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We study the effect of the magnon-magnon interaction on the nonlinear magnon transport. The
magnon-magnon interaction induces nonreciprocal magnon decay when the time-reversal symmetry
is broken, and leads to nonlinear thermal responses of magnons. We construct a theoretical frame-
work to study the nonlinear thermal responses due to the nonreciprocal magnon decay by using the
imaginary Dyson equation and quantum kinetic theory, which is then applied to a model of hon-
eycomb ferromagnets with Dzyaloshinskii–Moriya interactions. An order estimate shows that the
nonlinear thermal response from the present mechanism is feasible for experimental measurement.

Introduction.— Magnons, quasiparticles of quantized
spin waves, have attracted significant attention within
the field of spintronics due to their long lifetimes and
capability to transmit information without Joule heat-
ing [1]. For the practical application of magnons, it is cru-
cial to understand the transport properties of magnons.
Since the magnon is a charge-neutral boson, its thermal
transport has been extensively investigated [2–4], includ-
ing the thermal Hall effect and the spin Nernst effect
which originate from a nontrivial geometry of the magnon
band [5–7].

Beyond the linear response regime, magnons also ex-
hibit interesting nonlinear transport phenomena. For ex-
ample, driving magnons with thermal gradient leads to a
nonlinear spin current, known as the nonlinear spin See-
beck effect [8] and the nonlinear spin Nernst effect [9],
where the latter emerges from the Berry curvature dipole
of the magnon band. Application of high-intensity mag-
netic fields creates magnons and leads to the DC spin cur-
rent generation [10–12]. Also, magnons in multiferroics
generally have dipole moments and allow their excita-
tion by electric fields of laser light, which was shown to
be a geometric phenomenon related to the Berry connec-
tions in the case of collinear antiferromagnets [13]. The
quantum kinetic theory gives a useful tool to analyze the
nonlinear thermal transport of magnons [14–16]. In this
framework, the second order nonlinear responses are di-
vided into three parts according to their dependence on
the relaxation time τ (i.e. ∝ τ0, τ , and τ2) [15]. Among
them, the nonlinear Drude term, which is proportional to
τ2, is particularly important when relaxation times are
long. The nonzero nonlinear Drude term requires that
the magnon Hamiltonian breaks the time reversal sym-
metry (TRS) in addition to the inversion symmetry.

While magnons are often treated as independent parti-
cles, magnons can interact with each other, which some-
times gives drastic changes to their properties. For ex-
ample, the magnon-magnon interaction modulates the
band dispersion and the lifetime of magnons [17–45].
In particular, such effects on the topological magnons
[26, 31, 36, 41, 42] and the associated edge modes [40, 43],
strongly affect the magnitude of the thermal Hall ef-
fect [36, 41, 44, 45]. Furthermore, it was revealed that
magnon-magnon interactions induce a qualitative change
of quantum phases, exemplified by the interaction-

FIG. 1. The schematic picture of the nonreciprocal
magnon thermal current and the nonreciprocal magnon de-
cay. (a) Nonreciprocal thermal current (blue arrows) car-
ried by magnon excitations (black arrows). (b) Nonrecipro-
cal magnon decay arising from magnon-magnon interactions.
Left-going and right-going magnons (white spheres) experi-
ence different decay rates due to inversion symmetry break-
ing.

induced topological magnons, where the magnon Hamil-
tonian breaks the time-reversal symmetry through the
magnon-magnon interactions [36]. In this paper, we
study the influence of magnon-magnon interactions on
the nonlinear thermal transport of magnons, and show
that the magnon-magnon interaction can induce a unique
nonlinear response that cannot be captured in the in-
dependent particle picture. Specifically, the magnon-
magnon interaction that breaks the TRS induces non-
reciprocity in the magnon decay rate, which leads to
nonlinear responses of magnons (Fig. 1). Interestingly,
even when the bilinear magnon Hamiltonian effectively
preserves a TRS, the magnon-magnon interaction (Fig.
1(b)) introduces breaking of the TRS and gives rise to a
nonlinear Drude term. We adopt a perturbation theory
and the imaginary Dyson equation to study the nonre-
ciprocal magnon decay from the magnon-magnon inter-
action. This allows us to obtain the magnon lifetime
and compute the nonlinear Drude terms by using the
quantum kinetic theory. We apply our formalism to a
model of honeycomb ferromagnets, which are experimen-
tally relevant [46–52], and perform numerical calculations
of the nonlinear thermal responses. We then estimate
the effect of the nonlinear Drude term from the magnon-
magnon interaction, which turns out to be comparable
to that originating from an explicit TRS breaking for a
free magnon Hamiltonian and is feasible for experimental
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measurements.
Interaction-induced nonreciprocal magnon decay.—We

consider the effect of magnon-magnon interactions to the
magnon damping rate. To obtain the magnon Hamilto-
nian, we perform the Holstein-Primakoff transformation
for the spin S systems as [53]

