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Damping typically results in attenuation of vibrations and elastic wave propagation in mechanical systems. 

Contrary to this conventional understanding, we demonstrate experimentally and explain theoretically the revival 
of an elastic wave transmitted through a periodic metastructure when a weak non-Hermitian defect (damping 
mechanism) induces violation of time-reversal symmetry. Damping alters the nature of the system’s resonant modes, 
instigating interference in the scattering field. This leads to transmission revival, revealing the presence of hidden 
modes which are otherwise masked by the symmetry. Our findings offer an innovative approach for designing 
dissipation driven switches and controllers and non-destructive structural health monitoring systems. 
 

Ⅰ. INTRODUCTION 
Defects in the geometry or mass of a periodic system have commonly been used to elicit distinct 

elastic/acoustic wave phenomena not present in perfectly periodic configurations [1] such as one-way wave 
propagation [2], bifurcation-based mechanical rectification [3], mechanical energy localization [4], non-linear 
acoustic diodes [5], bounded modes [6,7], and topologically protected states [8,9]. While these theories 
predominantly focus on conservative (Hermitian) defects which violate the translational invariance, the introduction 
of localized energy amplification and/or attenuation defect mechanisms (non-Hermitian) [10,11] violates also the 
time-reversal symmetry, leading to unexpected phenomena such as anomalous actuation force (emissivity) 
enhancement [12], hypersensitive sensing [13–18], shadow-free sensing [19], unidirectional invisibility [20,21] and 
more. For recent reviews on the implementation of symmetries (and their violation) in non-Hermitian structures in 
a variety of frameworks, including pressure acoustics, see references [22,23]. 
 Here, we demonstrate experimentally and explain theoretically that integrating a weak non-Hermitian 
defect—characterized by energy dissipation or damping—into an otherwise Hermitian metastructure can lead to a 
counter-intuitive phenomenon: the revival of the longitudinal wave transmission when the system is excited from 
its plane of parity symmetry as illustrated in Fig. 1(a). This observation challenges the conventional understanding 
that damping is an attenuation mechanism and extends the utility of damping beyond its common use in wave 
attenuation or vibration mitigation. In fact, similar unexpected phenomena have been observed in the photonics 
framework where the gain reduction (by added loss) leads to lasing action [24–26]. 

In our mechanical paradigm, impulse excitation experiments (Fig. 1(b)) guided by finite element (FE) 
analysis and coupled-mode-theory (CMT) modeling reveal a loss-induced resurgence of transmission at frequencies 
corresponding to anti-symmetric eigenmodes of the metastructure. While the spatial parity symmetry violation is 
observable from the destruction of the nodal point, our theoretical model points to a profound insight: the 
irreversibility introduced by the damping violates the time-reversal symmetry of the metastructure, introducing a 
phase-lag to the motion of the individual components of the metastructure. The alteration of the eigenmode nature 
(from real to complex valued components), reinstates the contribution of a hidden mode in the transmission leading 
to its revival that is anomalously enhanced in the weak damping regime. Specifically, the CMT analysis predicts a 



linear growth of transmittance for weak damping strengths compared to, for example, the enhancement due to purely 
geometric (non-dissipative) defects which demonstrate a (weaker) quadratic growth of transmittance in the limit of 
small perturbations. 
 

 
FIG. 1. Illustrations and experimental setup pictures of transmission revival in a periodic metastructure with a non-Hermitian 
defect. (a) Transmission signal variation before (left) and after (right) introducing a non-Hermitian defect when the system is 
excited from its center. (b) A custom-built impulse experiment apparatus showing an electromagnetic holding/releasing 
mechanism for the repeatable impulse excitation by a hammer (top left inset), the impulse excitation by the instrumented 
hammer at the center of metastructure (bottom left inset), the heat shrink tubing on the cross beam used for damping (top right 
inset), and the metastructure boundaries supported by dynamic force sensors on either side with a polymeric foam placed 
between them to achieve uniform contact for transmission measurements (bottom right inset). The bottom middle inset shows 
the rectangular cross-section of the beam. 
 



