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Recent experiments have pointed to the formation of a new state of matter, the electron quadru-
pling condensate in Ba1−xKxFe2As2 . The state spontaneously breaks time-reversal symmetry and
is sandwiched between two critical points, separating it from the superconducting and normal metal
states. The adjacent two critical points make acoustic effects a promising tool to study such states
because of their sensitivity to symmetry-breaking transitions. We report a theory of the acoustic
effects of systems with an electron quadrupling phase and new ultrasound velocity measurements of
Ba1−xKxFe2As2 single crystals. The presented theory for the electron quadrupling state gives the
same type of singularities that are observed in experiment.

I. INTRODUCTION

The electron quadrupling condensate is defined as a
state whose order parameter is composed out of fermionic
operators. In the case of Ba1−xKxFe2As2 the evi-
dence was provided of the order parameter of the type<

cσicαic
†
σjc

†
αj >, where α, σ are spin index and i, j are

band indices. In contrast to superconductivity, formed
by electron pairs, in Ba1−xKxFe2As2 this state spon-
taneously breaks time reversal symmetry (which is a
double degenerate, i.e. Z2 state); for early theory dis-
cussions see [1, 2]. The evidence for this state comes
from calorimetric, transport, thermoelectric, and muon
spin rotation probes which all suggest that it exists in

a range of temperatures T
U(1)
c < T < TZ2

c [3, 4]. Be-

low T
U(1)
c the system undergoes another phase transi-

tion to a superconducting state, signaling the onset of
order at the level of electron pairs < cσicαi >. A re-
cent experiment [5] reported the creation of a related
bosonic state. A mechanism describing the formation
of fluctuations-induced composite electronic and bosonic
orders has been well studied [1, 2, 6–14]. These models
also predict vortices carrying a fraction of magnetic flux
quantum and such vortices were recently observed in this
compound [15]. While the experimental data gathered
on Ba1−xKxFe2As2 at x ≈ 0.8 reveals a set of unprece-
dented properties, most of the properties of this state
remain unexplored.
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One of the powerful methods to detect phase transi-
tions, diagnose new states of matter and get insights into
symmetries of the order parameters is ultrasound, which
allows one to extract elastic constants of materials [3, 16–
21]. In a conventional one-component superconductor,
there is a discontinuous jump in the “compressional” ul-
trasound mode. This is because compressional strain
always couples to the magnitude of the superconduct-
ing order parameter squared, |ψ|2. In the other sound
modes, there is a continuous change in the response due
to higher-order coupling. The acoustic response is usu-
ally measured in a Pulse-Echo experiment or using Res-
onant Ultrasound Spectroscopy.

Complex ultrasound responses, such as discontinu-
ous jumps in non-compressional sound modes, are pre-
dicted for unconventional superconductors [22] and are
currently actively searched for in a variety of materials
[20, 21, 23]. The responses can be used to get insight
into the order parameter symmetry and structure. In a
previous work, we observed an unprecedented type of ul-
trasound response in Ba1−xKxFe2As2 at doping x = 0.81
[3]. This is the same doping that all the other previously
mentioned unusual responses occur and, hence, we will
refer to it as “magic doping”. Away from magic dop-
ing the ultrasound response is conventional. However,
in the investigated sample with x = 0.81, there are two
very distinct ultrasound singularities occurring at differ-
ent temperatures. First, there is a feature in the “B1g”

shear mode in the quadrupling state, TZ2
c < T < T

U(1)
c .

Second, there are jumps in the ultrasound response in

both transverse and longitudinal modes at T
U(1)
c . As we

will show, these features have strong theoretical implica-
tions and so deserve careful study and scrutiny.

There is no theory to date to explain the reported ul-
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trasound behavior and deduce whether it is related to the
other observed probes [3, 4], both near the electron qua-
drupling transition at TZ2

c and the subsequent transition

from this state to the superconducting state at T
U(1)
c .

In this work, we report both a new set of ultrasound
measurements and a theory of ultrasound probes for the
electron quadrupling state. We show below that the ul-
trasound data of Ba1−xKxFe2As2 with x ≈ 0.75 − 0.8
supports the existence of the quandrupling state. Ad-
ditionally, it contributes towards the problem of deci-
phering aspects of the momentum-space symmetries of
pairing and quadrupling symmetries.

II. EXPERIMENTAL RESULTS

In our previous study, we observed that the
Ba1−xKxFe2As2 ultrasound response depends on the
doping level. Above (x = 1) and below (x = 0.71)
the “magic” doping, there is only a definite jump in the

sound velocity of the longitudinal acoustic mode at T
U(1)
c .

This theoretically discontinuous jump takes place over
several Kelvin; the broadening is likely due to sample
inhomogeneity and imperfection of the mechanical con-
tact between the transducers and thin (∼ 10µm) and
long (∼ 1mm) sample edge. The transverse ultrasound

response changes continuously at T
U(1)
c , as expected for

a conventional superconductor. The conventional char-
acter is consistent with the lack of indications of bro-
ken time reversal symmetry in muon and thermoelectric
probes. At x = 0.81, the ultrasound data is unprece-
dented by having two unique features (Fig. ED6 of [3]).
First, there is a clear linear signal in the “B1g” shear
mode, also known as the (c11 − c22)/2 mode, at the Z2

transition (detected via the appearance of spontaneous
Nernst signal and an anomaly in the specific heat [3]).
This anomaly in the transverse sound velocity is accom-
panied by either no or, according to new data discussed
below, possibly a weak feature in the compressional re-
sponse measured by a longitudinal sound wave. Second,
at the superconducting transition (detected in resistiv-
ity and diamagnetic susceptibility [3] ), there is a clear
discontinuous jump in the shear ultrasound mode. Like
other materials, this is accompanied by a jump in the
compressional response.

