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We systematically investigate unconventional superfluid phases of fermionic dipolar particles ly-
ing in a double-wire setup with laser-assisted interwire tunneling. Our numerical simulations, based
on the nonlocal Kohn-Sham Bogoliubov-de Gennes equation, reveal the existence of a large Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) region with a stripe phase under an imbalance of particle densi-
ties between two wires. When the laser-assisted interwire tunneling is present, it induces a transition
from the FFLO phase to the topological superfluid phase and the associated Majorana zero modes
exhibit an oscillation structure, which is significantly enhanced by the long-range nature of the in-
terwire dipolar interaction. This distinguishes itself from the results obtained with usual contact
interaction and offers new opportunities for manipulating and reshaping Majorana zero modes by
adjusting the degree of the nonlocality and the interwire separation.

I. INTRODUCTION

The search for unconventional superfluid phases in ul-
tracold atomic gases has attracted a great deal of interest,
largely due to the existent analogies between neutral su-
perfluids and charged superconductors [1–7]. Of particu-
lar relevance are the studies of exotic pairing mechanism
in Fermi gases, e.g., the spatially non-uniform FFLO
phase with finite momentum pairing [8–18], as well as
the uniform topological superfluidity with non-Abelian
Majorana quasiparticles [19–28]. However, a limitation
of these gases is that the particle interaction is typically
isotropic and extremely short-range contact, making it
impossible to exhibit higher-order symmetries. The pro-
duction of ultracold dipolar gases with large intrinsic
dipole moments promises to change this due to the spa-
tially anisotropic and long-range character of the dipole-
dipole interaction [29–40]. Compared to contact interac-
tions, dipole-dipole interactions are neither purely attrac-
tive nor purely repulsive. The attractive pairing channel
is mostly of pz-like hybridization with higher odd par-
tial wave components. These features can significantly
impact the many-body behaviors of the underlying sys-
tems and give rise to unconventional pairing mechanisms
[41–43].

Recently, there has been much interest in quantum
dipolar Fermi gases loaded into equidistant wires or layers
[35, 44–53]. The single species polarized particles in bi-
wires are connected with each other due to the long-range
nature of the dipole-dipole interaction, giving the system
a two-component character. The dipoles in each wire are
aligned by an external field and the long-range dipole-
dipole interaction can be adjusted by changing the angle
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between the trap orientation and the polarization direc-
tion of the dipoles [54]. A crossover is also expected by
varying the interwire distance, as the system evolves from
the weak-coupling normal superfluid regime of largely
overlapping Cooper pairs to the strong-coupling BEC
regime of composite bosons. Consequently, these wired
structures exhibit remarkable interwire effects such as in-
terwire bound states and non-trivial Cooper pairing of
different wire dipolar particles [41–43]. Additionally, it’s
well-known that spin-orbit (SO) coupling has been real-
ized by using a pair of counter-propagating Raman lasers
[55–65]. As well, laser-assisted interwire tunneling, which
induce the momentum transition between particles in dif-
ferent wires, can also been achieved by using a pair of
counter-propagating Raman lasers [66–72]. We refer to it
as the interwire SO coupling. To the best of our knowl-
edge, this has not yet been extended to the physically
relevant fermionic case when the interwire SO coupling
acts together with the long-range dipolar interaction.

Motivated by this, we study here the superfluid phases
in a double-wire dipolar fermionic gas with laser-assisted
interwire tunneling. The single-species dipoles are ori-
ented perpendicular to the wires, resulting in repulsive
interaction between particles within the same wire. The
effective interwire dipolar interaction is tuned to be at-
tractive and hence generates the interwire pairing [73–
76]. The results are based on numerical calculations
using the nonlocal Kohn-Sham Bogoliubov-de Gennes
equation. The phase diagram shows a large FFLO phase
region with a stripe structure under an imbalance of par-
ticle densities of the wires. Moreover, the system under-
goes a quantum phase transition to the topological super-
fluid phase when the laser-assisted interwire tunneling is
present. The topological nature of the superfluid phase
supports Majorana zero modes at the phase boundary,
and the long-range nature of dipole interaction induce
an oscillatory structure in those zero modes, distinguish-
ing itself from most of the previous results involving only
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FIG. 1. Schematic diagrams for the double-wire system with
laser-assisted interwire tunneling. (a) A double-well optical
lattice that has two local minima in a unit cell is formed
by the interference of two pairs of counter-propagating laser
beams. The double-wire system are filled with dipolar Fermi
particles oriented perpendicular to the wires, the potential
is along z -axis, the trapping potential is along the x -axis.
The blue and red colors signify for the particles in different
wire index {±}. (b) The inter-wire tunneling is assisted by a
pair of Raman lasers, which induce the momentum transitions
between particles in different wires.