 
FIG. 2. Transmitted signals under center excitation of the metastructure. (a) Color density plots (using FE analysis) of 
transmitted force overlaid by eigenvalue calculations (represented as black hollow diamonds) between 1.985 kHz and 2.085 
kHz as the damping intensity 𝛾𝛾 varies between 0.001 and 0.1. The insets on the left and right sides illustrate the displacement 
fields (non-Hermitian components are in blue) and eigenmodes for two modes located at 1.999 kHz and 2.067 kHz when 𝛾𝛾 =
0 (Hermitian) and 𝛾𝛾 = 0.001 (non-Hermitian), respectively. The corresponding eigenmodes are shown below enclosed in red 
dashed boxes. For the eigenmodes at 2.067 kHz, the red circles indicate the locations of the center nodes, and the yellow regions 
depict the slight deformation difference of the center beam as 𝛾𝛾 increases from 0 to 0.001. (b) Square of the normalized force 
intensity (normalized 𝐹𝐹2, which is proportional to the transmitted power) versus damping intensity 𝛾𝛾 for the mode at 1.999 
kHz. A fitting slope of -1.97 represents the decay ratio. (c) Variation in the square of the normalized output force for the mode 



at 2.067 kHz (denoted as Δ(𝐹𝐹2) ≡ 𝐹𝐹2 − 𝐹𝐹𝛾𝛾=0.001
2 ) plotted against the increase in damping (Δ(𝛾𝛾) ≡ 𝛾𝛾 − 0.0009). The slopes 

within the weak damping and strong damping regions are 1.05 ± 0.05 and 1.854 ± 0.005, respectively. 
 

Ⅱ. RESULTS AND DISCUSSIONS 
A. Finite element modeling 

We use steady-state dynamic analyses in the commercial FE software ABAQUS Simulia for modeling a 
periodic metastructure featuring a non-Hermitian defect. This metastructure comprises 2𝑁𝑁 + 1 cross beams, with 
𝑁𝑁 cross beams on each side and one in the center. In FE modeling, we use an 𝑁𝑁5 (i.e., 𝑁𝑁 = 5) periodic metastructure 
which has 5 elastic cross beams on each side, and the 1st cross beam on the right side counting outwards from the 
center (i.e., the 7th cross beam counting from the left side) has a damping mechanism that introduces the non-
Hermiticity to the system. Each cross-beam section, extending from the tip to its junction with the horizontal beam, 
is 110 mm in length, with adjacent sections separated by a 20 mm center-to-center gap. The horizontal beam has 20 
mm ledges on both ends. The whole metastructure is defined as aluminum (with a Young’s modulus of 68.9 𝐺𝐺𝐺𝐺𝐺𝐺, 
a density of 2700 𝑘𝑘𝑘𝑘 𝑚𝑚−3, and a Poisson’s ratio of 0.33) and contains a uniform rectangular cross-section (5 mm 
wide and 10 mm thick as shown in the yellow inset in Fig. 1(b)). We use 3-node quadratic Timoshenko beam 
elements for the mesh, and both the cross-beam sections and the interval segment of the horizontal beam comprises 
twenty elements. The loss mechanism is modeled by structural damping rate 𝛾𝛾. 

To study how the strength of non-Hermiticity (damping strength 𝛾𝛾) affects the transport, we calculate the 
reaction force signal under center excitation (parity symmetry plane of the metastructure) as we increase the 
damping intensity. To further understand the effects of the excitation conditions, we have also performed a study 
under edge excitation of which the results can be found in Fig. S1 [27]. The center excitation is operated when the 
metastructure is excited harmonically with a prescribed 1 𝜇𝜇𝑁𝑁 longitudinal force at the metastructure's center while 
the ends are kept fixed, the transmission signal is collected from the fixed end located on the side without the 
damping component; the edge excitation is operated when one edge of the metastructure is excited harmonically 
with prescribed 1 𝜇𝜇𝑚𝑚 longitudinal displacement while the other end remained fixed (i.e., zero displacement and 
rotation), the transmission signal is collected from the fixed end. 