In this work, we performed ultrasound measurements
of two new single crystals, which are in the doping range
where the quartic state exists according to [3, 4]. The
samples had different doping levels x ∼ 0.78 and 0.8 com-
pared to those measured before. The measurements were
performed using a pulse-echo method. The experimental
procedure is described in Ref. [3]. The photographs of the
samples are shown in Figs. 1a and 2a. The direction of
the sound wave propagation was along the longest sam-
ple side. The sample thickness used in this study was
10 to 50 µm, which is very thin compared to typically
used for ultrasound experiments. This choice is dictated

by technical challenges in obtaining thicker homogeneous
samples in this doping range. This sample thickness lim-
its the prospect of obtaining optimal ultrasound signals
due to possible interference effects. To minimize the ef-
fect of the interference, all measurements were performed
using short-duration zero echoes (accepting the only first-
coming signal). This procedure significantly minimizes
the possible interference effects. In this study we restrict
ourselves only to qualitative discussion of the character of
anomalies but do not perform any quantitative analysis
of the jump heights.

For the sample with x ∼ 0.78, we repeated the mea-
surements of the transverse “B1g” shear mode and lon-
gitudinal compressional mode. The results are shown in
Fig. 1. The observed behavior of the transverse mode is
qualitatively similar to that reported before [3]. In ad-
dition, we could not exclude an extra feature at TZ2

c in
the longitudinal sound velocity (Fig. 1b. The possibil-
ity for this feature is also consistent with the anomaly in
the c11 mode at TZ2

c , discussed below. Overall, we have
confirmed the results of [3] for the sample with a differ-
ent doping level, showing that the ultrasound response is
qualitatively similar at the quartic and superconducting
phase transitions.

The data for the sample x ∼ 0.8 are summarized in
Fig. 2. For this sample we measured the “B2g” shear
mode, also know as c66, and the longitudinal compres-
sion mode, c11. The data are shown in Fig. 2. There

is a pronounced kink at T
U(1)
c in c66, and no resolvable

response at TZ2
c in the ultrasound velocity (Fig. 2d). In

contrast, c11 has a well resolvable anomaly at TZ2
c and

a kink close to T
U(1)
c (Fig. 2b). Note that the combina-

tion of a non-zero response in the c11 mode and a zero
response in the c66 mode is consistent with a non-zero
response in the longitudinal (c11 + c22 + 2c66)/2 mode,
(Fig. 1b). Our interpretation of the experimental data is
shown schematically in Fig. 3.

III. THEORY

A. Formalism

The question we address here is: does the electron
quadrupling condensation show itself in the form of sin-
gularities in the ultrasound responses? In the quadru-
pling phase, there is no long-range ordering bilinear in
electronic fields (i.e. no order in the superconducting
gap/order parameter fields). Furthermore, the mecha-
nism for the formation of the quadrupling state requires
fluctuations and is beyond the BCS mean-field approx-
imation [1–4, 6]. Nonetheless, as discussed in models
with similar order but in a different context [10, 11],
when an appropriate fluctuations-based theory estab-
lishes the presence of such phases in a model. Then,
the resulting phase diagrams with electron quadrupling
can a posteriori be approximately described by using the
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FIG. 1. Temperature dependence of the relative change of
the sound velocity (a) for the longitudinal (c11+c12+2c66)/2
and (c) transverse (c11 − c12)/2 acoustic modes for the
Ba1−xKxFe2As2 sample with x = 0.78. The measurements
were done at f = 22.4 MHz and f = 88 MHz using a tran-
sit acoustic signal (zero echo), measured at zero field (ZF)
and applied filed 14 T along the sample c-axis. The solid line
in panel (c) shows a background fit of the 14 T data. The
fitting line was used to plot the data in panel (d). Tempera-
ture dependence of the relative change of the sound velocity
(b) for the longitudinal (c11+c12+2c66)/2 and (d) transverse
(c11−c12)/2 acoustic modes (left) with subtracted background
measured at 14 T and AC magnetic susceptibility (right) mea-
sured at B ∥ c = 1O e at f = 417 Hz. The data suggest the
anomalies for both longitudinal and transverse modes to the
quadrupling state.

“second” mean field approximation. This just means a
more general approximant involving (non-independent)
order parameters of both superconducting and quadru-
pling order that phenomenologically describe observed
broken symmetries. Following this approach, we will in-
troduce a “quadrupling” order parameter Ψ. In the case
of Ba1−xKxFe2As2 , which breaks time-reversal symme-

try, Ψ should share the same symmetry as ψ1ψ
†
2, or, in

terms of fermionic creation and annihilation operators,

Ψ ∝< c1c1c
†
2c

†
2 >. In particular we require that Ψ is

gauge invariant and Ψ +Ψ† is time-reversal symmetric.

