM can be deduced from the
continous measurement model, which replaces the basis states
|x⟩ by |xi⟩. The basis states |xi⟩ are obtained by binning the
continuous pointer positions |x⟩ over a width of ϵ. The mea-
surement region ϵ is shown schematically by the blue rectan-
gles in Figure 1(b). This binning gives the orthonormal basis
states of the pointer,

|xi⟩ =
1√
ϵ

xi+
ϵ
2∫

xi− ϵ
2

|x⟩dx, ∀ i ∈ Z. (15)

The pointer is initialized in a Gaussian state |ϕ(xc = 0)⟩ of
width ∆ centered at xc = 0, which can be expanded in the
discrete position basis as,

|ϕ(xc = 0)⟩ = 1√
∆

i=∞∑
i=−∞

ai|xi⟩, (16)

where the corresponding probabilities, |ai|2s are chosen from
a squared Gaussian distribution G2

∆(x) averaged over a width
ϵ around |xi⟩ as,

|ai|2 =

xi+
ϵ
2∫

xi− ϵ
2

|a(x′)|2dx′ =

xi+
ϵ
2∫

xi− ϵ
2

G2
∆(x

′)dx′. (17)

As previously, the system is coupled to a classical pointer
whose Hamiltonian is given by Eq. (7), but is now measured
in a discrete basis.

The readout operation on the pointer location is performed
by measuring the operator M̂D(xo) = I⊗|xo⟩⟨xo| in discrete
basis |xo⟩ given in Eq.15 .The measurement operation is now
denoted by the operator

P̂DGPM = M̂D(xo)Ûint(δt). (18)

Thus, the system-pointer state after the readout operation is
analogously given by,

|Ψ(δt)⟩ → M̂D(xo)|Ψ⟩
||M̂D(xo)|Ψ⟩||

=
1√

p(xo;λ/∆, ϵ)

[
Π

(j)
+

√
p+(xo;λ/∆, ϵ)

+ Π
(j)
−

√
p−(xo;λ/∆, ϵ)

]
|ψ⟩ ⊗ |xo⟩, (19)

where xo is discrete and p±(xo;λ/∆, ϵ) denotes the nonzero
probability amplitudes from the two Gaussian wave-packets
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shifted to xc = ±λ that is given by,

p±(xo;λ/∆, ϵ) =

xo+
ϵ
2∫

xo− ϵ
2

G2
∆(x

′ ∓ λ)dx′. (20)

Fig. 1(b) illustrates the probability distribution of the classical
pointer when two Gaussians significantly overlap. In this case
the measured spin will not collapse to an eigenstate of σz (un-
less it was already in an eigenstate prior to measurement due
to the overlap).

Now, the Born probability of measuring the pointer at xo
over width ϵ is,

p(xo;λ/∆, ϵ) = ⟨ψ|Π(j)
+ |ψ⟩p+(xo;λ/∆, ϵ)

+ ⟨ψ|Π(j)
− |ψ⟩p−(xo;λ/∆, ϵ). (21)

In the limit of small ϵ/∆, we find analytical expressions for
the probabilities p(xo;λ/∆, ϵ) given in Appendix C. In our
numerical calculation, we use at most ϵ/∆ = 10−5 and thus
use the Born probabilities given in Eq.C2. In the discrete mea-
surement model, we now have a well-defined Born probabil-
ity, p(xo;λ/∆, ϵ) of the measurement outcome measuring the
pointer within a bin centered at xo. Therefore, we use the
discrete model in computing quantities involving the proba-
bility of the measurement record (see Sec. IV). However, we
find that the average entanglement properties such as the half-
cut and ancilla entanglement entropies are numerically equiv-
alent between the discrete and continuous outcome models as
shown in Appendix B.

In the next subsection, we will discuss a different weak
measurement model which does not involve a system-pointer
coupling to implement the measurement protocol.

3. Softened Projective Measurement Model

We will now illustrate a weak measurement protocol intro-
duced in Ref.36 obtained by softening of the projective mea-
surement in the eigenbasis of σz by a tunable softening pa-
rameter Λ. We call this model the softened projective mea-
surement model (SPMM). This weak measurement operator
at site j is defined as,

P̂
(j)
± =

1± Λσ
(j)
z√

2(1 + Λ2)
, (22)

which also satisfies the completeness condition P++P− = 1.
Here Λ can be varied between [0, 1] to control the strength of
the measurement. Fig. 1 schematically shows the effect of
the weak measurement in the Bloch sphere for a single qubit.
In the limit Λ = 0, P̂± reduces to the identity (up to a mul-
tiplicative constant). At Λ = 1 the weak measurement op-
erators {P̂ (j)

+ , P̂
(j)
− } map onto the strong projector operators

{Πz
j,+,Π

z
j,−} defined in Eq. (9) implementing measurement

along |±z⟩ axis. For the intermediate values of Λ, P̂± interpo-
lates between |±z⟩ and |±n⟩. To perform the weak measure-

ment, we calculate the Born probabilities p±(Λ) correspond-
ing to the operators P̂ (j)

± from the system wave-function |ψ⟩
as,

p±(Λ) = ⟨ψ|P̂ (j)
± P̂

(j)
± |ψ⟩

=
1

2(1 + Λ2)
(1 + Λ2 ± 2Λ⟨ψ|σ(j)

z |ψ⟩). (23)

Based on p±(Λ), we measure either P̂ (j)
+ or P̂ (j)

− and update
the state of the system to

|ψ⟩ →
P̂

(j)
± |ψ⟩

||P̂ (j)
± |ψ⟩||

. (24)

This implements a soften version of the standard projective
measurement controlled by the parameter Λ.

III. PHASE DIAGRAMS OF WEAK MIPTS

In this section, we will locate the entanglement phase tran-
sition as a function of measurement strength (J) and rate (p).
To get a qualitative sense of the phase diagram, we use the
variance of the bipartite entanglement entropy as a function of
measurement strength and probability in Sec. III A. To provide
an accurate, unbiased estimate of the location of the MIPT we
use finite size scaling of an ancilla based local order parame-
ter30,35 in Sec. III B. To compute all the Reyni entropies (e.g.
the half-cut bipartite Renyi entropy and the ancilla Renyi en-
tropies defined below) in the models with a classical pointer
coupled to the system, we use the CGPM. As we show in Ap-
pendix B, both models yield the same numerical value for
the Reyni entropies, up to negligible numerical fluctuations
of the order 10−3 times smaller than the value of the Reyni
entropies.