Color density plots of the transmission response corresponding to the center excitation can be seen in Fig. 
2(a), together with the displacement fields and selective eigenmodes. The reaction force magnitude was calculated 
from the fixed left end where there is no damping element, and the eigenmodes of the metastructure are calculated 
under the boundary conditions where both ends are fixed. The two eigenvalues that exist between 1.985 and 2.085 
kHz are represented by the black diamonds shown atop the density plot and their trajectories overlap with the 
resonance peak locations found in the FE model. The insets on either side show the displacement fields of the two 
modes in the spectrum for two values of 𝛾𝛾 = 0 and 𝛾𝛾 = 0.001 and their associated eigenmodes for 𝛾𝛾 = 0. The left 
column shows the displacement fields of a (typical) mode at 1.999 kHz, which demonstrates the same features with 
its corresponding eigenmodes. For 𝛾𝛾 = 0 the eigenmode is symmetric since its corresponding elements on both 
parity-symmetric (P-symmetric) halves of the metastructure move in the same direction simultaneously, thus 
respecting the symmetry of the metastructure (as expected). This similarity between the displacement field and the 
eigenmode persists also for 𝛾𝛾 = 0.001. In contrast, the displacement fields corresponding to the mode at 2.067 kHz 
are different from the associated eigenmode for both 𝛾𝛾 = 0 and 𝛾𝛾 = 0.001 as evident in the right insets of Fig. 2(a). 
Specifically, for 𝛾𝛾 = 0 the eigenmode is anti-symmetric (respecting the parity-symmetry of the metastructure) with 
its two P-symmetric halves moving in the opposite directions, resulting in a nodal point at the center (highlighted 
with a red circle). Its displacement field, however, is symmetric due to the center excitation disrupting the nodal 
point. When a small amount of damping is introduced (𝛾𝛾 = 0.001) the eigenmode maintains its overall parity 
behavior (strictly speaking, a small imaginary part of the components is acquired, and the center beam starts to 
deform slightly as shown in the yellow regions near the anti-symmetric eigenmodes in Fig. 2(a)) while the 



corresponding displacement field experiences an abrupt parity violation originating from a superposition of 
symmetric and anti-symmetric eigenmodes. 

 

 
FIG. 3. Transmission revival in experiments. (a) The square of the transmission response between 1.9 and 2.1 kHz of the 
metastructure versus number of dampers. The amplitude (𝐹𝐹0)2 = (|𝐹𝐹𝑠𝑠| ⋅ |𝐹𝐹ℎ|−1)2 is proportional to the transmitted power, with 
𝐹𝐹𝑠𝑠  and 𝐹𝐹ℎ  denoting signal amplitudes from the force sensor and hammer in their Fourier representations, respectively. (b) 
Variation of the amplitudes (𝐹𝐹0)2 corresponding to the two distinct modes near 2.00 kHz and 2.06 kHz (normalized by their 
corresponding local maxima) as functions of number of dampers. 
 

For a better understanding of the variation of the transmitted power—which is proportional to the square 
of the transmitted force, 𝐹𝐹2—with respect to damping intensity 𝛾𝛾, Fig. 2(b) presents the mode at 1.999 kHz. The 
fitting slope of -1.97 implies that 𝐹𝐹2 ∝ 𝛾𝛾−1.97, indicating a conventional transmitted power decay due to damping. 
Fig. 2(c) shows how the transmitted power of the 2.067 kHz mode varies with increasing damping. For weak 
damping, the variation behaves like Δ(𝛾𝛾)𝛼𝛼, where the value of 𝛼𝛼 = 1.05 ± 0.05 was evaluated from a least-square 
fitting after extracting the asymptotic (𝛾𝛾 → 0) value of the transmittance from the ABAQUS Simulia simulations. 
For stronger damping, the least-square fit of the ABAQUS Simulia data of the square of the transmitted force 
indicates a power law variation which behaves like Δ(𝛾𝛾)𝛼𝛼 , where 𝛼𝛼 = 1.854 ± 0.005 . These results are in 
qualitative agreement with the CMT prediction of transmittance for the frequency associated with the anti-
symmetric mode. In fact, the CMT predicts a linear variation for small 𝛾𝛾 values. As loss increases, the resonant 
detuning (real part) of the defect mode frequency dominates the behavior of the transmittance. In the extreme limit 
where the defect resonant variation is completely dominated by its real part, CMT predicts a quadratic behavior of 