We will now develop a minimal model which can re-
produce the experimental phase diagram. In order of
decreasing temperature, the phase diagram consists of
normal, electron quadrupling and broken time-reversal
symmetry (BTRS) superconducting phases. The model
is constructed from a two-component superconducting
order parameter (ψ1, ψ2) and the quadrupling order pa-
rameter Ψ. The three phases can be described by the
field values of the OPs in them: normal (ψi = Ψ = 0),
quadrupling (ψi = 0,Ψ ̸= 0) and BTRS-superconducting

(ψ1, ψ2 ̸= 0, Im ψ1ψ
†
2 ̸= 0). A schematic plot of our phase

diagram is shown in Figure 4.

The free energy must be real and time-reversal-
symmetric. A Ginzburg-Landau (GL) model which sat-
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FIG. 2. Temperature dependence of the relative change of the
sound velocity (a) for the longitudinal c11 and (c) transverse
c66 acoustic modes for the Ba1−xKxFe2As2 sample with x =
0.8. The measurements were done at f = 24 MHz and f =
25 MHz using a transit acoustic signal (zero echo), measured
at zero field (ZF) and applied filed along the sample c-axis.
Temperature dependence of the relative change of the sound
velocity (b) for the longitudinal c11 and (d) transverse c66
acoustic modes (left) with subtracted background measured
in the applied field and inversed AC magnetic susceptibility
(right) measured at B ∥ c = 1O e at f = 417 Hz. The data
suggest that the c66 mode is not sensitive to the quadrupling
state.

isfies all these requirements is

FV = −a(T )
2

(
|ψ1|2 + |ψ2|2

)
+
b

4

(
|ψ1|4 + |ψ2|4

)
(1)

−Ai(T )Ψ
2
i +ArΨ

2
r +

B1

2

(
Ψ4

r +Ψ4
i

)
+B2Ψ

2
rΨ

2
i

+ c(ψ1ψ
†
2 + ψ†

1ψ2)
2 +

γ

4

(
Ψψ1ψ

†
2 +Ψ†ψ†

1ψ2

)
,

where Ψ = Ψr + iΨi. In the quadrupling phase, the
ground state of Ψ will be two-fold degenerate with Ψ =
±i|Ψ0|. The superconducting and BTRS phase transi-
tions are controlled by the coefficients a(T ) and Ai(T ).
For simplicity, we consider the following temperature de-
pendence of the coefficients:

a(T ) = αSC(T
U(1)
c − T ) (2)

Ai(T ) = αBTRS(T
Z2
c − T ) . (3)

In these approximations, we aim to reproduce the mor-
phology of the phase diagram of Ba1−xKxFe2As2 , which
is sufficient for our goal of describing the ultrasound re-
sponse qualitatively. 1

1 Note that Ba1−xKxFe2As2 has more than two bands, and more
general models with a higher number of fields are also consid-
ered [3], some comparative discussion between two- and three-
component models can be found in [25, 26].
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.

To calculate the ultrasound response we need to cou-
ple the order parameters to the strain of the crystal
lattice. We do so following [22, 27]. The strain en-
ergy is written in terms of the strain tensor ui,j =
1/2(∂ui/∂xj + ∂uj/∂xi), where ui is the displacement
vector of the underlying crystal lattice. The strain can be
labeled by the irreps of the D4h lattice symmetry group
of Ba1−xKxFe2As2 . The combinations ux,x + uy,y and
uz,z transform as A1g, ux,x − uy,y transforms as B1g,
ux,y transforms as B2g and the pair (ux,z, uy,z) transform

as Eg. The six independent terms in the elastic energy
are given by the six products of these strains that trans-
form as A1g. The elastic constants are usually written
in Voigt notation, with two indices. Using this notation,
the strain energy is given by

FS =
c11 + c12

2
(ux,x + uy,y)

2
+ c13(ux,x + uy,y)uz,z

+ c33u
2
z,z +

c11 − c12
2

(ux,x − uy,y)
2

+ c44
(
u2x,z + u2y,z

)
+ c66u

2
x,y . (4)

This is sometimes written in full tensor notation,

FS = 1
2cijklui,juk,l . (5)

The experimental data is obtained for sound modes which
are “in plane”. Hence, from now on, we only consider
strains in the x-y plane and neglect any strains involving
the z-coordinate.
The order parameters (OPs) couple to strain, which ul-

timately leads to the ultrasound response. The coupling
depends on the symmetry of the order parameter. Since
we consider the mechanism where the quadrupling OP