A. Bi-partite entanglement entropy

We begin by estimating the phase boundary from fluctu-
ations in bi-partite the entanglement entropy. To compute
the bipartite entanglement entropy, we divide the system into
two halves (denoted A and B) and the reduced density matrix
ρA = TrB[|ψ(t)⟩⟨ψ(t)|] is used to compute the half-cut von
Neumann entanglement entropy

Sn=1 = −TrA[ρA ln ρA]. (25)

Following Ref. 28, we compute the variance of the bi-partite
entanglement entropy var(S) as a qualitative proxy of the
phase diagram. We compute the variance from an ensem-
ble of entanglement entropy values constituted from (i) the
steady state S(t = 2L) values from different quantum trajec-
tories18 and (ii) S(t) values from a single trajectory choosing
t from a quasi-stationary regime, t = L/2 to 100. This steady
state regime is chosen such that the initial growth of the en-
tropy with time has saturated. Fig. 2 shows var(S) in the two-
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FIG. 2. Phase diagrams for the weak measurement models considered: To qualitatively see the phase boundary we present the variance
of the bipartite entanglement entropy, var(S) as color, for a chain of L = 12 qubits with varying measurement rate p and varying strength
of measurement J = λ/∆ [introduced in Eq. (7) for the CGPM defined in Sec. II B 1] in (a) and J = Λ [introduced in Eq. (22) for the
SPMM defined in Sec. II B 3] in (b). The blue circles track the critical measurement rate pc(J) obtained from the finite-size scaling collapse
of the ancilla entanglement entropy Sanc following Eq. (26). For small p and weak coupling strength the models are in the volume law (VL),
entangled phase, whereas for large coupling strength and measurement rate the models have long time stead states that are area-law (AL)
entangled. In both models, at the phase boundary between the area and volume law phases, the fluctuations in S are effectively maximized
shown by the light yellow color. The white line denotes the transitions that we focus on by computing their critical exponents in Sec. III and
their log-CFT properties in Sec. IV.

dimensional parameter space spanned by p and J with a color
plot where the lighter color indicates larger variance. Fig. 2(a)
corresponds to the CGPM while Fig. 2(b) is for the SPMM.
We average the bi-partite entanglement entropy over 3000 tra-
jectories for CGPM and 2000 trajectories for SPMM for each
values of p and J . The variance is expected to be maximal
at the critical measurement rate p = pc(J) (where J = λ/∆
for CGPM/DGPM and J = Λ for SPMM), and as shown in
the data we see a clear maximum in the parameter space for
a fixed system size L = 12. However, the location of this
maximum is known to drift with increasing system size28 and
therefore in the next section we consider a separate unbiased
estimate of pc(J). In particular, we use the ancilla entangle-
ment entropy defined below in the next subsection, and its
crossing for various system sizes as a function of p to locate
pc(J).

B. Ancilla Qubit Order Parameter

To construct a local order parameter of the MIPT35, we cou-
ple an ancilla qubit locally by putting it in a Bell pair with a
spin in the system. We then apply an encoding step to scram-
ble the locally entangled ancilla by running the circuit without
measurements and only unitary gates out to to = 2L, which
prepares the ancilla in a maximally entangled states with the
system. We then run the hybrid measurement and unitary dy-
namics and call this time t = 0 in the results presented.

As a function of time we calculate the ancilla von Neumann
entanglement entropy Sanc of the reduced density matrix of
the ancilla after integrating out all of the spins in the circuit.

In the monitored dynamics, Sanc(t; p, J) decreases monoton-
ically with time from its maximum value 1 as time increases.
The ancilla entanglement entropy Sanc(t; p, J) serves as an
order parameter for the MIPT in the steady state (t ≈ 2L)30,35.
To estimate the critical point pc(J), we perform a finite-size
scaling with the following ansatz

Sanc(t; p, L) ∼ Q((p− pc)L
1/ν , t/Lz), (26)

where Q(x, y) is an arbitrary scaling function, ν(J) and z(J)
are the correlation length exponent and the dynamical expo-
nents of the MIPT, respectively.

We show the data for Sanc(t = 2L; p, J) vs p for the for
the CGPM model with J = λ/∆ = 1 in Fig. 3(a) and SPMM
model with J = Λ = 0.45 in Fig. 3(b), in which both display
a clear crossing at pc(J) for various systems sizes, consistent
with the scaling ansatz in Eq. (26). Fixing the aspect ratio of
time and the system-size (t = 2L), we collapse the ancilla
order parameter for different system sizes L = 12, 16, 20 to
estimate pc(J) and ν(J) as shown in the insets of Fig. 3(a)
and (b). This yields pc(λ/∆ = 1) = 0.19(1) and ν(λ/∆ =
1) = 1.3(3) for the CGPM and pc(Λ = 0.45) = 0.28(2)
and ν(Λ = 0.45) = 1.6(3) for the SPMM. These estimates
of ν agree within their numerical accuracy with the value for
the projective measurement case ν ≈ 1.2(3)30. We average
Sanc(t = 2L; p, J) over 3,000 trajectories for CGPM and
2,000 trajectories in SPMM for each values of p, L and J .

Varying the strength of the measurements J , we calculate
pc(λ/∆) for the CGPM and pc(Λ) for the SPMM shown in
Fig.2 (a) and (b) respectively as solid blue circles. The criti-
cal transition rate pc(J) increases with decreasing strength of
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FIG. 3. Properties of the ancilla entanglement entropy and associated critical exponents: Late time ancilla entanglement entropy Sanc(t =
2L; p, J) vs p for the for the the CGPM with J = λ/∆ = 1 in (a) and the SPMM with J = Λ = 0.45 in (b) show a crossing at the critical
point30,35 p = pc(J) in each model. We define y = (p− pc)L

1/ν . The location of MIPT pc(J) and the correlation length exponent ν(J) are
obtained from a finite size scaling collapse using Eq. (26) shown in the insets. In both models, we perform the collapse with L ∈ {12, 16, 20}.
We find pc = 0.19(1) and ν = 1.3(3) for the CGPM with J = λ/∆ = 1 and pc = 0.28(2) and ν = 1.6(3) for the SPMM with
J = Λ = 0.45. ν(J) agrees within error-bars with the strongly projective case having ν = 1.3(3). We comment however that ν within these
proxies is not expected to be sufficiently accurate to make conclusions about the critical properties. The dynamical critical exponent z(J) is
obtained from the time-dependence of Sanc(t; pc, J) at p = pc(J) shown in (c) for the CGPM and (d) for the SPMM. Following Eq. (26), we
collapse Sanc(t; pc, J) vs t/Lz as shown in the insets and obtain z(λ/∆ = 1) = 0.94(6) for the CGPM and z(Λ = 0.45) = 0.95(5) for the
SPMM. In both models, we perform the collapse with L ∈ {12, 16, 20}.

measurement J(= λ/∆ or Λ) in both the models as expected.
This estimation of pc from the ancilla order parameter (Sanc)
clearly follows (though not precisely) the locus of the maxi-
mum of var(S) (at fixed system size L = 12) that is shown
by bright yellow color. Interestingly, in both models we find
that if the measurement strength is too weak its not possible
to drive a phase transition out of the volume law phase with
measurements.