usual contact interaction. This work thus opens a new
direction for manipulating and reshaping Majorana zero
modes.

We organize the paper as follows: in Sec.II, we in-
troduce the physical model of a dipolar Fermi gas with
laser-assisted interwire tunneling and show the scheme.
In Sec.III, the phase diagram is presented according to
our analysis of the density distribution and pair profiles.
The presence of the laser-assisted interwire tunneling is
found to induce a transition from the FFLO phase to
the topological superfluid phase and we then show the
energy spectrums and Majorana zero modes for different
interwire separations. Sec.IV is devoted to conclusions.

II. HAMILTONIAN AND NONLOCAL KS-BDG
FORMALISM

In this study we consider a dipolar fermionic gas under
the laser-assisted tunneling between two wires. As shown
in Fig. 1(a), the single-component polarized particles
with strong dipole-dipole interactions (DDIs) are con-
fined in an asymmetric double-well potential (harmonic)
with a distance l along z -direction. Due to the long-range
character of the DDIs, the single-species dipole particles
in different wires provide a two-component interacting
system, which are denoted by the wire index {±}. The
particles in each wire are aligned perpendicularly to the
x-y plane by an magnetic field and the DDIs are well
characterized by V (ri, rj) = d2/|ri − rj |3, where d is the
magnetic dipolar moment of a particle and ri, rj are co-
ordinates. There is no contact interaction due to Pauli
exclusion principle. The interwire tunneling is restored
with two detuned Raman beams, which induce the mo-
mentum transfer δk between particles in different wires
[69, 77–79], as shown in Fig. 1(b). Note that the two
Raman beams couple different wires but do not change
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FIG. 2. (Upper column) The density profiles of the system
with no interwire tunneling for three sets of Zeeman fields
(I) 0.25EF , (II) 0.35EF , (III) 0.75EF , where the blue (red)
line denotes the density in the wire +(−). The corresponding
order parameters in the momentum space ∆(k, k′) (middle
column) and real space ∆(x, x′) (down column). Parameters
are: rd = 6.25xs, l = 0.5xs.

the internal state of the particles. As a result, the cor-
responding Hamiltonian of the system is provided as fol-
lows:

Ĥ =

∫
dxΨ̂† {h0(x) + λkxσy − hzσz} Ψ̂

+
∑
α,β

∫∫
dxdx′ψ̂†

α(x)ψ̂
†
β(x

′)Vαβ(x, x
′)ψ̂β(x

′)ψ̂α(x),

(1)

where Ψ̂(x) ≡ [ψ̂+(x), ψ̂−(x)]
T with the annihilation

operator of a fermion at the position x with the wire

index {±}. h0(x) = − ℏ2

2m∂
2/∂x2 + V (x) − µ, where

V (x) = mω2x2/2 is the harmonic trapping potential with
frequency ω, µ is the chemical potential, and σi∈{x,y,z}
are the Pauli matrices acting on the wire index. The
strength of the inter-wire SO coupling λ ≡ ℏ2δk/2m can
be easily tuned by the Raman lasers, and hz is the effec-
tive Zeeman field, adjusted by the particle densities be-
tween two wires. The last term describes the long-range
DDIs. In particular, the intra-wire interaction is purely
repulsive, which is given by V++(x, x

′) = V−−(x, x
′) =

d2δ3/(|x − x′|2 + δ2)3/2 [80–84], where δ = π−1/2 is de-
fined as the cut-off parameter to resolve the issue of
singularity in x = x′. As a result, it only leads to
Fermi renormalization of the density when particles in
each wire are in a gas phase, so that below we omit
this interaction [41, 85]. The interaction between two
wires is more interesting, with a peculiar distribution
V+−(x, x