Ψ has the same symmetry as ψ1ψ
†
2, the symmetry of ψ1

and ψ2 uniquely specifies the symmetry of all OPs. We
have two goals: first to determine how the quadrupling
order parameter couples to ultrasound and second, how
this probe can be used to determine the order parameter
symmetries. The leading candidates for the supercon-
ducting order parameter symmetry of Ba1−xKxFe2As2
at magic doping are s+ is and s+ id states. The analysis
of polarization of spontaneous magnetic fields detected in
µSR experiments [24] favors the interpretation in terms
of the s + is states. However, there is currently not
enough certainty about the microscopic details to make
a precise model for spontaneous magnetic fields. They
are sensitive to detail [28], including the nature of the
magnetic-field-inducing disorder and domain wall struc-
ture. Hence we’ll consider three different OP symme-
tries: (s, s), (s, dx2−y2) and vector (dxz, dyz). These are
representative of the case where the two superconducting
order parameters transform as (A1g, A1g), (A1g, B1g) and
Eg. Note that the ultrasound signal is similar for nodal
and nodeless s-wave models.
The coupling terms that enter the free energy, FC , are

different for the different OP symmetries. We’ll consider
all terms which are second-order in OP (counting Ψ as
quadratic). Then there are four terms that couple to
strain. They are

|ψ1|2 + |ψ2|2, |ψ1|2 − |ψ2|2, ψ1ψ
†
2 + ψ†

1ψ2 , Ψ+Ψ†. (6)

We will also include coupling to the higher-order term

|Ψ|2 , (7)

which will be important to describe the weak signal in
the quadrupling phase of the longitudinal mode. These
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terms couple to different strains depending on the OP
symmetry.

(s, s) OP symmetry: all terms couple to the A1g strain.
The free energy term which couples strain and the OPs
is given by

Fs,s
C =

(
δ1(|ψ1|2 + |ψ2|2) + δ2(|ψ1|2 − |ψ2|2)+ (8)

δ3(ψ1ψ
†
2 + ψ†

1ψ2) +
δ4
2 (Ψ + Ψ†) + δ5|Ψ|2

)
(ux,x + uy,y) .

(s, dx2−y2) OP symmetry: the mixed bilinears trans-
form as B1g. Hence they couple to uxx − uyy, giving the
coupling free energy

Fs,d
C =

(
δ1(|ψ1|2 + |ψ2|2) + δ2(|ψ1|2 − |ψ2|2)

+ δ5|Ψ|2
)
(ux,x + uy,y)

+
(
δ3(ψ1ψ

†
2 + ψ†

1ψ2) +
δ4
2 (Ψ + Ψ†)

)
(ux,x − uy,y) (9)

(dxz, dyz) OP symmetry: the simplest vector OP that
transforms like the Eg irrep. It couples to strain as fol-
lows

Fd,d
C =(δ1(|ψ1|2 + |ψ2|2) + δ5|Ψ|2)(ux,x + uy,y)

+ δ2(|ψ1|2 − |ψ2|2)(ux,x − uy,y)

+
(
δ3(ψ1ψ

†
2 + ψ†

1ψ2) +
δ4
2 (Ψ + Ψ†)

)
ux,y . (10)

In all three cases, the strain-OP coupling free energy
can be written as

FC = Γij(ψ,Ψ)ui,j . (11)

We have now found the free energy for our theory, in-
cluding strain coupling. We now develop the theory of
ultrasound response for a class of theories, including ours.
Consider a model with order parameters Πa, symmetric
strain tensor ui,j and linear strain coupling. The total
free energy can be written as

F = V (Π) + 1
2cijklui,juk,l + Γij(Π)ui,j . (12)

This has solution (Π0, u0), which satisfies the static equa-
tions of motion

∂

∂Πa

(
V − 1

2Γijc
−1
ijklΓkl

) ∣∣∣∣
Π=Π0

= 0 (13)

u0i,j = c−1
ijklΓkl(Π

0) (14)

Naively, the four-tensor cijkl does not have a unique in-
verse. However, since it is symmetric in i↔ j and k ↔ l,
it does have a unique inverse with the same symmetry.

We are interested in perturbations around the ground
state solution Π0, u0i,j . Denote these are Πa = Π0

a + ηa
and u = u0+uwv. One must be careful here, and quotient
out gauge transformations. We can do this by choosing
the perturbations to be physical, gauge invariant η. We
won’t be explicit as the details depend on whether it is
in the superconducting or quartic phase.

F2 = 1
2

(
Vab + Γij,ab∂ju

0
i

)
ηaηb (15)

+ 1
2cijklu

wv
i,j u

wv
k,l + ηaΓij,au

wv
i,j . (16)

where , a = ∂
∂Πa

|Π0 . The equations of motion for the
perturbations are

τ0
∂ηa
∂t

+ (Vab + Γij,ab∂ju
0
i )ηb + Γij,au

wv
i,j = 0 (17)

ρüwv
i − ∂j

(
cijklu

wv
k,l + ηaΓij,a

)
= 0 , (18)

which have solutions

ηa = Aae
ikixi−iωt, uwv

i = Uie
ikixi−iωt . (19)

The ansatz gives the dispersion relation

ρω2Ui − cijklkjklUk + Γij,aṼ
−1
ab Γkl,bkjklUk = 0 , (20)

where

Ṽab =
(
Vab + Γij,ab∂ju

0
i − iωτ0δab

)
. (21)

Different sound modes then correspond to different
choices of k and U in the dispersion relation. We
are particularly interested in three modes, the longitu-
dinal, transverse and the B2g mode. The longitudal
wave corresponds to the choice U = (1, 0, 0) and k =