To estimate the dynamical exponent z, we study the time-
dependence of the ancilla order-parameter at the critical mea-
surement p = pc. In Fig. 3 we show Sanc(t; pc, J) as a func-
tion of t for the CPGM with λ/∆ = 1 in (c) and for the
SPMM with Λ = 0.45 in (d) for three different system-sizes
L = 12, 16, 20. We average the time-dependent Sanc(t; pc, J)
over 10,000 trajectories for both CGPM and and SPMM for
each values of L and J . We perform a finite size scal-
ing collapse of Sanc(t; pc, J) as a function of t/Lz(J) using

Eq.26 and the collapsed curves are shown in the insets of
Fig. 3 (c) and (d). We find z(λ/∆ = 1) = 0.94(6) and
z(Λ = 0.45) = 0.95(5). Thus our results provide strong
numerical evidence of conformal invariance at the weak mea-
surement induced transition.

C. Mutual information between two ancilla qubits

We next compute the anomalous dimension exponent η(J)
following the protocol prescribed in Ref.30 and 35. We ini-
tialize the system in a random product state and then evolve
the circuit with monitored dynamics to reach a steady state at
time to = 20L. We note that in HDU circuit this wait time is
much longer to reach the steady state for the mutual informa-
tion between two ancillas compared to that with Haar random
gates (where to ≈ 2L), though we find this is important to
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FIG. 4. Mutual information between two ancillas at the critical point and exponent η: (a) Mutual information between two ancillas
entangled at r = 1 and r′ = L

2
in the steady state of the circuit evolving with the CGPM at λ/∆ = 1 and p = pc = 0.19(3) shown in (a) and

that for SPMM at Λ = 0.45 and p = pc = 0.28(2) shown in (b). We use three different system sizes L = 12, 16, 20 for the scaling collapse
following Eq. (27) shown in the inset. We find the bulk exponent η = 0.19(3) in SPMM and η = 0.21(2) in CGPM. We average over 104

trajectories for each system size.

reach a stable (i.e. wait time independent) estimate of η. We
introduce two ancilla qubits Ã and B̃, and maximally entan-
gle them with the circuit at the spacetime points (r, to) and
(r′, to). We define the connected order-parameter correlation
function C(t− to) as the mutual information between the an-
cillas Ã and B̃. In both the volume law phase, p < pc, and
area law phase, p > pc, C(t − to) ∼ exp(−L/ξ) for L ≫ ξ
where ξ ∼ (p− pc)

ν is the finite correlation length at generic
p ̸= pc. At MIPT p = pc(J), C(t− to) ∼ 1/Lη . To compute
the bulk exponent η, we entangle the two ancillas to antipo-
dal sites (r− r′ = L/2) with periodic boundary conditions in
the circuit and perform a finite-size scaling with the following
ansatz (assuming z = 1)

C(t− to) ∼ L−ηQ̃((t− to)/L). (27)

where Q̃(x) is an arbitrary scaling function. In Fig.4(a) and
(b) we show C(t − to) vs t − to for the CGPM model at
λ/∆ = 1 and p = pc = 0.19(1) and the SPMM model at
Λ = 0.45 and p = pc = 0.28(2) for three different system
sizes L = 12, 16, 20. In the data presented, we average over
104 trajectories for each system size. The scaling collapse
is shown in the inset yielding η = 0.21(3) for CGPM and
η = 0.19(2) for the SPMM. We also compute the bulk expo-
nent η for the projective measurement case in the HDU circuit
in Appendix A and find η = 0.23(2). Hence, based on nu-
merical estimation of the exponents η and ν, we observe that
weakening the strength of measurements does not change the
bulk exponents of the MIPT.

IV. TRANSFER MATRIX APPROACH AND PROPERTIES
OF THE LOG-CFT

At the critical point p = pc of the MIPT we have shown
numerical evidence of Lorentz invariance at the transition in
Figs. 3 and 4. Through mappings to classical statistical me-
chanics models via an infinite onsite Hilbert space dimen-
sion11,16,17 or the zeroth Renyi entropy8 a firm connection to
percolation in 1+1-dimensions, which is a well known exam-
ple of a log-CFT24,37–39, has been established. Moving away
from these tractable limits numerical evidence for the nature
of the log-CFT in qubit chains with strong projective mea-
surements was unveiled through a transfer matrix description
that probe the bulk18 and the boundary22 critical exponents.
Focusing on the bulk Lyapunov spectrum of this non-unitary
transfer matrix, the effective central charge of the log-CFT,
the leading typical scaling dimension of the order parame-
ter, and the potential multifractal nature of the transition can
be computed numerically by utilizing numerical techniques
from percolation applied to the MIPT18,40,41. In the follow-
ing section, motivated by this past work and the numerically
observed Lorenz invariance of the transition in Sec. III, we
utilize this transfer matrix description to study the nature of
the log-CFT governing the MIPT with weak measurements.

A. Lyapunov Spectrum of the Transfer Matrix

We adopt the transfer matrix method introduced in Ref.18
to describe the non-unitary evolution of the hybrid circuit. We
summarise the key ingredients of the method here for both
the sake of completeness and to understand the reason why
we construct the DGPM. The time-evolution of a quantum
circuit is represented as an ensemble of quantum trajecto-
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FIG. 5. Properties of log-CFT in DGPM model: (a) shows the decay of the free energy density f(L) defined in Eqs. (31) and (30) vs
1/L2 by the black circles with its slope related to the effective central charge, ceff . We perform the double fitting procedure from18 by
successively removing the smallest system size from the fit, and then fitting the data with L ≥ Lmin, for Lmin ∈ {8,10,12} shown by the
dashed lines where darker color denotes larger Lmin. The inset shows ceff(Lmin) and we use ceff(Lmin) = ceff(Lmin = ∞) + b/L2

min to
obtain ceff(Lmin = ∞) = 0.25(3) quoted in the main text. (b) shows the decay of ki/Lt vs 1/L2 where k1 and k2 are the first two cumulants
of the correlation functions (Cm⃗) defined in Eq. (37). The slope of k1/Lt gives the typical anomalous scaling dimension xtyp1 = 0.14(2)

while that of k2/Lt gives the leading multifractal exponent x(2)1 = 0.19(2). The presence of multifractality is further confirmed in (c) by
showing the scaling collapse of the distribution of Y (t) = − lnCm⃗(t) onto a universal scaling functionH(s), following a multifractal scaling
given in Eq. (39). The values are shown for different system sizes from L = 8 to L = 18, and using data from t = 5L to t = 32L, in the
solid yellow lines. The darker color denotes a larger system size. The black dashed line shows the H(s) curve extracted from Ref. 18. The
x-axis is plotted as s− so, where H(s) attains a minimum at so = 0.14 ≈ xtyp1 . We use ϵ = 0.1, λ = ∆ = 104, p = pc = 0.19 and periodic
boundary conditions for all the plots. We use 3×106 quantum trajectories for statistical averaging of the f and 1.5×105 quantum trajectories
for averaging of the cumulants.