the transmittance with respect to variations of the defect magnitude, in agreement with the ABAQUS Simulia 
simulations (see Sec. CMT Model below and supplementary material [27] and also references [28–34] therein). It 
is worth noting that such behavior occurs only at the frequencies corresponding to anti-symmetric modes, and the 
symmetric modes are attenuated similar to the behavior of 1.999 kHz mode. In P-symmetric metastructures excited 
by longitudinal waves, eigenmodes alternate between symmetric and anti-symmetric profiles. Consequently, this 
characteristic of transmission revival persists across different spectral bands, system sizes, and defect locations 
excluding the nodal point corresponding to an anti-symmetric mode (see Fig. S2 and Fig. S3 [27]). If the defect is 
located at the nodal point corresponding to a particular anti-symmetric mode, there will be no transmission revival 
at that mode's frequency. Any other defect location can lead to transmission revival. 
 

B. Impulse experiments 
The metastructure is fabricated from monolithic aluminum 6061-T6 using CNC machining under the basic 

geometry in FE model. As shown in Fig. 1(b), our sample was placed between two dynamic force sensors (PCB 
208C01). Considering the shape of the force sensors, we designed the tips of the main beam's ends with two flat 
cylinders, each 12.7 mm in diameter, while keeping the total length consistent. We applied a precompression to 
prevent loss of contact with the force sensors and sliding, and introduced protrusions at the center of the main beam 
for center excitation of the metastructure with an instrumented impact hammer (PCB 086C01). To accurately 
control the hammer impulse with reproducibility, we devised a rotational mechanical hammer suspension 
mechanism coupled with an electromagnetic hammer hold/release system as shown in the insets of Fig. 1(b). We 
introduce damping to both sections of the 7th cross beam of the metastructure counting from the left side by affixing 
shrunken heat shrink tubing to the tips. Each tubing segment weighs 0.422 grams (±1%), accounting for roughly 
2.8% of the aluminum cross beam section’s weight of 14.85 grams. 
 We measure time-domain signals from both the instrumented hammer and the dynamic force sensors during 
the impact. After denoising by reserving only the pulse signal from the hammer and removing signals prior to the 
impact from the force sensor, we use Fast Fourier Transform to transform these signals to the frequency domain. 
The hammer impulse excites frequencies up to approximately 3 kHz. We subsequently normalize the force sensors' 
signal where the normalized force 𝐹𝐹0 = |𝐹𝐹𝑠𝑠| ⋅ |𝐹𝐹ℎ|−1, with 𝐹𝐹𝑠𝑠  and 𝐹𝐹ℎ  denoting signal amplitudes from the force 
sensor and hammer in their Fourier representations, respectively. 

Fig. 3 shows that the transmitted power of the mode near 2.00 kHz diminishes and shifts slightly to a lower 
frequency as the damping is increased, indicating a typical energy attenuation. In contrast, the mode at 2.06 kHz 
appears spontaneously when the damping is introduced, and its transmitted power increases rapidly as the damping 
is increased further— signifying a transmission revival phenomenon. Specifically, the amplitude of the transmitted 
power increases by two orders of magnitude from the "0 dampers" (i.e., no dampers) to "5 dampers" (i.e., damping 
introduced by 5 heat-shrink tubing dampers on both ends of the cross beam). It is noteworthy that introducing 
damping using heat-shrink tubing will inevitably add extra mass (~2.8% per tubing) to the defect beam, which 
causes some shift in the mode frequency, but we show later in our CMT analysis that the effects due to such 
geometric defect is small compared to the introduced damping. 
 