(k11, 0, 0), the transverse wave to U = (1, 1, 0)/
√
2 and

k = (kT ,−kT , 0)/
√
2, and the B2g mode to U = (1, 0, 0)

and k = (0, k66, 0)/
√
2. Substituting these into the dis-

persion relation, we can find k11/T/66(ω) and then the
sound velocity is given by

v11/T/66 =
ω

Re k11/T/66(ω)
. (22)

For analytic results, we take the large c, small τ0 limit.
In this limit the rescaled and renormalised change in
sound velocity, relative to the normal state sound ve-
locity v0, is

∆ṽ = c0
v − v0

v0
= −1

2
Γij,aṼ

−1
ab Γkl,bUik̂jUkk̂l , (23)

where c0 is the probed elastic coefficient for each mode.
For the longitudinal mode, c011 = c11, for the transverse
mode c0T = (c11− c12)/2 and for the B2g mode c066 = c66.
The normal sound velocity is closely related, given by

v011/T/66 =
√
ρ/c011/T/66.

B. Results

1. γ = 0 case. Analytically tractable toy model

In the beginning, we investigate a toy model without
coupling between superconducting and quadrupling or-
der parameters. The advantage of this model is that we
can investigate it analytically and inspect the roles played
by some of the terms. Here the free energy is given by
(1) with γ = 0 and

a(T ) = αSC(T
U(1)
c − T ) (24)

Ai(T ) = αBTRS(T
Z2
c − T ) , (25)
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and T
U(1)
c < TZ2

c . We consider the case where there is
no bilinear Josephson term.

The quadrupling phase occurs when Ai > 0 but a < 0.
The superconducting order parameters are zero in this
phase and, if Ar > 0, the only non-zero order parameter
is Ψi, equal to

Ψ2
i =

Ai

B1
. (26)

The ultrasound response at the quadrupling phase tran-
sition for the (s, s) model is

∆ṽ11 = δ24D4 −
δ25
2B1

, ∆ṽT = ∆ṽ66 = 0 (27)

where

D4 =
AiB2

4AiArB2 + 4A2
rB1

. (28)

The only non-zero response is in the c11 mode. In con-
trast, the (s, dx2−y2) model has the result

∆ṽ11 = − δ25
2B1

, ∆ṽT = δ24D4, ∆ṽ66 = 0 . (29)

The non-zero response in the transverse mode is linear
in T for small Ai (equivalently, near the transition), as
seen by a Taylor expansion:

D4 ∼ −αBTRSB2(T − TBTRS)

4A2
rB1

. (30)

Hence there is a negative, linear slope provided B2 < 0.
Finally the (dxz, dyz) OP has the response

∆ṽ11 = − δ25
2B1

, ∆ṽT = 0, ∆ṽ66 = δ24D4 . (31)

Overall, a non-zero response in the transverse mode is
only present for the (s, dx2−y2) model.

At the superconducting transition, the superconduct-
ing order parameters turn on. We assume that c > 0 so
that the superconducting order parameters have broken
time-reversal symmetry. Since they are not coupled to
the quadrupling phase, we can find analytic expressions
for the solutions:

ψ2
1 = −ψ2

2 =
a

b− 2c
. (32)

Note that in the superconducting phase of the decoupled
model there are four degenerate ground states, meaning
that the symmetry is broken to a group with an extra Z2

symmetry: U(1) × Z2 × Z2. This deficiency of the toy
model will be fixed when we include a non-zero coupling
γ.
Having found the ground state solutions, we substitute

them into equation (23) to find the ultrasound response,

which depends on the chosen order parameter symmetry.
In the three cases we consider, the response is

(s, s) : ∆ṽ11 = δ24D4 −
2δ21
b− 2c

− 2δ22
b+ 2c

− δ23
8c

− δ25
2B1

∆ṽT = ∆ṽ66 = 0.

(s, d) : ∆ṽ11 = − 2δ21
b− 2c

− 2δ22
b+ 2c

− δ25
2B1

∆vT = δ24D4 −
δ23
8c

∆ṽ66 = 0.

(d, d) : ∆ṽ11 = − 2δ21
b− 2c

− δ25
2B1

∆ṽT = − 2δ22
b+ 2c

∆ṽ66 = δ24D1 −
δ23
8c

The results are nontrivial. The most important fact is
that there are jumps in the transverse sound mode in
both the (s, d) and (d, d) models but not in the (s, s)
model. Hence, the jump at the superconducting transi-
tion in the transverse mode, which is clearly seen in the
experimental data, cannot be described by this toy (s, s)
model.

2. γ ̸= 0 case

We now present results for a more realistic model which
includes coupling between Ψ and the ψ. The free energy
for the order parameters is given in equation (1) with

(b, Ar, c, B1, B2, γ) = (1, 0.4, 0.2, 1,−0.1,−0.2) . (33)

Due to the non-zero γ term, there are no explicit formulae
for the order parameters in each phase, though we can
find them as a series in γ. The results to first order are

Quadrupling: Ψ2 = −Ai/B1, ψ = 0 (34)

SC: Ψ = i

(√
Ai/B1 + γ

a

8Ai(b− 2c)

)
,

ψ1ψ
†
2 = i

(
a

b− 2c
− γ

√
Ai

2
√
B1(b− 2c)

)
.