ries where each trajectory is defined by a fixed set of unitary
gates and the location and time of measurement operations.
Each time-step of a trajectory is defined by a Krauss opera-
tor Km⃗

t = P m⃗
t Ut where Ut are the unitary gates acting at

each time step and P m⃗
t is the weak measurement operator de-

fined in Sec. II. The Krauss operators at time t depends on
the history of measurement outcomes m⃗ in that trajectory. In
the DGPM m⃗ = (x1o, x

2
o, x

3
o, . . . ) where xio refers to the mea-

sured pointer position at the ith measurement event and take
an infinite number of possibilities. Whereas, for the SPMM
m⃗ = (m1,m2,m3, . . . ) and mi = ±1 for the two possible
outcomes given in Eq. (23). The time evolution of the density
matrix in a trajectory is represented as,

ρ(t) =
1

Zm⃗
Km⃗ρ(t = 0)K†

m⃗, (28)

where Km⃗ =
∏t

t′=0K
m⃗
t′ and Zm⃗ is the partition function of

the statistical mechanics model describing the trajectory17,18

and is given by,

Zm⃗(t) = Tr
[
Km⃗ρ(t = 0)K†

m⃗

]
=

∑
i

eλ
m⃗
i t. (29)

Here λm⃗i are the Lyapunov exponents governing the expo-
nential decays in the partition function in the long time limit
(λm⃗i < 0). The average Lyapunov exponents λ0, λ1, ... are ob-
tained by averaging λm⃗i over trajectories m⃗ weighing by their
corresponding Born probability pm⃗, i.e. λi =

∑
m⃗ pm⃗λ

m⃗
i .

In the next subsections, we will study the average first two
leading Lyapunov exponents λ0 and λ1 to extract critical ex-
ponents governing the log-CFT.

B. Free Energy

The leading Lyapunov exponent is related to the free energy
F = −λ0t which can be calculated as the Shannon entropy of
the measurement record m⃗ averaging over quantum trajecto-
ries,

F = −
∑
m⃗

pm⃗ ln pm⃗ = −⟨ln pm⃗⟩. (30)

Here, we point out that a discrete measurement outcome is
required for the average of ln pm⃗ to be well defined. At
the critical point of the MIPT p = pc, the conformal in-
variance of the system dictates that the free energy density
f(L, t) = F (L, t)/A where the (implicitly defined) space-
time area is given by A = αLt. The space time anisotropy
factor αHDU = 1 for the HDU gates we consider here18, and
this exact knowledge of α is why we are considering these
HDU gates. If we consider Haar unitary gates on the other
hand, a direct computation of α through mutual information
in space and time18, yields αHU = 0.81(9) that introduces an
additional error in the free energy calculation. The free energy
density after long times (t≫ L) for spatial periodic boundary
conditions decays with the system size as,

f(L) = f(L = ∞)− πceff
6L2

+O(L3), (31)

where ceff is the effective central charge of the log-CFT.

We first calculate the free energy for the weak measurement
model with the DGPM illustrated in Sec.II B 2. In this model,
the Born probabilities of the measurement record is calculated
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FIG. 6. Properties of log-CFT in SPMM model: (a) shows the decay of the free energy density f(L) Eqs. (31) and (30) vs 1/L2 by the
black circles with its slope related to the effective central charge, ceff . We perform the double fitting procedure18 by successively removing the
smallest system size from the fit, and then fitting the data with L ≥ Lmin, for Lmin ∈ {8,10,12,14} shown by the dashed lines where darker
color denotes larger Lmin. The inset shows ceff(Lmin) and we use ceff(Lmin) = ceff(Lmin = ∞) + b/L2

min to obtain ceff(Lmin = ∞) =
0.26(2) quoted in the main text. (b) shows the decay of ki/Lt vs 1/L2 where k1 and k2 are the first two cumulants of the correlation functions
(Cm⃗) defined in Eq. (37). The slope of k1/Lt gives the typical anomalous scaling dimension xtyp1 = 0.12(2) while that of k2/Lt gives the
leading multifractal exponent x(2)1 = 0.14(2).The presence of multifractality is further confirmed in (c) by showing the scaling collapse of
the distribution of Y (t) = − lnCm⃗(t) onto a universal scaling function H(s), following a multifractal scaling given in Eq. (39). The values
are shown for different system sizes from L = 8 to L = 18, using data from t = 5L to t = 32L, in the solid yellow lines. The darker color
denotes a larger system size. The black dashed line shows the H(s) curve for the projective measurement case extracted from Ref. 18. The
x-axis is plotted as s − so, where H(s) attains a minimum at so = 0.12 ≈ xtyp1 . We use Λ = 0.45, p = pc = 0.28 and periodic boundary
conditions for all the plots. We use 2.5× 104 quantum trajectories for statistical averaging.

from,

pm⃗ =
∏
i

p(xio;λ/∆, ϵ), (32)

where p(xio;λ/∆, ϵ) given in Eq. (21) [and in the limit ϵ≪ ∆
by Eq. (D3)] is the probability of measuring the classical
pointer in a region of width ϵ around xo in the ith measure-
ment operation in the trajectory m⃗. We note that f(L) in this
case explicitly depends on the choice of ϵ which is the small-
est length scale we keep in our calculation to avoid the vanish-
ingly small probabilities in the continuous measurement case
(see Sec.II B 1 for the limiting case ϵ → 0). However, in the
limit ϵ ≪ ∆, a change in ϵ leads to a change in the free en-
ergy density as ∆f = pc ln∆ϵ leaving our estimate of ceff
unaffected in this limit (see Appendix D for more details). On
the other hand in the strong projective limit, λ/∆ → ∞, the
probabilities p(xio;λ/∆, ϵ) reduce to measuring the spin in the
up or down state up to a multiplicative constant. As we show
in detail in Appendix D, the effective central charge also re-
mains invariant w.r.t. changes in ϵ in the projective measure-
ment limit. We compute the free energy F (L, t) starting from
an initial product state of the circuit. To eliminate the effects
of initial conditions in the free energy calculated from the cu-
mulative Born probabilities pm⃗(t), we waited till t = 5L be-
fore starting to record pm⃗(t). In the long time limit (t > 5L),
F (L, t) grows linearly with time and we extract f(L) from
its slope between t = 5L and t = 32L. Fig.5(a) shows the
free energy density f(L) vs 1/L2 for different system sizes
L = 8 to 18 with black circles at the strength of measurement
λ/∆ = 1.