S+
i = ℏ

√
2S − a†iaiai

= ℏ
√
2Sai − ℏa†iaiai/2

√
2S +O(1/S

√
S), (1a)

S−
i = ℏa†i

√
2S − a†iai

= ℏ
√
2Sa†i − ℏa†ia

†
iai/2

√
2S +O(1/S

√
S), (1b)

Sz
i = ℏ(S − a†iai), (1c)

where a†i is a bosonic magnon creation operator at ith
site, Si is a spin operator at ith site along the spin con-
figuration of the ground state and S±

i = Sx
i ± iSy

i .
Up to the forth order of magnon operators, the magnon

Hamiltonian can be written as

H = E0 +H2 +H3 +H4, (2)

where E0 is the ground state energy, H2 is a bilinear
Hamiltonian, H3 is a cubic Hamiltonian which does not
conserves magnon number, and H4 is a quartic Hamil-
tonian. In collinear ferromagnetic states, by using the
HP transformation and the Fourier transformation, the
magnon Hamiltonians H2, H3 and H4 are expressed as

H2 =
∑
k

∑
α,β

a†k,αH
α,β
2,k ak,β (3a)

H3 =
1

2
√
N

p=k+q∑
k,q,p

∑
α,β,γ

V αβγ
k,q,pa

†
k,αa

†
q,βap,γ + h.c. (3b)

H4 =
1

4N

l=k+q+p∑
k,q,p,l

∑
α,β,γ,δ

Wαβγδ
k,q,p,la

†
k,αa

†
q,βa

†
p,γal,δ + h.c.

+
1

4N

l=k+q−p∑
k,q,p,l

∑
α,β,γ,δ

Y αβγδ
k,q,p,la

†
k,αa

†
q,βap,γal,δ + h.c.,

(3c)

where a†k,α is the magnon creation operator of αth band
with momentum k, N is the number of unit cells, and V ,
W , and Y are coefficients of the magnon-magnon inter-
actions.

We treat the magnon-magnon interaction from H3 and
H4 as a perturbation to H2 which we incorporate as a
self-energy of a magnon [22, 36, 40]. Up to the order
of 1/S, the Green’s function G in the imaginary time
formalism is given by

Gk,αβ(τ) =

G0
k,αβ(τ) +

∫ β

0

dτ1⟨TτH4(τ1)ak,α(τ)a
†
k,β⟩

− 1

2

∫ β

0

dτ1

∫ β

0

dτ2⟨TτH3(τ1)H3(τ2)ak,α(τ)a
†
k,β⟩, (4)

FIG. 2. Diagrams of magnon-magnon interactions which con-
tribute to the magnon damping rate in the order of 1/S. Bub-
ble diagrams corresponding to (a) the first and (b) the second
terms of Eq.(5). The contribution from the diagram (a) is
dominant at low temperatures.

where G0 is the unperturbed Green function, β = 1/kBT
is the inverse temperature, Tτ represents imaginary time
ordering of operators, and ⟨· · · ⟩ is the thermal average
for the unperturbed Hamiltonian H2.
The contribution of H4 only gives the Hartree term

whose contribution is real. Consequently, it modifies the
magnon energy only, leaving the magnon lifetime un-
changed. The contribution of H3 has a two types of con-
tribution: tadpole diagrams and bubble diagrams. While
the contribution of the tadpole diagrams is real. that of
the bubble diagrams shown in Fig. 2 has imaginary parts
which lead to the magnon decay. Thus, we focus on the
contribution of the bubble diagrams to the self energy Σ
which can be written as

Σα,β
k (ω, T ) =

1

N

∑
q

∑
γ,γ′

(
1

2

V γ,γ′,β
q,k−q,k(V

γ,γ′,α
q,k−q,k)

∗

ω − εq,γ − εk−q,γ′ + iη

× [fB
q,γ,T + fB

k−q,γ′,T + 1]

+
(V β,γ,γ′

k,q,k+q)
∗V αγ,γ′

k,q,k+q

ω + εq,γ − εk+q,γ′ + iη

× [fB
q,γ,T − fB

k+q,γ′,T ]