The coupling between strain and the OPs depends on the
OP symmetry and are given by (8)-(10) with δi = 1, i =
1− 4 and δ5 = 0.7 (since δ5 is the coefficient of a higher
order term) and the phase transition temperatures are
controlled by

Ai = TZ2
c − T = 2− T (35)

a = TU(1)
c − T = 1− T . (36)

The results for the (s, s), (s, dx2−y2) and (dxz, dyz)
models are shown in Figure 5. The coupling be-
tween superconducting and quadrupling order parame-
ters smooths out the ultrasound responses but still pro-
duces a jump of the scale seen in the experimental data.
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FIG. 5. The ultrasound response in the longitudinal, trans-
verse B1g (or (c11 − c12)/2) and B2g (or c66) modes, in the
models defined in (1). The s, dx2−y2 model reproduces: a lin-
ear change with temperature in the transverse mode at the
quadrupling transition T = TZ2

c = 2, no response in the lon-
gitudinal mode at the quadrupling transition and jumps in

both at the superconducting transition T = T
U(1)
c = 1.

The (s, s) model has a linear response in the quadrupling
state and a jump at the superconducting transition for
the longitudinal mode. There is no response for the trans-
verse (c11 − c12)/2) mode. The (s, d) model has a linear
response in this transverse mode and a small signal in the
longitudinal c11 mode2 in the quadrupling phase, and a
jump in both modes at the superconducting transition.
The (d, d) model has a linear response in the longitudi-
nal mode in the quadrupling phase and a jump in both
transverse modes at the superconducting transition.

The experimental data suggests that there is a weak
signal in the longitudinal mode ((c11) and a linear re-
sponse in the transverse mode ((c11 − c12)/2) in the
quadrupling phase, and a jump in both these modes
at the superconducting transition. This best matches
the (s, dx2−y2) model. Hence, based on ultrasound data
alone, the most likely order parameter symmetry is
(s, dx2−y2).

The vector OP (dxz, dyz) produces jumps at the su-
perconducting and quadrupling transitions but has no
ultrasound response in the transverse mode in the qua-
drupling phase. As we will see in Section IVC, higher-
order terms can produce a weak signal in the quadrupling
phase. Hence the data can also in principle be described
using an OP with this vector symmetry.

2 This implies there is also a small signal in the (c11+c12+2c66)/2
mode. This mode was measured in a previous experiment [3],
which shows no strong signal in this mode.

IV. s-WAVE MODELS

Momentum space symmetry of the order parameters
in Ba1−xKxFe2As2 remains a subject of discussion. Ini-
tially, several experiments were interpreted in favor of a
d-wave order parameter in KFe2As2 (x = 1) including
thermal conductivity, and specific heat [29, 30]. How-
ever, as mentioned above, the µSR data favors the sce-
nario that the order parameter is s-wave [24] at doping
x ≈ 0.8. Recent ARPES data at x = 1 is also con-
sistent with an s± order parameter [31]. Near optimal
doping (x ≈ 0.4), ARPES [32, 33] and thermal conduc-
tivity [34] data suggest that the order parameter is s-wave
and isotropic. Below optimal doping, the gap becomes
anisotropic and develops extrema [35], though it is still
typically thought to be s-wave. However, our considera-
tions suggest that there is no ultrasound response in the
transverse sound modes for the simplest s+ is order pa-
rameter. This is inconsistent with the experimental data
that suggests there should be a linear response, then a
jump. Hence, we now explore possible modifications to
the s-wave theory, which might produce the desired non-
trivial response. In this subsection, we always assume
that the superconducting OP transforms as (s, s) and
the quadrupling OP is s-wave.

A. Nematicity

First, let us consider the possibility of nematicity so
that the lattice symmetry changes in the quadrupling
state. The original lattice has D4h symmetry. The ex-
perimental data suggest there is some enhanced nematic
susceptibility consistent with the proximity of “[110]” ne-
matic critical point close to x = 0.8. This stretches the
square-like original lattice into a diamond, breaking the
D4h symmetry to C2h [36]. Hence 90◦ rotations (which
form a C4 subgroup) are broken to 180◦ rotations.
Consider now the case that such nematicity of some

origin was present in the quadrupling state. The sym-
metry breaking means we have to reanalyze the group
and representation theory. Most significantly, the strain
ux,y now transforms as A1g. Hence it can couple to the
quadratic OP terms (41). The uniaxial strain ux,x−uy,y
still transforms as B1g and so can’t couple to the s-wave
OPs. The new free energy term describing the coupling
between strain and the OPs is

Fs,s
C =

(
γ1(|ψ1|2 + |ψ2|2) + γ2(|ψ1|2 − |ψ2|2) (37)

+ γ3(ψ1ψ̄2 + ψ̄1ψ2) + γ4(Ψ + Ψ†)
)
(ux,x + uy,y) .(

γ5(|ψ1|2 + |ψ2|2) + γ6(|ψ1|2 − |ψ2|2)
+ γ7(ψ1ψ̄2 + ψ̄1ψ2) + γ8(Ψ + Ψ†)

)
ux,y .

We expect that γ5,6,7,8 are small, proportional to the size
of the symmetry breaking. We can model these terms
simply by modifying Γij in the formalism of Section IIIA.
We find that the new terms, with coefficients γ5,6,7,8, cre-
ate a non-zero response in the longitudinal sound mode
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and no additional response in the traverse B1g mode.
Hence the experimentally observed character of nematic
susceptibility [36] cannot explain the ultrasound response
in this transverse mode.