The finite size scaling form in Eq. (31) provides an essen-
tial guide to obtaining the correct numerical estimate of the
free energy. An important point to note is that the DGPM

requires us to average over a much larger number of trajec-
tories (∼ 2 × 106) compared to the strong projective case
(∼ 2.5 × 104) to see the 1/L2 behaviour dictated by the log-
CFT. To estimate ceff from its slope, we use a double fitting
procedure systematically eliminating the effects of the smaller
systems sizes18,40. We fit the data from L = Lmin to L = 18
shown by dashed lines and estimate ceff(Lmin) shown in the
inset. Extrapolating Lmin → ∞, we obtain the effective cen-
tral charge ceff = 0.25(3) in a weakly measured DGPM at
pc(λ = ∆) = 0.19(1), which matches quite well with the case
of strong projective measurement that finds ceff = 0.25(3) in
18.

We next calculate the free energy for the softened projective
measurement model illustrated in Sec. II B 3. In this case the
Born probabilities pm⃗ are calculated from,

pm⃗ =
∏
i

pmi(Λ) (33)

where pmi(Λ) are Born probabilities of individual measure-
ment event (denoted bymi = ±) defined in Eq. (23). Fig. 6(a)
shows f(L) vs 1/L2 at Λ = 0.45 having pc = 0.28(2). We
averaged over 25000 quantum trajectories initialized in both
Haar random and product states and waited till t = 4L before
starting to record Born probabilities. We extract the slope of
f(L) vs 1/L2 using the above-explained double fitting pro-
cedure to obtain ceff(Lmin) shown in the inset. This gives
ceff = 0.26(2) in the softened projective measurement case
which also closely matches with the projective measurement
case. Thus weakening strength of measurements does not af-
fect the effective central charge of the log-CFT governing the
MIPT.



11

C. Leading Scaling Dimension

In this section we calculate the next leading Lyapunov ex-
ponent λ1 and the associated typical and multifractal critical
exponents following Ref.18. To calculate λ1, we construct
the two orthogonal states of the system |ψ1⟩ and |ψ2⟩. These
states are then evolved in time where at each time step they are
subjected to identical Krauss operatorsKm⃗

t with the measure-
ment operators, P m⃗

t s solely determined by the Born probabili-
ties calculated from |ψ1⟩. After each timestep, we orthogonal-
ize |ψ1⟩ to |ψ2⟩ with a Gram-Schmidt projector PGS

t , which is
akin to an additional measurement operation. The Born prob-
ability of the measurement records in the trajectory m⃗ corre-
sponding the state |ψ2⟩ is written as,

p′m⃗(t) = ||Πt
t′=0P

GS
t′ Km⃗

t′ |ψ2⟩||2. (34)

This gives the first generalized free energy F1(L, t) =
−λ1t = −

∑
m⃗ p′m⃗ ln p′m⃗. We initialize the system either in

Haar state or product state and wait till t = 5L before start-
ing to record p′m⃗(t)s to eliminate the effects of the choice of
initial conditions. In the long time limit (t > 5L), F1(L, t) is
expected to increase linearly in time and we compute the first
generalized free energy density, f1(L) = F1(L, t)/(Lt) from
its slope between t = 5L and t = 32L.

The log-CFT governing the MIPT suggests that difference
between the first two generalized free energy densities decay
with L as (taking α = 1),

k1
Lt

= f1(L)− f(L) =
2πxtyp1

L2
, (35)

with a slope related to the typical scaling dimension of the
order parameter, xtyp1 . The exponent xtyp1 is related to the
bulk exponent η (computed in Sec. III through Eq. (27), and
shown in Fig. 4) as xtyp1 = η/2.

We show the first cumulant k1/Lt given in Eq.(35) and
(taking α = 1)

vs 1/L2 in Fig.5(b) for the DGPM at λ = ∆ and in
Fig.6(b) for the SPMM at Λ = 0.45. From the slope of
k1/Lt, we find xtyp1 (λ = ∆) = 0.14(2) for the DGPM and
xtyp1 (Λ = 0.45) = 0.12(2) for the SPMM, which closely
agrees with the strong projective case having xtyp1 = 0.122(1)
obtained in Ref 18. Moreover, our results are consistent with
xtyp1 = η/2 in both the models: In the SPMM, η = 0.19(3)

and xtyp1 = 0.12(2), and in the CGPM/DGPM η = 0.21(2)

and xtyp1 = 0.14(2), meaning that both results are almost
agree within statistical error bars.

D. Multifractility of the log-CFT

Going beyond the typical scaling exponent, it is also inter-
esting to probe the multifractal properties of the correlation
function. At the critical point, the system is scale-invariant
and all the moments of the correlation functions of the log-
CFT18,42,43, Cm⃗ = exp{t(λm⃗1 − λm⃗0 )} after averaging over
trajectories (denoted by ε ) decay as a power law in distance

(r) in the long time limit,

ε[{Cm⃗}n] ∼ Bn

r2x1(n)
. (36)

A cumulant expansion of the correlation function yields,

ln[ε[{Cm⃗}n]] = nε[lnCm⃗]+
n2

2!
ε[{lnCm⃗−ε[lnCm⃗]}2]+. . .

(37)
This gives, x1(n) = nxtyp1 + n2

2! x
(2)
1 +O(n3) for sufficiently

small n. We identify the presence of multi-fractality in the
spectrum of correlation functions by the a non-zero estimate
of x(n)1 where n ≥ 2.

From the scaling of the second moment k2 (taking α = 1)
defined as

k2
Lt

=
ε{lnCm⃗ − ε[lnCm⃗]}2

Lt
(38)

and its slope vs 1/L2 we find a finite x(2)1 (λ = ∆) = 0.19(2)

for the DGPM and x(2)1 (Λ = 0.45) = 0.14(2) for the SPMM.
Thus our numerical results present evidence for multifractal
scaling in MIPTs with weak measurements. These estimates
are similar to that in the projective measurement case having
x
(2)
1 = 0.145(2) computed in Ref.18.
We further confirm the multifractal scaling by calculating

the probability distribution function P [Y (t)] of the correla-
tion functions, where Y (t) ≡ − lnCm⃗(t). In presence of
multi-fractality, this is expected to follow the universal scal-
ing form42,43,

P [Y (t)] ∼
(
2πt

L

) 1
2

exp

[
−2πt

L
H

(
Y (t)

2πt/L

)
− b

]
, (39)

collapsing onto a single curve H(s) having a minimum at
so = xtyp1 , where we have choosen b in Eq. (39) to bring
H(so) = 0.