′) = d2(|x−x′|2 − 2l2)/(|x−x′|2 + l2)5/2, which
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is partially attractive and can lead to the inter-wire su-
perfluid pairing [41–43]. Therefore, we introduce the

non-local anomalous density χ(x, x′) = ⟨ψ̂−(x
′)ψ̂+(x)⟩

[86, 87], which represents the superconducting pairs.
As usual, the Hohenberg-Kohn theorem guarantees a
one-to-one mapping between the set of the densities
{χ(x, x′)} in thermal equilibrium and the set of their
conjugate order parameters {∆(x, x′)}, where the non-
local order parameter as ∆(x, x′) = V+−(x, x

′)χ(x, x′),
with the corresponding effective Hamiltonian can be
written as: Ĥeff =

∫
dxΨ̂† {h0(x) + λkxσy − hzσz} Ψ̂ +∫∫

dxdx′∆∗(x, x′)ψ̂−(x
′)ψ̂+(x) + H.c.. Similar to the

standard Hartree-Fock Bogoliubov-de Gennes theory
with a local pairing field, the effective Hamiltonian with
the nonlocal pairing order parameter ∆(x, x′) can also

be diagonalized by the Nambu transformation: ψ̂±(x) =∑
η

[
u±,η(x)γ̂η + v∗±,η(x)γ̂

†
η

]
, where the γη is the anni-

hilation operator of quasi-particle in the diagonalized
effective Hamiltonian Ĥeff as Ĥeff = Eg +

∑
η ϵηγ̂

†
ηγ̂η,

where Eg is the ground state energy and ϵη is the en-
ergy of the η-th excitation state. The resultant nonlo-
cal Kohn-Sham Bogoliubov-de Gennes (KS-BdG) equa-

tions as
∫
dx′ĤKS(x, x

′)Φη(x
′) = EηΦη(x) [86, 87] with

Φη(x) = [u+,η(x), u−,η(x), v+,η(x), v−,η(x)]
T , the nonlo-

cal KS-BdG matrix is:

ĤKS(x, x
′) =


h+(x)δ(x− x′) −λ ∂

∂xδ(x− x′) 0 ∆(x, x′)
λ ∂

∂xδ(x− x′) h−(x)δ(x− x′) −∆(x′, x) 0
0 −∆∗(x, x′) −h∗+(x)δ(x− x′) −λ ∂

∂xδ(x− x′)
∆∗(x′, x) 0 λ ∂

∂xδ(x− x′) −h∗−(x)δ(x− x′)

 , (2)

where h±(x) = h0(x) ∓ hz and the nonlocal pairing
order parameter ∆(x, x′) in Eq.(2) should be solved

self-consistently: ∆(x, x′) = V+−(x, x
′)⟨ψ̂−(x

′)ψ̂+(x)⟩ =
(V+−(x, x

′)/2)
∑

|Eη|<Ec
[u+,η(x)v

∗
−,η(x

′)f(Eη) +

u−,η(x
′)v∗+,η(x)f(−Eη)], and the density in a sin-

gle wire is given by nα(x) = ⟨ψ̂†
α(x)ψ̂α(x)⟩ =

(1/2)
∑

|Eη|<Ec
[|uα,η(x)|2f(Eη) + |vα,η(x)|2f(−Eη)],

where f(E) = 1/(1 + eE/kBT ) being the quasiparticle
Fermi-Dirac distribution with energy E at temperature
T .

To solve the KS-BdG equation, we convert the equa-
tion to a diagonalization problem of a secular matrix by
expanding u±,η and v±,η on the basis states of the har-
monic oscillator. In our calculation, we set the total num-
ber of the atoms to N = 100 and the single particle Fermi
energy EF = Nℏω/2 (neglecting zero point energy), the

Fermi momentum kF =
√

2mEF /ℏ2 and the harmonic

oscillator length xs =
√
ℏ/(mω) are chosen as the units

of momentum and length. The dipolar interaction can
be characterized by the effective dipole-dipole distance
rd = md2/ℏ2, which ranges from 10 to 104Å in the labo-
ratory. In the laser-assisted interwire tunneling case, we
choose λkF = 1.5EF in most of our calculations. Up to
400 harmonic oscillator states are involved with an en-
ergy cut-off set at Ec = 15EF , which is large enough to
ensure the accuracy of the calculation for the wavefunc-
tion expansion.