We have considered the possibility of a nematic order
in the quadrupling state, breaking a certain symmetry.
This does produce an ultrasound response, but not in
the desired transverse mode. Theoretically, a response in
this mode requires “XY ” nematicity, which is ruled out
in [36].

B. External stress

Suppose that the system was externally stressed uni-
axially, by the constant force σ0

xx−σ0
yy. This force trans-

forms as B1g and its product with uxx − uyy is invariant
under all symmetry transformations. Hence the prod-
uct couples to any gauge invariant functions of the order
parameter. In detail, the terms(
σ0
xx − σ0

yy

)
(ux,x − uy,y)

(
α1(|ψ1|2 + |ψ2|2)+ (38)

α2(|ψ1|2 − |ψ2|2) + α3

(
ψ1ψ

†
2 + ψ†

1ψ2

)
+ α4(Ψ + Ψ†)

)
should be added to the free energy. This can be mod-
eled using the framework developed in Section IIIA by
updating the tensor Γij .
In the decoupled limit, the newly added term gives an

ultrasound response

∆ṽT =
(
σ0
xx − σ0

yy

)2 (
α2
4D4 −

2α2
1

b− 2c
− 2α2

2

b+ 2c
− α2

3

8c

)
,

(39)
corresponding to a linear response in the quadrupling
phase and a jump at the superconducting transition,
matching experimental data.

The presence of external stress on the system can ex-
plain the experimental data. However, for this to be a
reasonable explanation, we must argue why an external
stress of the type σ0

xx−σ0
yy might be present. Stresses of

the type σ0
xy and σ0

xx + σ0
yy would lead to signals in the

longitudinal data. Note that the ultrasound response in
the longitudinal modes are weak.

C. Higher order strain coupling

All combinations of an (s, s) order parameter trans-
form as A1g. These can couple to higher order products
of the strain tensor. The simplest are terms quadratic
in strain. The possible terms, which affect strain in the
plane, are

(uxx + uyy)
2, (uxx − uyy)

2, u2xy (40)

All three of these can couple to any quadratic terms of
the OP

|ψ1|2 + |ψ2|2, |ψ1|2 − |ψ2|2, ψ†
1ψ2 + ψ1ψ

†
2,Ψ+Ψ† . (41)

We’ll also consider terms of the form |Ψ|2. So overall,
there are fifteen terms of this kind. We can write the free
energy contribution of these terms in tensor notation:

Fijkl(ψ,Ψ)uijukl (42)

If we assume that the cijkl defined in (4) are large,
and hence u0 is small, the formalism from earlier is only
slightly modified. The dispersion relation (20) is only
modified by

cijkl → (c+ F (ψ0,Ψ0))ijkl . (43)

and so the sound velocity for the transverse sound wave
in the normal state is simply

v0T =
√
c11 − c12 + F1111 − F1122 . (44)

And the normalised change in vT , in a large c expansion,
is given by

vT − v0T
v0T

≈ F1111 − F1122

2(c11 − c12)
(45)

This expression can be written in terms of the order pa-
rameters, as follows

F1111−F1122 = f1
(
|ψ1|2 + |ψ2|2

)
+ f2

(
|ψ1|2 − |ψ2|2

)
f3

(
ψ†
1ψ2 + ψ1ψ

†
2

)
+ f4

(
Ψ+Ψ†)+ f5|Ψ|2 , (46)

with some new parameters fi. So far in this paper we
have modeled the phase transitions as being second order.
Hence the square of each order parameter grows approx-
imately linearly with T near Tc. As a result, the terms
in Eq. 46 are continuous across the phase transition: the
new couplings generate a change in the slope of the ultra-
sound response. Hence, these terms cannot account for
the discontinuous jump in the ultrasound data across the
superconducting transition when the phase transition is
second order. However, it can account for the change in
slope in the c66 data from Figure 2e.

D. First order phase transition

In general, the phase transition from quartic to super-
conducting state can be first order when quartic phase is
not too large. This is seen in Monte-Carlo simulations of
similar models where, near the bicritical point, the phase
transitions can be first order [2]. It was first pointed
out and studied in detail in related models with differ-
ent symmetry[37, 38]. Our simple model (1) also con-
tains a first-order phase transition from the quadrupling
to BTRS superconducting phase when Ai, and hence Ψ,
are small. We can model this using the parameters

(a(T ), Ai, b, Ar, c, B1, B2, γ) (47)

= (1− T,min (0.02, 2− T ) , 1, 0.4, 0.2, 1,−0.1,−0.2) .
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FIG. 6. A typical ultrasound response when there is a first-
order phase transition and higher order strain coupling, for
an s-wave model. There is a small non-zero response in the

quadrupling phase and a jump at T
U(1)
c in all sound modes.