)
. (5)

Here, εk,γ is a magnon energy of the band γ determined
by H2 and fB

k,γ,T = 1/(exp(βεk,γ) − 1) is a Bose distri-
bution function. The first and second terms correspond
to contributions from Fig. 2(a) and Fig. 2(b), respec-
tively. In particular, at the zero temperature, only the
first term from Fig. 2(a) is nonzero and the second term
from Fig. 2(b) vanishes, indicating that the first term
(particle-particle diagram) gives a dominant contribution
at low temperatures.
The non-reciprocity of the self-energy is encoded in

the difference of the self energy at the opposite momenta

k and −k. By comparing Σα,β
k (ω, T ) and Σα,β

−k (ω, T )
(which is obtained by substituting k to −k and q to
−q in Eq. (5)) and assuming εk = ε−k due to the
TRS for the bilinear magnon Hamiltonian H2,k, we finds

that the nonreciprocity in the self energy Σα,β
k (ω, T ) ̸=

Σα,β
−k (ω, T ) requires the condition V α,γ,γ′

k,q,p (V β,γ,γ′

k,q,p )∗ ̸=
V α,γ,γ′

−k,−q,−p(V
β,γ,γ′

−k,−q,−p)
∗. This condition is generally met

for magnon-magnon interactions with broken TRS.
Now we focus on the magnon damping caused within

each magnon band and ignore the off-diagonal part of
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Σ. We introduce the damping rate Γ induced by the
magnon-magnon interaction as the imaginary part of the
self-energy

Γα
k(ω, T ) = −ImΣα,α

k (ω, T ). (6)

To compute the nonlinear thermal conductivity, we use
the Born approximation, which replaces ω in the right
hand of Eq. (6) with εk,α, but this sometimes causes
an unphysical divergence. To avoid such divergence, we
adopt imaginary Dyson equation [22, 26, 40] at a finite
temperature, in which we solve the self-consistent equa-
tion

ω̃ = εk − iΓk(ω̃
∗, T ), (7)

where ω̃∗ denotes a complex conjugate of ω̃, which orig-
inates from the causality. We approximate Γk(ω, T ) in
Green’s functions by Γk(ω̃, T ) and obtain the magnon
damping Γk(ω̃, T ) by solving Eq. (6) and Eq. (7) self-
consistently. The magnon damping Γk(ω̃, T ) shows an
enhancement when the magnon dispersion εk overlaps
with two-magnon continuum εq + εk−q or the collision
continuum εq − εk+q, since the numerators in Eq. ((5))
are real for α = β and the denominators become purely
imaginary. In particular, the two-magnon continuum be-
comes important at low temperatures because the first
term of Eq. (5) is nonzero even at zero temperature. In
contrast, the collision becomes unimportant at low tem-
peratures because the second term in Eq. (5) vanishes
at zero temperature. If we write the magnon damping
due to effects other than the magnon-magnon interaction
(e.g. impurity scattering and interactions with phonons)
by η, the magnon lifetime of the γth band τk,γ can be
expressed as τk,γ = 1/2(ηk,γ + Γγ

k(ω̃, T )). Hereafter, we
assume that ηk,γ = 2αεk,γ where α is a damping fac-
tor. This assumption corresponds to the phenomenolog-
ical Gilbert damping.

Nonlinear thermal current of magnons.— Now we con-
sider the nonlinear thermal current generated by the
thermal gradient

Jµ
Q = σµνν(∂νT )

2
. (8)

From the quantum kinetic theory, the nonlinear Drude
term is written as [15]

σµνν
nd =

∑
n

∫
dk3

(2π)3

[
− 1

ℏT
τ2k,γε

2
k,γv

µ
k,γ

∂vνk,γ
∂kν

∂fB
k,γ

∂T

+τ2k,γεk,γv
µ
k,γ(v

ν
k,γ)

2
∂2fB

k,γ

∂2T

]
, (9)

where vµk,γ = ∂kµ
εk,γ/ℏ is the group velocity of magnons

in the γth band. If there is the TRS, εk,γ = ε−k,γ ,
vk,γ = −v−k,γ , τk,γ = τ−k,γ , the nonlinear Drude term
vanishes. Thus, the nonzero nonlinear Drude term re-
quires not only broken inversion symmetry but also bro-
ken TRS.