III. RESULTS

We first start with no interwire tunneling. In this
case we find that the particles located in the different
wires are only coupled to each other by long-range dipo-

lar interactions. Fig. 2 displays the nonlocal order pa-
rameters both in real and momentum space and corre-
sponding density profiles with different effective Zeeman
fields. As anticipated, the ground state is in a normal
superfluid with zero momentum pairing under weak Zee-
man fields. For a given dipole-dipole distance, the FFLO
phase emerges over a critical Zeeman field value and our
numerical calculations show that this is a tripe phase.
Non-zero momentum Cooper pairing yields a spatially
dependent superfluid order parameter along the diago-
nal directions, as shown in Fig. 2(c2-c3). This is a key
feature of the so-called LO phase. Thus the LO part of
the nonlocal superfluid order parameter can be charac-
terized by ∆(R) =

∑
i |∆Qi

(R)|eiQi·R, where Qi is the
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FIG. 3. (a) The energy spectrum as a function of the effective
Zeeman field for rd = 6.25xs, l = 0.5xs, λkF = 1.0EF . The
energy gap get close at Zeeman field hz = 0.94EF with a
phase transition from NS state to the topological superfluid
(TS) phase. The wavefunctions of the lowest energy state are
shown for these two phases at Zeeman fields (b)0.8EF and
(c)0.99EF respectively.



4

0.0 0.2 0.4 0.6 1.00.8

NS

q

q= 0

≠ 0

 λ k   E F F/

LO

TS
F

h 
  E

0.0

0.5

1.0
/ z
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with rd = 6.25xs and l = 0.5xs. LO phase: FFLO superfluid
with stripe phase in the orange region; NS: normal superfluid
in the green region; TS: topological superfluid with the ap-
pearance of MZMs in the blue region.

relative momentum of the two paired particles, and R is
their center-of-mass (CM) position of the Cooper pair-
ing. As expected, two symmetric off-diagonal peaks ap-
pear in the pair momentum distribution ∆(k, k′) with
Q1 = −Q2 ̸= 0, which serves as an evidence for the stripe
FFLO state with long-range interaction. In Fig. 2(b2-
b3), we observe as the Zeeman field increases, the relative
momentum of the Cooper pairing increases, but the am-
plitude of the superfluid order parameter decreases. For
a sufficiently large field, the pairing will eventually be
destroyed and the ground state will become the normal
state. The behaviors of the density profiles are similar
to the nonlocal order parameters. As one can see In Fig.
2(c2), the wings of the density profile are not polarized
and the core of the density is filled with an oscillating
structure. Since the no-polarized edge is in the trivial
superfluid phase, the FFLO state we studied is a mixed
phase. However, without making confusion, we still call
it the FFLO state.

Let us now investigate the system with laser-assisted
interwire tunneling. The state between two wires are
mixed via the laser-assisted tunneling and the energy
gap Egap = 2hz appears in the single-particle spectrum.
With the long-range dipole-dipole interaction, topolog-
ical transition might appear and Majorana zero modes
may be observed. As a necessary process to change the
topology of the system, we first observe the closing of
the energy gap. In Fig. 3(a), we present the behav-
ior of the energy spectrum while increasing the Zeeman
field. It is evident that the excitation gap vanishes across
the critical point, indicating the topological phase tran-
sition. Next we explore the structure of the zero-energy
states. Because of the intrinsic particle-hole symmetry
of the KS-BdG formalism, one can immediately get the
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FIG. 5. The distributions of the nonlocal order parameters
(a) and the corresponding wavefunctions of the MZMs (b), for
different interwire separations as shown in the figure. Solid
blue line for u− and dashed red one for u+. Here λkF =
1.5EF , rd = 6.25xs, hz = 1.0EF .