One can check that the order parameters change discon-
tinuously over T = 1. We then also include the higher-
order strain terms(

|ψ1|2 + |ψ2|2
) (
f1(u11 − u22)

2 + g1(u11 + u22)
2
)

+ |Ψ|2
(
f5(u11 − u22)

2 + g5(u11 + u22)
2
)
. (48)

The ultrasound response is seen in Figure 6. We see that
there are weak responses in the quadrupling phase (due
to non-zero g5 and f5) and a discontinuity in the data at
the superconducting transition. The discontinuities are
due to the fact the phase transition is first order. This
relies on the fact that Ai is small here. However, Ai also
controls the size of Ψ2

i and this controls the size of the
response in the quadrupling phase. So it seems difficult
to construct a model of this kind with a large response in

the quadrupling phase and a large jump at T
U(1)
c . Also

note that the transitions in these models are very weakly
first order [2, 38]. These models do not contradict the
experimental observations since the existing calorimetry
data cannot resolve the order of the phase transition [3,
4].

E. Derivative coupling

In the BTRS phase of Ba1−xKxFe2As2 , there are spon-
taneous magnetic fields whose value increases with de-
creasing temperature. These have been observed in the
superconducting state at magic doping [24] and in the
quadrupling state [3]. For a recent theoretical work on
the origin of these fields, see [25]. The spontaneous mag-
netic fields imply persistent currents and hence existence
of stationary nonzero gradient terms. Nonzero gradient
terms are important to describe muon spin rotation data
of Ba1−xKxFe2As2 and hence, their potential role in the
ultrasound response should be assessed. The allowed gra-
dient terms depend on the order parameter symmetry,
with a variety of consequences [28, 39].

There are OP derivative terms which couple to the
strain. One derivative term which couples to the B1g

strain to an s-wave OP is(
|DxΨ|2 − |DyΨ|2

)
(uxx − uyy) . (49)

Such terms will only produce an ultrasound response
where the order parameter is inhomogeneous: near de-
fects, domain walls and surfaces. The term (49) is only
nonzero for non-axially symmetric defects in the simplest
s+ is models. Microscale non-axially-symmetric defects
lead to the appearance of spontaneous magnetic fields on
relatively large scales in the simplest s + is models [40].
Understanding this response, and whether it can be large
enough to be seen in ultrasound experiments, will require
an elaboration on defects structure in the material and
significant additional modeling.

V. CONCLUSIONS

In conclusion, we obtained new experimental data and
developed a theory of ultrasound response in the electron
quadrupling phase.

Our main result is that the ultrasound is sensi-
tive to the phase transition in the electron quadru-
pling state. The theoretical models with time-reversal-
symmetry breaking electron quadrupling state are shown
to be consistent with those observed in ultrasound exper-
iments on Ba1−xKxFe2As2 . This explains why such sin-
gularities correlate with singularities in the specific heat
observed at the time-reversal symmetry breaking and su-
perconducting transition temperatures [3, 4].

We have also discussed how the ultrasound response
depends on the symmetry of the electron quadrupling
order parameters, which will pave the way to ascer-
tain the symmetry of the quadrupling phases in future
works. In a simple GL model, the experimental data co-
incides with our model of quadrupling order arising from
a low-temperature s + idx2−y2 superconducting state.
By contrast, the analysis of polarization of spontaneous
magnetic fields in the superconducting state [24] was
more naturally explained by the model where the low-
temperature phase is an s+is-superconductor. Nonethe-
less, we stress that experimental data is inconsistent only
with the simplest s+is-models and we discussed multiple
generalizations of s + is-models with additional inputs,
such as explicit rotation-symmetry breaking by strain or
defects in an s + is state can produce such a response.
The precise detail of the order parameter remains an in-
teresting question requiring a combination of further ex-
perimental and theoretical investigations.

Hence our overall conclusion is that ultrasound data
is consistent with the existence of two transitions in
Ba1−xKxFe2As2 : the upper transition at TZ2

c corre-
sponding to an electron quadrupling state breaking time-

reversal symmetry and the lower one at T
U(1)
c corre-

sponding to the onset of superconductivity.



10

VI. ACKNOWLEDGEMENTS

CH is supported by the Carl Trygger Foundation
through the grant CTS 20:25. EB was supported by
the Swedish Research Council Grants 2022-04763, by

Olle Engkvists Stiftelse, and partially by the Wallenberg
Initiative Materials Science for Sustainability (WISE)
funded by the Knut and Alice Wallenberg Foundation.
VG is supported by the NSFC grants 12374139 and
12350610235. We acknowledge support of the HLD at
HZDR, member of the European Magnetic Field Labo-
ratory (EMFL).

[1] T. A. Bojesen, E. Babaev, and A. Sudbø, Time rever-
sal symmetry breakdown in normal and superconducting
states in frustrated three-band systems, Phys. Rev. B 88,
220511 (2013).

[2] T. A. Bojesen, E. Babaev, and A. Sudbø, Phase tran-
sitions and anomalous normal state in superconductors
with broken time-reversal symmetry, Phys. Rev. B 89,
104509 (2014).

[3] V. Grinenko, D. Weston, F. Caglieris, C. Wuttke,
C. Hess, T. Gottschall, I. Maccari, D. Gorbunov,
S. Zherlitsyn, J. Wosnitza, A. Rydh, K. Kihou, C.-
H. Lee, R. Sarkar, S. Dengre, J. Garaud, A. Char-
nukha, R. Hühne, K. Nielsch, B. Büchner, H.-H. Klauss,
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