C. CMT model 
To describe the theoretical underpinnings of the computational and experimental results presented in the 

previous sections, we have developed a simplified model based on CMT [28], which allows us to theoretically 
explain the observed strong transmission revival for weak dissipations. The fundamental modes associated with the 
cantilever free vibration of the isolated cross beams can be modeled as a one-dimensional array of 2𝑁𝑁 + 1 isolated 
resonances with frequency 𝜔𝜔0  and nearest neighbor coupling 𝜅𝜅 . Meanwhile, non-Hermiticity introduced by 
damping on the 𝑁𝑁 + 𝑙𝑙 + 1 element can be incorporated by the imaginary term −𝑖𝑖𝛾𝛾. Therefore, the Hamiltonian 
operator of the closed system is expressed in the form, 𝐻𝐻� = ∑ 𝜔𝜔0|𝑛𝑛⟩⟨𝑛𝑛|2𝑁𝑁+1

𝑛𝑛=1 + ∑ 𝜅𝜅|𝑛𝑛⟩⟨𝑛𝑛 + 1|2𝑁𝑁
𝑛𝑛=1 + 𝑐𝑐. 𝑐𝑐.−𝑖𝑖𝛾𝛾|𝑁𝑁 +

𝑙𝑙 + 1⟩⟨𝑁𝑁 + 𝑙𝑙 + 1|, where |𝑛𝑛⟩ indicates the isolated mode of the 𝑛𝑛𝑡𝑡ℎ cross beam. The system can then be turned to 



a scattering setup by attaching transmission lines (TLs) to the respective isolated resonances, which are accounted 
for by incorporating an imaginary self-energy correction to those diagonal matrix elements, leading to the effective 
Hamiltonian, 𝐻𝐻�𝑒𝑒𝑒𝑒𝑒𝑒 = 𝐻𝐻� − 𝑖𝑖

2
𝐷𝐷�𝐷𝐷�𝑇𝑇 . Here 𝐷𝐷� = �2𝛾𝛾𝑒𝑒(|1⟩⟨𝑒𝑒1| + |𝑁𝑁 + 1⟩⟨𝑒𝑒2| + |2𝑁𝑁 + 1⟩⟨𝑒𝑒3|)  is referred to as the 

coupling matrix, where |𝑒𝑒𝑚𝑚⟩ indicates the flux-normalized propagating modes in the 𝑚𝑚𝑡𝑡ℎ TL and 𝛾𝛾𝑒𝑒 encodes the 
coupling coefficient to those isolated resonances. 
 Using a Green’s function approach, we are able to acquire analytic expressions for the transmittance to the 
leftmost TL, due to a center-excitation at frequency 𝜔𝜔 = 𝜔𝜔0 with respect to the non-Hermitian defect perturbation, 
where tildes indicate the quantities are normalized by the nearest neighbor coupling 𝜅𝜅, 

 𝑇𝑇(𝛾𝛾�) = � 2𝛾𝛾�𝑒𝑒(𝛾𝛾�𝑒𝑒+𝛾𝛾�)
(𝛾𝛾�𝑒𝑒+𝛾𝛾�)�𝛾𝛾�𝑒𝑒2+1�+𝛾𝛾�𝑒𝑒

�
2
 (1) 

Inspection of the formula leads to the immediate conclusion that the variation in the transmittance is first order in 
the damping parameter, 𝑇𝑇(𝛾𝛾�) ≈ 𝑇𝑇(0) + 8𝛾𝛾�𝑒𝑒