We compute the distribution function P [Y (t)] using data
from systems sizes L = 8 to 18 and times t = 5L and 32L
to find the universal scaling function H(s) for the weak mea-
surement models through the scaling form given in Eq. 39.
H(s) vs s − so are shown in Fig.5(c) for the DGPM and in
Fig.6(c) for the SPMM. Darker colors denote larger system
sizes. We also plot the curve for projective measurement case
by black dashed lines extracting the data points from Ref.18

and shifting the origin of the s axis to so = xtyp1 . In both
the models of weak measurements, the curves corresponding
to weak measurements have similar shape compared to that of
the projective measurement case, though not precisely over-
lapping. This may possibly arise from differences in higher
x
(n)
1 s in the multifractal spectra.

V. CONCLUSION

In this work, we have studied the effect of weak measure-
ments on the critical properties of MIPTs. The summary of
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λ
∆ = ∞ λ

∆ = 1 Λ = 0.45

pc 0.14(1) 0.19(1) 0.28(2)
ν 1.3(3) 1.3(3) 1.6(3)
z 0.98(8) 0.94(6) 0.95(5)
η 0.23(2) 0.21(2) 0.19(3)
ceff 0.24(2) 0.25(3) 0.26(2)
xtyp1 0.12(2) 0.14(2) 0.12(2)
x
(2)
1 0.14(2) 0.19(2) 0.14(2)

TABLE I. Critical data of universal parameters for the various mod-
els: central effective charge ceff , scaling dimension of the order
paramter xtyp1 , the multifractal critical exponent x(2)1 , and the dy-
namical exponent z. These exponents were extracted at the critical
probability pc. At λ

∆
= 1, the quantities involving the free energy

(ceff , xtyp1 , x
(2)
1 ) were obtained from the DGPM, whereas the quanti-

ties involving the ancilla entanglement entropy (ν,z,η) were obtained
from the CGPM.

our findings are provided in Table I. Based on scaling collapse
we estimate pc, ν, η, and z, which reveals a Lorentz invariant
transition with exponents that are consistent with their values
in the limit of strong projective measurements. As prior work
found it challenging to determine the universality class from
these estimates alone30 we turned to a more accurate transfer
matrix approach. This is also based on the Lorentz invariance
of the transition and the log-CFT nature of the field theory,
allowing us to utilize universal finite size scaling corrections
to estimate the effective central charge ceff and the scaling
dimension of the order parameter xtyp1 = η/2, which both
agree quite well across each model considered. We there-
fore take the agreement in ceff and xtyp1 across the different
measurement protocols as the strongest evidence that each of
these models belong to the same universality class, namely the
Haar random MIPT18. We find clear evidence of multifractal
scaling, which is indicitave of strong quantum fluctuations at
the MIPT, in both measurement models. As these moments
are higher statistical quantities they also carry much more nu-
merical uncertainty. Therefore the larger discrepancies across
models that we have observed in the multifractal properties,
namely x(2)1 and the shape of H(s), are not sufficient for us
to make any firm conclusions regarding their higher moments
differing. However, we leave this possibility open for future
work, which will require orders of magnitude more statisti-
cal samples than we have considered here. An interesting and
open question we leave for later is a construction of the log-
CFT for the continuous Gaussian pointer model. To summa-
rize, taking all of numerical results together lead us to con-
clude that the nature of the universality class of the Haar MIPT
and its underlying log-CFT description is unaffected by weak
or strong measurement protocols.
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Appendix A: Critical properties of the Haar-dual-unitary
Strong Projective Hybrid Quantum Circuit

In this Appendix we compute the remaining (easily accessi-
ble) critical exponents of the strongly projective HDU MIPT.
In Ref.18 pc and xtyp1 were computed. Here we compute ν and
η from the ancilla probes in Sec. III in order to further verify
that the HDU gates do not affect the universal nature of the
MIPT. As shown in Fig. 7(a) and (c) we find that, for the von
Neumman entropies, ηHDU = 0.23(2), and νHDU = 1.3(3)
for HDU gates with strong measurement, which are close to
the values ηHaar = 0.19(1) and νHaar = 1.2(2) for Haar ran-
dom gates with strong measurement as computed in Ref.30.
Fig. 7(b) also shows signatures of Lorentz invariance in HDU
circuit. In conclusion, we find good agreement between HDU
and Haar random gates as expected.

Appendix B: Comparison of Discrete and Continuous Reyni
Entropies

In this section, we compare the Reyni entanglement en-
tropies in the discrete and continuous Gaussian weak mea-
surement models. We compute both the ancilla and bipar-
tite entanglement entropies following the protocols explained
in Secs. III B and III A. We find that for L = 12 and all
measurement probabilities centered around the critical point
pc ∼ 0.19, the Reyni entropies in both models are virtually
indistinguishable. This allows us to use either measurement
model to compute the Reyni entropies. In Fig. 8, we com-
pute the bipartite entanglement entropies in (a) and the an-
cilla entanglement entropies in (b) for both the CGPM and
DGPM. The difference in entanglement entropies is orders
of magnitude smaller than the mean value in both instances:
∆SL/2

SL/2
∼ 10−2 and ∆Sanc

Sanc
∼ 10−3. The difference is also

of the same order of magnitude as the statistical error bars in
both models, which is smaller than the size of the points.

Appendix C: Krauss Operators for Weak Measurement

For DGPM, we showed that p(xo;λ/∆, ϵ) could be de-
fined in terms of the integrals p±(xo, λ/∆, ϵ), as expressed
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FIG. 7. Critical Properties of Strong Projective Measurements with HDU gates: (a) Data is taken for 2,000 trajectories per system size.
We find a crossing near p = pc = 0.14(1) consistent with previous work18, and a scaling collapse of the data in the inset yielding pc = 0.14(1)
and ν = 1.3(3). (b) Data is taken for 10,000 trajectories per system size. We find z = 0.98(8) from a scaling collapse of the data, as shown
in the inset. (c) Mutual Information between two ancilla qubits entangled at r = 1 and r′ = L

2
in the steady state of the circuit evolving with

projective measurements. We use three different system sizes L = 12, 16, 20 for the scaling collapse following Eq. (27) shown in the inset.
We find the bulk exponent η = 0.23(2). We average over 104 trajectories for each system size.

in Eq. (20). In this appendix we describe how we numeri-
cally evaluate the Born probabilities p±(xo;λ/∆, ϵ) defined
in Eq. (20). To numerically compute these integrals we con-
sider the limit ϵ → 0. In this limit, the integral over position
can be efficiently calculated by numerical evaluation of the
error function:

erf(x) =
2√
π

∫ x

0

e−t2dt. (C1)

In terms of the error function the probabilities become,

p±(xo;λ/∆, ϵ) =

√
∆

2

[
erf

(
∓2λ− 2xo + ϵ

2∆

)
− erf

(
∓2λ− 2xo − ϵ

2∆

)] (C2)

Therefore, the Krauss operator which updates the state, as rep-
resented in Eq.(19), becomes

M̂D(xo) =
1

2
√
∆

{[
erf

(
−2xo − 2λ+ ϵ

2∆

)
− erf

(
−2xo − 2λ− ϵ

2∆

)]
Π

(j)
+

+
[
erf

(
−2xo + 2λ+ ϵ

2∆

)
− erf

(
−2xo + 2λ− ϵ

2∆

)]
Π

(j)
−

}
.