FIG. 3. The schematic picture of the spin model and the asso-
ciated band dispersion. (a) The honeycomb lattice ferromag-
nets with DMI. Orange and green arrows represent spin mo-
ments and gray arrows represent DMI between the neighbor-
ing spins. (b-d) The magnon band dispersion (black curves)
with Dtwo ((b) and (d)) and Dcoll (c) (color plot) along
high-symmetry paths of the Brillouin zone. ∆A/J = 0.0,
∆B/J = 0.05, µA = µB = 1.0, S = 1 and h/JS = 0.1 for (b)
and (c) and h/JS = 1.0 for (d).

Application to honeycomb ferromagnets.— To demon-
strate nonlinear thermal current due to the nonrecipro-
cal magnon decay, we consider the spin model of two-
dimensional ferromagnets on the honeycomb lattice as
depicted in Fig. 3 (a). The spin Hamiltonian is given by

H =− J

2

∑
⟨i,j⟩

Si · Sj +
D

2

∑
⟨i,j⟩

d · Si × Sj

− h
∑
i

gαS
z
i −

∑
i

∆α(S
z
i )

2, (10)

where dij = z × (rj − ri)/|rj − ri|, and gα is the g
factor for the spins on α (α = A,B) sites and ∆α is
the magnetic anisotropy for α sites. Here, we consider
the symmetry of the spin Hamiltonian. In ferromagnets,
the spin configuration breaks the TRS because the time-
reversal flips spins. However, there still exists an effec-
tive TRS, composed of time-reversal and rotation in spin
space, in the absence of the Dzyaloshinskii–Moriya inter-
action (DMI) (D = 0)[36]. This model also possesses an
effective inversion-symmetry, consisting of inversion and
rotation in spin space, in the absence of the magnetic
anisotropy difference (∆A = ∆B). Therefore, a nonzero
nonlinear Drude term requires D ̸= 0 and ∆A ̸= ∆B

by breaking both effective TRS and inversion symmetry.
Moreover, this honeycomb magnet model has a C3 ro-
tation symmetry and the symmetry IMx composed of
inversion symmetry and mirror symmetry along the yz-
plane. Due to the C3 rotation symmetry the nonlinear
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FIG. 4. Nonlinear thermal conductivity σyyy induced by the
nonreciprocal magnon decay. (a) Temperature dependence of
σyyy for different values of the DMI. (b) The color plot of
σyyy. σyyy shows a sign change around h/JS = 1.0. We
used the following parameters: ∆A/J = 0.0, ∆B/J = 0.05,
µA = µB = 1.0, S = 1 and α = 0.001. We used h/JS = 0.1
for (a), D/J = 0.15 for (b).

Hall current due to the Berry curvature dipole (∝ τ) van-
ishes [54], and the nonlinear thermal responses satisfies
σyyy = −σyxx and σxxx = −σxyy. Also, the symmetry
IMx leads to σxxx = 0. Therefore, the nonlinear thermal
response in this model arises from the nonlinear Drude
term and satisfies σyyy = −σyxx and σxxx = σxyy = 0.

The bilinear magnon Hamiltonian H2,k for Eq. (10) is
written as

H2,k =

(
3JS + hgA + 2S∆A −JSγk

−JSγ−k 3JS + hgB + 2S∆B

)
,

(11)

with γk =
∑3

j=1 e
ik·δj , where δj are the vectors point-

ing from one site to three neighboring sites. We show
the magnon band dispersion and the two-magnon den-
sity of states Dtwo(ω) = 1

N

∑
γ,γ′

∑
q∈BZ δ(ω − εq,γ −

εk−q,γ′) in Fig. 3(b) and (d) and the magnon band dis-
persion and the collision density of states Dcoll(ω) =
1
N

∑
γ,γ′

∑
q∈BZ δ(ω − εq,γ + εk+q,γ′) in Fig. 3(c). As

we mentioned before, when the magnon dispersion εk
overlaps with the region of large Dtwo and Dcoll, the
magnon-magnon interaction has a significant effect on
the magnon lifetime. Now, we incorporate the effect of
the H3 that breaks the effective TRS as a magnon damp-
ing by solving Eq. (7). An explicit expression for H3 is
given in Appendix A. By using Eq. (9), we obtain the
nonlinear Drude term as shown in Fig. 4.