zero-energy quasiparticle states satisfy γ0 = γ†0, thus
these modes can be regarded as Majorana quasiparti-
cles. The ground state is degenerate: γ0|GS⟩ = 0 and

|GS⟩ = γ†0|GS⟩. These two degenerate states can be used
as a qubit for quantum information processing. The cor-
responding wave functions for these zero-energy states
should satisfy either uσ(x) = v∗σ(x) or uσ(x) = −v∗σ(x).
The wave functions of the zero-energy modes are shown
in Fig. 3(c), we can see that the wave functions readily
satisfy the requirement of symmetry or anti-symmetry
and intrinsically nonlocal, with weight at two spatially
separated points.
Based on the above analysis, we address the ground-

state phase diagram with respect to λ and hz, as shown
in Fig. 4. Three phases are obtained: normal-superfluid
phase (NS) with (∆ ̸= 0, Qi = 0), stripe FFLO superfluid
phase (LO) with (∆ ̸= 0, Qi ̸= 0) and topological su-
perfluid phase (TS) with Majorana zero modes (MZMs).
Similar to that in the case of contact interactions, the
transition from the normal superfluid to FFLO state is
of the first order. Remarkably, the FFLO region signifi-
cantly depends on the strength of the interwire tunneling
and survives in a large regime due to the long-range char-
acter of the dipolar interaction. A key point is that the
the long-range feature of the dipolar interaction can be
modified by the wire separation l. The potential V+−(x)

is attractive with x <
√
2l, while the inter-wire distance

is increased, the effective range of the nonlocal superfluid
pairing is shifted and thus, the corresponding topology is
changed.
In Fig. 5, we examine the role of the interwire distance

in the behavior of the MZMs. First, it is worth observ-
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FIG. 6. Linear contour plot for the local density of states of
particles in different wires ρ±(x) for the case in Fig. 5. The
signals of Majorana zero modes are well isolated in the energy
and spatial domain, which have been zoomed in to get more
details in the white circle area.

ing from the Fig. 5(a1-a2) that the non-localization of
the pairing order parameter ∆(x, x′) is enhanced with
the wire separation. For both l = 0.5xs and l = 2xs,
two MZMs emerge at the phase interfaces x ≈ ±10xs
and well isolated from other quasiparticles. Note that
the overlap between the wave functions of two MZMs
lead to finite but exponentially small energy splitting:
E0 ≈ 1× 10−4EF . For a better observation of the struc-
ture of MZMs, we just illustrate the wave functions of
MZM at x ≈ 10xs. Similar to that in the case of con-
tact interaction, the wave functions of MZMs under small
wire separation (Fig. 5(b1)) decreases smoothly with
steep slope. Be contrast, there is an oscillation struc-
ture of the MZMs with larger wire separation, which is
considerably distinct for the u−(x). As shown in Fig.
5(b2), two obvious peaks in the distribution of u−(x)
should be detected in the local density of states, which
can be measured by momentum resolved radio-frequency
spectroscopy. The local density of states for particles

in different wires ρα(x,E) is defined as ρα(x,E) =
1/2

∑
η |uα,η(x)|2δ(E − Eη) + |vα,η(x)|2δ(E + Eη). In

Fig. 6, we display corresponding ρα(x,E) and the con-
tribution from MZMs are visible and well separated from
other quasi particle contributions. Clearly, two peaks of
u−(x) appear at the interface with larger wire separa-
tion, which distinguishes itself from most of the previous
results.

IV. CONCLUDING REMARKS

In this work, we utilized the KS BdG formulation to
study possible FFLO and topological phases in a double-
wire system of dipolar Fermi particles with the laser-
assisted tunneling between two wires. The particles are
oriented perpendicular to the plane, and the superfluid
pairing is provided by the partially attractive long-range
interaction between dipoles belonging to different wires.
In the absence of laser-assisted interwire tunneling, a
large FFLO region with a stripe phase is found under
an imbalance of particle densities of the wires. A transi-
tion from the FFLO phase to the topological superfluid
phase occurs when the inter-wire laser-assisted tunnel-
ing is turned on. It is noteworthy that the associated
Majorana zero modes exhibit an evident oscillation of
wave functions and change as the interwire distance is
varied. Our work demonstrates the importance of the
long-range character of the DDI, which enhances the os-
cillation structure of Majorana zero modes and supports
the FFLO regime. With the techniques of dipolar Fermi
particles with strong dipolar interaction by Dy [53] and
laser-assisted interwire tunneling by Raman laser [71],
our scheme is within the reach of current experiments.
We hope that the insights obtained in this work may of-
fer intriguing perspectives for exploring new physics phe-
nomena in dipolar systems.