(C3)

Appendix D: Changing ϵ does not affect ceff

In this appendix we show that for DGPM, the effective cen-
tral charge we calculated is independent of the choice of the
binning width ϵ. In the limit ϵ ≪ ∆ (there are no constraints
on λ, except noting that for a fixed strength λ/∆, λ depends
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FIG. 8. Comparison of Reyni Entropies. Data is taken for L = 12
and 2,000 trajectories per data point, at measurement strength λ

∆
=

1, ϵ = 0.1 and ∆ = 10, 000 for the discrete model, and λ
∆

= 1
for the continous measurement model. (a) Comparison of the bi-
partite entanglement entropies in the continuous and discrete Gaus-
sian measurement models. The inset is the difference in the com-
puted entangled entropies ∆SL/2 = S

(Discrete)

L/2 − S
(Continous)

L/2 (b)
Comparison of the ancilla entanglement entropies in the continu-
ous and discrete Gaussian measurement models. The inset presents
∆Sanc = S

(Discrete)
anc − S

(Continous)
anc .

on ∆) leading us to show in this appendix that the change in
the free energy as a function of the width of the measurement
region is given by

∆f = f(ϵ′)− f(ϵ) = −pclog
( ϵ
ϵ′

)
, (D1)

where ϵ and ϵ′ are two different bin widths. Consequently, al-
tering ϵ′ in this limit leaves ceff invariant, as an L-independent
shift of f only changes f(L = ∞).

We now provide a derivation of Eq. (D1).In the limit ϵ ≪
∆, the integrals in Eq.(20) simplify to become

p±(xo;λ/∆, ϵ) = G2
∆(x

′ ∓ λ)ϵ. (D2)

Therefore the probability in Eq. (21) becomes

p(xo;λ/∆, ϵ) = [⟨ψ|Π(j)
+ |ψ⟩G2

∆(xo − λ)

+ ⟨ψ|Π(j)
− |ψ⟩G2

∆(xo + λ)]ϵ. (D3)
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We use p(x(i)o ;λ/∆, ϵ) to denote the probability of the ith

measurement outcome in the DGPM, and p(x(i)o ;λ/∆) to de-
note the corresponding probability density in the CGPM. Us-
ing Nmeas to indicate the total number of measurements in
the circuit, we can now express the probability of the mea-
surement record in the trajectory pm⃗ as:

pm⃗ϵ
=

Nmeas∏
i=1

p(x(i)o ;λ/∆, ϵ)

= ϵNmeas

Nmeas∏
i=1

p(x(i)o ;λ/∆).

(D4)

We now use m⃗ϵ to denote each possible measurement trajec-
tory at the corresponding bin width ϵ. We express

m⃗ϵ = (x1o(ϵ), x
2
o(ϵ), x

3
o(ϵ), . . . ) (D5)

where xio(ϵ) refers to the measured pointer position at the ith

measurement event, which can depend on ϵ. For each mea-
surement we use Nout(ϵ) to denote the number of measure-
ment outcomes for xio(ϵ) in a finite spatial region of width W .
We see that the number of outcomes Nout depends on the bin
width ϵ as

Nout(ϵ) =
W

ϵ
. (D6)

For example, halving the bin width doubles the number of
measurement outcomes over any region. Therefore the num-
ber of measurement trajectories m⃗ϵ will scale as

Ntraj(ϵ) =

(
W

ϵ

)Nmeas

. (D7)

This leads to the observation that in the limit ϵ ≪ ∆, the
sum over measurement trajectories depends on the width of
the measurement region as:

∑
m⃗ϵ

=

(
ϵ′

ϵ

)Nmeas ∑
m⃗ϵ′

. (D8)

Now, recall that we can write the free energy as

Fϵ = −
∑
m⃗ϵ

pm⃗ϵ
lnpm⃗ϵ

. (D9)

Fϵ represents the free energy using a bin width ϵ. Using Eq.
(D4) to relate pm⃗ϵ

and pm⃗ϵ′
, we have that

Fϵ = −
∑
m⃗ϵ

pm⃗ϵ
ln

[
pm⃗ϵ′

( ϵ
ϵ′

)Nmeas
]

= −
∑
m⃗ϵ′

pm⃗ϵ′
lnpm⃗ϵ′

−
∑
m⃗ϵ

pm⃗ϵ
Nmeasln

( ϵ
ϵ′

)
= Fϵ′ −Nmeas ln

( ϵ
ϵ′

)
.

(D10)

We now take ε[...] to denote an average over circuits, so that
at p = pc we expect that ε[Nmeas] ≈ tLpc. Thus,

∆F = ε[Fϵ]− ε[Fϵ′ ] (D11)
= −Ltpcln

(
ϵ
ϵ′

)
(D12)

and

∆f =
∆F

Lt
= −pcln

( ϵ
ϵ′

)
. (D13)

∆f represents the change in f(L = ∞) as ϵ is varied, which
is an L-independent shift to the free energies at all system
sizes at a fixed measurement strength. As shown in Fig. 9,
we perform a calculation of the free energy for various values
of ϵ, at the measurement strength λ

∆ = 1. We verify that our
analytical calculation for the dependence of f on ϵ matches
the numerics.

16 14 12 10 8 6 4 2 0
ln( ε

ε ′
)

0.0

0.5

1.0

1.5

2.0

∆
f 

Numerical
Analytic

FIG. 9. Free Energy vs. ϵ. (a) Dependence of f on ϵ in the Gaussian
weak measurement model at p ∼ pc = 0.19 and λ

∆
= 1 with ∆ =

1, 000, 000 and ϵ = 0.1 and ϵ′ = 1.
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functions for dual-unitary lattice models in 1 + 1 dimensions,”
Phys. Rev. Lett. 123, 210601 (2019).

32 Sarang Gopalakrishnan and Austen Lamacraft, “Unitary circuits
of finite depth and infinite width from quantum channels,” Phys.
Rev. B 100, 064309 (2019).