(2+𝛾𝛾�𝑒𝑒)3 𝛾𝛾�. In the case of zero damping perturbation, there is a background 

transmittance  𝑇𝑇(0) ≠ 0  associated with the contribution of nearby (symmetric) resonances of the composite 
metastructure, referred to as the super-modes, at which point the hidden mode is undetectable. In the derivation, we 
have assumed 𝑁𝑁 and 𝑙𝑙 are both odd, so the defect resides on an anti-node of the unperturbed anti-symmetric super-
mode. Otherwise, the expression is independent of the system size and the defect’s position. 
 To highlight the importance of the (weak) dissipative defect in the observed (strong) transmittance revival, 
we contrast the above results with a Hermitian (geometric) non-dissipative defect Δ ∈ ℝ . In this case, the 

transmittance takes the form, 𝑇𝑇�Δ�� = 4𝛾𝛾�𝑒𝑒2�𝛾𝛾�𝑒𝑒2+Δ�2�

�𝛾𝛾�𝑒𝑒2+Δ�2��𝛾𝛾�𝑒𝑒2+1�
2+2𝛾𝛾�𝑒𝑒2�𝛾𝛾�𝑒𝑒2+1�+𝛾𝛾�𝑒𝑒2

, also following the same tilde notational 

convention as in the non-Hermitian case. The variation in the transmittance in the case of a Hermitian defect turns 

out to be a second order effect of the defect strength Δ� , i.e., 𝑇𝑇�Δ�� ≈ 𝑇𝑇(0) + 4�3+2𝛾𝛾�𝑒𝑒2�
(2+𝛾𝛾�𝑒𝑒)4 Δ�

2  which for weak 

perturbations is much smaller than the previous results for the dissipative defects. Such comparative analysis 
indicates that time-reversal symmetry violation plays a significant role in uncovering the hidden mode via its 
contribution to the transmittance. 

In the supplementary material, we analyze in detail the effect that nodal points of anti-symmetric 
eigenmodes have on the transmittance and relate the phenomena to a single-sided resonance [30,31]. Additionally, 
we use first order non-degenerate perturbation theory to study the impact of a non-Hermitian defect on the 
eigenfrequency and nodal points of the unperturbed anti-symmetric eigenmode. The calculation demonstrates that, 
in addition to the P-symmetry violation which fundamentally disrupts the nodal point, broken time-reversal 
symmetry introduces a phase change to the components of the eigenmodes, resulting in interference between the 
super-modes comprising the scattering field and leading to an enhanced (over Hermitian perturbations) 
transmittance revival. An important benefit of these dissipative perturbations is the fact that they do not distort the 
resonant frequency while only increasing the resonance linewidth. The theoretical predictions provided by the CMT 
model underscore the utility of violating hidden (time-reversal) symmetries in the design and application of wave 
mechanical devices based on symmetry management techniques. 
 

Ⅲ. CONCLUSIONS 
We have experimentally, computationally, and theoretically studied the transmission properties of an 

elastodynamic metastructure with an embedded non-Hermitian (damping) defect. We observed an emergence of 
the transmittance at frequencies associated with anti-symmetric eigenmodes of the underlying Hermitian 
metastructure upon tuning the damping strength of the defect revealing those hidden dimensions of the system. This 
phenomenon is independent of the system's size, the spectral band, and the location of defect as long as the defect 
does not lie at a nodal point. Our CMT model demonstrates that integration of a non-Hermitian defect enables 



otherwise obstructed energy transport by disrupting the central nodal point of anti-symmetric eigenmodes without 
shifting their frequency. Comparison to a purely geometric defect shows that violation of the hidden time-reversal 
symmetry by the damping element dramatically intensifies the resurgence for weak perturbations—a linear 
enhancement in contrast to quadratic enhancement achievable with geometric defects. These findings show an 
intriguing counter-intuitive approach for inducing mechanical wave transparency by introducing energy loss 
mechanisms to an otherwise Hermitian system. Our results underscore the potential of non-Hermitian physics in 
reshaping our understanding and ability to manipulate wave propagation in elastodynamic systems. Our proof-of-
principle experiments have technological ramifications for applications in non-destructive structural health 
monitoring, and realization of dissipation driven switches and controllers, especially when dissipative nonlinearities 
self-induce symmetry violations. 
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