Figure 4 (a) shows the nonlinear thermal conductiv-
ity σyyy for five values of the DMI. The peak of σyyy

shifts to lower temperatures as the DMI increases. This
behavior can be explained from the two-magnon contin-
uum and the collision continuum. From Fig. 3(b), we can
see that at low energies, the overlap between εk and the
two-magnon continuum is small. Thus, when the DMI is
small and H3 is small, the contribution of the first term
in Eq. (5) to Γk is small. While the magnon dispersion εk
shows a significant overlap with the collision continuum
at low energy, as shown in the Fig. 3(c), the contribu-
tion of the second term in Eq. (5) to Γk is small at low
temperatures as we mentioned before. Thus, when the
DMI is small, σyyy has a peak at high temperatures. On

the other hand, as the DMI increases, the contribution of
the first term in Eq. (5) to Γk increases even if the over-
lap between εk and the two-magnon continuum is not so
large. This results in the shift of the peak of σyyy toward
lower temperatures, as the DMI increases. Furthermore,
up to D/J ∼ 0.2, the magnitude of σyyy increases as the
DMI increases, but above D/J ∼ 0.2, the magnitude of
σyyy decreases as the DMI increases (Fig. 4(a)). Specif-
ically, the nonreciprocity in the magnon decay increases
for larger DMI, whereas, for too large DMI, the lifetime
of magnons becomes short and the nonlinear response
proportional to τ2 is suppressed.

Figure 4 (b) shows the magnetic field and the temper-
ature dependence of the nonlinear thermal conductivity
σyyy. As the magnetic field increases, the response ap-
pears at the higher temperature, and furthermore the
sign of the response changes around h/JS ∼ 1. This
behaviour can be explained by the energy shift and over-
lap between the magnon energy εk and the two-magnon
continuum or the collision continuum. Due to the mag-
netic field, the magnon band dispersion shifts to higher
energy. In particular, if µA = µB = µ, magnon energy
shifts by µh, while the two-magnon continuum shifts by
2µh. In particular, in the range h/JS > 1, only the
upper magnon band overlaps with the two-magnon con-
tinuum as shown in Fig. 3(d). Since the sign of magnon
group velocity vk are opposite between the lower and
upper bands, the sign of the nonlinear thermal con-
ductivity changes around h/JS ≃ 1. Since the colli-
sion continuum is independent of the magnetic field, an
overlap of magnon energy with collision continuum be-
comes very small for large magnetic fields, resulting in
less contribution to the nonlinear conductivity. In gen-
eral, as the magnetic field is increased, the overlap be-
tween the magnon energy and the two-magnon contin-
uum and collision continuum becomes smaller and the
effect of magnon-magnon interaction becomes smaller.

Discussion.— Let us estimate the order of magnitude
of the nonlinear thermal current induced by the magnon-
magnon interaction. Assuming that the lattice constant
is 5 and the interlayer distance is 10 Å, we obtain the
nonlinear thermal conductivity of σ ≃ 5 × 10−10 W/K2

from Fig. 4(b). For the temperature gradient ∇T ≃ 105

K/m, the nonlinear thermal current of JQ ≃ 5 W/m2.
In particular, the nonlinear Hall thermal current from
σyxx is feasible for experimental measurements. Since
the typical value of linear thermal Hall conductivity is
given by κxy ≃ 10−4 ∼ 10−3 W/Km [3, 55, 56], the
linear contribution gives JQ ≃ 10 ∼ 100 W/m2 for the
temperature gradient ∇T ≃ 105 K/m. Therefore, the
nonlinear contribution to the thermal Hall current from
σyxx is sizable compared to the linear contribution from
κxy.

In this study, we adopted the spin model which gives
the harmonic magnon Hamiltonian H2 with the effec-
tive TRS, while the magnon-magnon interaction breaks
the effective TRS and induces the nonreciprocal magnon
damping and the nonlinear responses. In general models,
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H2 can also break the effective TRS (which we refer to
here as the “explicitly broken TRS”) and induce a non-
linear response within the harmonic theory. Let us com-
pare the magnitudes of the nonlinear responses induced
by the magnon-magnon interaction and the “explicitly
broken TRS”. Here, we consider a model where the DM
vector is oriented in the z direction and H2 does not
have the effective TRS in a similar way to the Haldane
model. In this “explicitly broken TRS” model, we obtain
σµνν of the order of 10−10 W/K2 which is the same order
with the nonlinear thermal conductivity induced by the
magnon-magnon interaction (for details see Appendix B),
indicating that the effect of the magnon-magnon interac-
tion is not negligible even in cases with the explicitly
broken TRS. In addition, the non-reciprocity from these
two mechanisms shows qualitatively different behaviors
with respect to the DMI D. The lifetime of the magnon
incorporating the magnon-magnon interaction is written
as