ACKNOWLEDGEMENTS

We thank Wenjun Shao for the early contribution to
this project and are grateful to Lin Wen and K. A. Yasir
for valuable discussions. This work is supported by Na-
tional Natural Science Foundation of China (12234012).
The numerical calculations in this paper have been done
on the supercomputing system in the Information Tech-
nology Center of Westlake University.

[1] I. Ferrier-Barbut and M. Delehaye and S. Laurent and A.
T. Grier and M. Pierce and B. S. Rem and F. Chevy and
C. Salomon, A mixture of Bose and Fermi superfluids,
Science 332, 1288 (2011).

[2] Z. Yan, P. B. Patel, B. Mukherjee, C. J. Vale, R. J.
Fletcher, and M. W. Zwierlein, Thermography of the su-
perfluid transition in a strongly interacting Fermi gas,
Science 383, 629 (2024).

[3] Z. Zheng, C. Qu, X. Zou, and C. Zhang, Fulde-Ferrell
Superfluids without Spin Imbalance in Driven Optical
Lattices, Phys. Rev. Lett. 116, 120403 (2016).

[4] C. Qu, Z. Zheng, M. Gong, Y. Xu, L. Mao, X. Zou, G.
Guo, and C. Zhang, Topological superfluids with finite-
momentum pairing and Majorana fermions, Nat. Com-
mun 4, 2710 (2013).

[5] K. W. Song and A. E. Koshelev, Quantum FFLO State in
Clean Layered Superconductors, Phys. Rev. X 9, 021025

https://www.science.org/doi/abs/10.1126/science.1255380
https://www.science.org/doi/abs/10.1126/science.adg3430
https://link.aps.org/doi/10.1103/PhysRevLett.116.120403
https://doi.org/10.1038/ncomms3710
https://doi.org/10.1038/ncomms3710
https://link.aps.org/doi/10.1103/PhysRevX.9.021025


6

(2019).
[6] J. Wosnitza, FFLO States in Layered Organic Supercon-

ductors, Ann. Phys. (Berlin, Ger.) 530, 1700282 (2018).
[7] G. Bednik, A. A. Zyuzin, and A. A. Burkov, Super-

conductivity in Weyl metals, Phys. Rev. B 92, 035153
(2015).

[8] P. Fulde and R. A. Ferrell, Superconductivity in a Strong
Spin-Exchange Field, Phys. Rev. 135, A550 (1964).

[9] A. I. Larkin and Y. N. Ovchinnikov, INHOMO-
GENEOUS STATE OF SUPERCONDUCTORS, Sov
Phys.JETP 47, 1136 (1964).

[10] X. Zhang and F. Liu, Fulde-Ferrell-Larkin-Ovchinnikov
pairing induced by a Weyl nodal line in an Ising super-
conductor with a high critical field, Phys. Rev. B 105,
024505 (2022).

[11] X. Wei and W. Zhu, FFLO state driven by quasiperiodic
Zeeman field and its transition to localized states, Phys.
Rev. B 105, 094203 (2022).

[12] T. Kitamura, A. Daido, and Y. Yanase, Quantum geo-
metric effect on Fulde-Ferrell-Larkin-Ovchinnikov super-
conductivity, Phys. Rev. B 106, 184507 (2022).
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E. Su, J. Lee, A. O. Jamison, and W. Ketterle, Spin-
Orbit Coupling and Spin Textures in Optical Superlat-
tices, Phys. Rev. Lett. 117, 185301 (2016).

[80] K. M. Elhadj, A. Boudjemâa, and U. Al-Khawaja, Inter-
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