33 Pieter W. Claeys, Marius Henry, Jamie Vicary, and Austen
Lamacraft, “Exact dynamics in dual-unitary quantum circuits with
projective measurements,” Phys. Rev. Res. 4, 043212 (2022).

34 John Von Neumann, “Mathematical foundations of quantum me-
chanics: New edition,” Princeton university press 53 (2018).

35 Michael J. Gullans and David A. Huse, “Scalable probes of
measurement-induced criticality,” Phys. Rev. Lett. 125, 070606
(2020).

36 Zhou Yang, Dan Mao, and Chao-Ming Jian, “Entanglement in a
one-dimensional critical state after measurements,” Phys. Rev. B
108, 165120 (2023).

37 John Cardy, “Logarithmic conformal field theories as limits of or-
dinary cfts and some physical applications,” Journal of Physics A:
Mathematical and Theoretical 46, 494001 (2013).

38 V. Gurarie and A. W. W. Ludwig, “Confor-
mal field theory at central chage c=0 and two-
dimensional critical systems with quenched disorder,” in
From Fields to Strings: Circumnavigating Theoretical Physics
(WORLD SCIENTIFIC, 2005) pp. 1384–1440; arXiv:hep–
th/0409105.

39 V. Gurarie, “Logarithmic operators in conformal field theory,” Nu-
clear Physics B 410, 535–549 (1993).

40 John Cardy and Jesper Lykke Jacobsen, “Critical behavior of
random-bond potts models,” Phys. Rev. Lett. 79, 4063–4066
(1997).

41 Jesper Lykke Jacobsen and John Cardy, “Critical behaviour of
random-bond potts models: a transfer matrix study,” Nuclear
Physics B 515, 701–742 (1998).

42 Andreas W.W. Ludwig, “Infinite hierarchies of exponents in a
diluted ferromagnet and their interpretation,” Nuclear Physics B
330, 639–680 (1990).

43 Christophe Chatelain and Bertrand Berche, “Universality and
multifractal behaviour of spin–spin correlation functions in dis-

http://dx.doi.org/ 10.1146/annurev-conmatphys-031720-030658
http://dx.doi.org/ 10.1146/annurev-conmatphys-031720-030658
http://arxiv.org/abs/https://doi.org/10.1146/annurev-conmatphys-031720-030658
http://dx.doi.org/10.1103/PhysRevX.9.031009
http://dx.doi.org/ 10.1103/PhysRevB.98.205136
http://dx.doi.org/ 10.1103/PhysRevB.98.205136
http://dx.doi.org/ 10.1103/PhysRevB.100.134306
http://dx.doi.org/ 10.1103/PhysRevB.101.104301
http://dx.doi.org/ 10.1103/PhysRevLett.125.030505
http://dx.doi.org/ 10.1103/PhysRevLett.125.030505
http://dx.doi.org/ 10.1103/PhysRevB.99.224307
http://dx.doi.org/ 10.1103/PhysRevB.99.224307
http://dx.doi.org/10.1103/PhysRevB.103.224210
http://dx.doi.org/10.1103/PhysRevB.104.104305
http://dx.doi.org/ 10.1103/PhysRevB.100.134203
http://dx.doi.org/10.1103/PhysRevB.101.104302
http://dx.doi.org/ 10.1103/PhysRevLett.128.050602
http://dx.doi.org/ 10.1103/PhysRevLett.128.010604
http://dx.doi.org/ 10.1103/PhysRevLett.128.010604
http://dx.doi.org/10.1103/PhysRevB.107.L220204
http://dx.doi.org/10.1103/PhysRevB.108.184204
http://dx.doi.org/10.1103/PhysRevB.108.184204
http://dx.doi.org/10.1103/PhysRevB.109.014303
http://dx.doi.org/ https://doi.org/10.1016/0550-3213(87)90362-2
http://dx.doi.org/ https://doi.org/10.1016/0550-3213(87)90362-2
http://dx.doi.org/10.1038/s41598-018-33562-0
http://dx.doi.org/10.1038/s41598-018-33562-0
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/10.1103/PhysRevLett.60.1351
http://dx.doi.org/ 10.1103/PhysRevB.100.064204
http://dx.doi.org/ 10.1103/PhysRevB.100.064204
http://arxiv.org/abs/2311.13011
http://dx.doi.org/10.1103/PhysRevB.101.060301
http://dx.doi.org/ 10.1103/PhysRevLett.123.210601
http://dx.doi.org/10.1103/PhysRevB.100.064309
http://dx.doi.org/10.1103/PhysRevB.100.064309
http://dx.doi.org/10.1103/PhysRevResearch.4.043212
http://dx.doi.org/ 10.1103/PhysRevLett.125.070606
http://dx.doi.org/ 10.1103/PhysRevLett.125.070606
http://dx.doi.org/ 10.1103/PhysRevB.108.165120
http://dx.doi.org/ 10.1103/PhysRevB.108.165120
http://dx.doi.org/10.1088/1751-8113/46/49/494001
http://dx.doi.org/10.1088/1751-8113/46/49/494001
http://dx.doi.org/10.1142/9789812775344_0032
http://dx.doi.org/ https://doi.org/10.1016/0550-3213(93)90528-W
http://dx.doi.org/ https://doi.org/10.1016/0550-3213(93)90528-W
http://dx.doi.org/ 10.1103/PhysRevLett.79.4063
http://dx.doi.org/ 10.1103/PhysRevLett.79.4063
http://dx.doi.org/ https://doi.org/10.1016/0550-3213(90)90126-X
http://dx.doi.org/ https://doi.org/10.1016/0550-3213(90)90126-X


16

ordered potts models,” Nuclear Physics B 572, 626–650 (2000).

http://dx.doi.org/ https://doi.org/10.1016/S0550-3213(00)00050-X

	Critical Properties of Weak Measurement Induced Phase Transitions in Random Quantum Circuits
	Abstract
	Introduction
	Models
	Entangling Unitary gates
	Models for Weak Measurement
	Continuous Gaussian pointer
	Discrete Gaussian pointer 
	Softened Projective Measurement Model


	Phase Diagrams of weak MIPTs
	Bi-partite entanglement entropy
	Ancilla Qubit Order Parameter
	Mutual information between two ancilla qubits

	Transfer Matrix Approach and Properties of the log-CFT
	Lyapunov Spectrum of the Transfer Matrix
	Free Energy
	Leading Scaling Dimension 
	Multifractility of the log-CFT

	Conclusion
	Acknowledgments
	Critical properties of the Haar-dual-unitary Strong Projective Hybrid Quantum Circuit
	Comparison of Discrete and Continuous Reyni Entropies
	Krauss Operators for Weak Measurement
	Changing  does not affect ceff
	References