τk,D = 1/(αεk + Γk) ∼ 1/(αεk + c1εkD
2/J2)

∼ τk,D=0(1− c1D
2/J2α), (12)

whereas that for explicitly broken TRS systems without
the magnon-magnon interaction is

τk,D = 1/(αεk,D) ∼ 1/αεk,D=0(1 + c2D/J)

∼ τk,D=0(1− c2D/J). (13)

Here, c1 and c2 are coefficients of order of unity. There-
fore, if D/J is larger than α, the non-reciprocity in-
duced by the magnon-magnon interaction becomes im-
portant compared to that induced by the “explicitly bro-
ken TRS”. Furthermore, the perpendicular DMI that
breaks the effective TRS of H2 arises from spin-orbit cou-
pling, while the in-plane DMI originates from the crystal
structure. Therefore, the in-plane DMI can be larger
than the perpendicular DMI, where the magnon-magnon
interaction can contribute more significantly to the non-
linear thermal response.

The multiferroic kamiokite materialsM 2Mo3O8 (M :3d
transition metal) [55, 57] can be the candidate material
for the magnon-magnon interaction induced nonlinear re-
sponses. One may also consider a heterostructure of hon-
eycomb ferromagnets CrI3 or CrBr3 [47, 48] on top of a
substrate to introduce inversion symmetry breaking to
the system. While we considered the in-plane DMI as
the origin of the magnon-magnon interaction, the Kitaev-
Γ model [58–60] also gives rise to the magnon-magnon
interactions and application of our theory leads to the
nonreciprocal magnon decay in a similar way.
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Appendix A: Magnon-magnon interactions for
ferromagnetic Heisenberg model

We present an expression for the cubic Hamiltonian
H3 in Eq. (3c). In the ferromagnetic Heisenberg model
on the honeycomb model defined by Eq. (10), H3 is
introduced by the in-plane DM interaction and the non-
zero components of V abc

k,q,p in Eq.(3c) are

V 1,2,1
k,q,p = −D

√
S

2

3∑
j=1

eiϕδj
−iq·δj , (A1a)

V 1,2,2
k,q,p = D

√
S

2

3∑
j=1

eiϕδj
+ik·δj , (A1b)

V 2,1,1
k,q,p = −D

√
S

2

3∑
j=1

eiϕδj
−ik·δj , (A1c)

V 2,1,2
k,q,p = −D

√
S

2

3∑
j=1

eiϕδj
+iq·δj , (A1d)

where ϕδj = arg (dy
δj

− idx
δj
) and dδj is the direction of

the DM interaction on the bond δj written as

dδ1 = (0, 1), (A2a)

dδ2 = (−
√
3

2
,−1

2
), (A2b)

dδ3 = (

√
3

2
,−1

2
). (A2c)

Appendix B: The “explicitly broken TRS” model

We consider the order of the magnitude of the nonlin-
ear thermal responses of a system with “explicitly bro-
ken TRS”. We write the Hamiltonian of this model as
Hz which is the Hamiltonian (10) with the modification
dij = (0, 0, D) for the next-nearest neighbor bond for A
sites and dij = (0, 0,−D) for the next-nearest neighbor
bond for B sites. In this model, because of the bro-
ken effective TRS and inversion symmetry, the nonlinear
Drude term can be nonzero within the harmonic theory
with H2. This model also has the C3 rotation symmetry
and the symmetry IMx composed of inversion symmetry
and mirror symmetry along the yz-plane. Thus, we have
σyyy = −σyxx and σxxx = σxyy = 0. We assume that the
magnon lifetime is determined by the phenomenological
damping α as τk = 1/2αεk and we obtain the nonlin-
ear conductivity σµνν for the “explicitly broken TRS”
model as shown in Fig. 5 by using the same parame-
ters as Fig. 4(a). By using the peak value of the σµνν ,
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FIG. 5. Temperature dependence of σµνν calculated with the
“explicitly broken TRS” model Hz. We used the following
parameters: D/J = 0.15, ∆A = 0.0, ∆B = 0.05, h/J = 0.1,
µA = µB = 1.0, S = 1 and α = 0.001.

we assume that the order of σµνν is 10−10 W/K2 which
is the same order of the nonlinear thermal conductivity
induced by the magnon-magnon interaction. Thus, the
magnon-magnon interaction is comparable to the “ex-
plicitly broken TRS” of the free magnon Hamiltonian.
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