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ABSTRACT

The fractional quantum Hall effect (FQHE) is studied in the semiclassical limit in the framework of the
Hofstadter model with a short-range interaction between fermions. In the mean-field approximation, the
repulsion between fermions leads to a periodic potential. Numerical calculations show that in the case of
the periodic potential with a period that is a multiple on 1

ν
of the magnetic cell (ν is filling of a separated

band) composite Hofstadter bands (HBs) are formed. The composite HBs are split into 1
ν

subbands,
which are separated by the Dirac points. The Chern number of γ-full filled composite HBs is equal to the
Chern number Cγ of the corresponding HB. The Chern number, equal to νCγ , corresponds to ν-filling of
γ-composite HB. Thus, FQHE is realized by fractional filling of composite HBs.

Introduction
The explanation of a wide range of experimental results based on the Hofstadter model1, 2 model makes it
significant not only in theoretical but also in mathematical physics. This is due, first of all, to its successful
application in the study of topological states of two-dimensional electron liquid. First of all, we should
note the study within the framework of this model of the integer and fractional quantum Hall effects
experimentally observed in two-dimensional electron liquid in strong magnetic fields3.

A composite fermion paradigm4 describes FQHE3 quite well and explains the experimentally observed
series of quantum Hall plateaus. For half-filled HB, that corresponds to ν = 1

2 FQHE5, in the zero bare
mass limit of composite fermions particle-hole symmetry is exact. In this case an effective field theory
for such a fermion has been proposed6. It is clear that the case ν = 1

2 is unique in the sense of symmetry.
Nevertheless, the conclusion about the Dirac behavior of the spectrum of the electron liquid in the state
corresponding to FQHE is not only new but also very interesting6–8. It is not clear how exactly the
half-filling should stand out against the background of other quantum Hall plateaus. The experiment
dictates rather rigid conditions, namely: to describe within one theory a set of sequences-series of quantum
Hall plateaus at arbitrary filling (integer and fractional).

Despite the attractiveness of the Hofstadter model, it is unable to explain FQHE because in this case
it is necessary to explicitly account for the interaction between electrons (the single-particle Hofstadter
model explains only the integer quantum Hall effect). In the simplest case we can speak about a periodic
potential, which takes into account the interactions between electrons in the mean-field approximation9, 10.
Despite the fact that in9, 10 almost identical models are considered, the calculation results are opposite,
namely, according to9 the periodic potential cannot explain the state with fractional conductance, whereas
in10 it is shown that the states of electron liquid in the periodic potential can lead to FQHE. In10 in
particular it was shown that in the case of less than half-filling of HBs a stable structure with a period
a = 1

ν
q (multiple of the magnetic sublattice cell q) is realized. The results of calculations are obtained for

q >> 1. Experimentally realized magnetic fields correspond to magnetic sublattices with q >> 1, so it
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makes sense to consider solution of the problem in semiclassical limit. Note, that topological invariants
of the electron liquid not depend on the magnitudes of magnetic field and hopping integrals, i.e. it is
universal in this sense.

The aim of the paper is to study FQHE in the framework of the Hofstadter model, in which the
interaction of fermions is reduced to a periodic potential. In this case it is better to operate not with
composite fermions but with composite HBs, which are realized as a result of this interaction. Composite
HB is split into 1

ν
-subbands by the Dirac points forming its fine structure. The topological order of the

subbands is determined by fractional Chern numbers, which correspond to the FQHE states.

The model
We will analyze a two-dimensional fermion liquid in a transverse magnetic field H, the Hamiltonian of
which is determined in the framework of the Hofstadter Hamiltonian H = H0 +Hint

1, 2

H0 = ∑
m,n

[tx(m,n)a†
m,nam+1,n + ty(m,n)a†

m,nam,n+1 +H.c.]−µ ∑
j

nj, (1)

Hint =U ∑
j

njnj+1, (2)

where a†
j and aj are the operators of spinless fermions at a site j = {m,n}, nj = a†

j aj is the density operators,
µ is the chemical potential, The Hamiltonian (1) describes the nearest-neighbor hoppings of fermions
with different hopping integrals along the x-direction tx(j) = 1 and the y-direction ty(j) = exp[2iπmφ ]. A
magnetic flux through a unit cell φ = H

Φ0
is determined in the quantum flux unit Φ0 = h/e, a homogeneous

magnetic field H is defined by the vector potential Ay = Hx which is directed along y-direction. Hint term
is determined by an interaction strength U .

We consider the two-dimensional electron system in the stripe geometry with open boundary conditions
for the boundaries along the y-direction with linear size L. The magnetic field enters the Hamiltonian (1)
in the form of the magnetic flux φ through the unit cell.

Solution of the problem
On the one hand, the Chern number characterizes the topological order of an isolated band, on the other
hand, it determines the Hall conductance, as a result of which it relates the Hall conductance to the
topology of the electronic liquid. The Chern number clearly does not depend on the bare values of the
hopping integrals and magnitude of magnetic field. It is sufficient to calculate the Hall conductance at
certain values of the parameters of the model Hamiltonian (1),(2), which do not change the topology of
the object, without investigating the whole region of their ranging. In the case of experimentally realizable
magnetic fields, that corresponds to q ∼ 103 −104, it makes sense to consider the quantum Hall effect
in the semiclassical limit q >> 1 for an arbitrary rational magnetic flux φ = p

q (here p and q are prime
integers). Without loss of generality of the problem, we consider the case p = 1.

Taking into account nk = 1
V ∑ j exp(ik j)nj an interaction term (2) can be conveniently redefined in

the momentum representation Hint =VU ∑k cosknkn−k, the volume is equal to V = L×L. In the mean
field approach, we rewrite this term as follows Hint =V ∑k cosk(λkn-k +λ-knk) with an effective field
λK =U < nk >, which is determined by a free parameter-wave vector k, the value of which corresponds
to energy minimum. In the semiclassical limit a magnetic scale is large q >> 1, which corresponds to
small values k ∼ 10−3 −10−4, the density of fermions ρ for the states near the low energy edge of the
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spectrum is small ∼ 1
q . In the small k-limit the expression for λk is simplified λk = λ + 0(k2), where

λ = 2Uρ and

He f f = λ ∑
j

cos(k j)nj. (3)

In the semiclassical limit the spectrum of quasi-particle excitations is defined by quasi-flat bands
(HBs) separated by gaps (the widths of these bands are much smaller than the gaps between them). The
wave function has different behavior in the y- and x-directions. In the y-direction, the lattice decouples
into chains in which the fermions are free (m is a coordinate of the y−chain in the x-direction), while
in the x-direction the wave function has a localized behavior with overlap between chains. The chains
are connected by single-particle tunneling with tunneling constant tx. The states with different m are
bounded via a magnetic flux and form a magnetic cell. The effective hopping integrals in the x− and y−
directions δ tx,δ ty, which determine the width of the quasi-flat HB, differ in magnitude by several orders
of magnitude (δ tx << δ ty), so the band width is determined by the integral of fermionic hopping along
the y-direction. In this case the repulsion along the x-direction dominates, since the effective interaction
between fermions is defined with respect to the hopping integrals.

We study the 2D system in a hollow cylindrical geometry with open boundary conditions (a cylinder
axis along the x-direction and the boundaries along the y-direction). The interaction (2) does not break
the time reversal symmetry of the model Hamiltonian (1)-(2), the effective Hamiltonian (3) should
also not break these symmetries for rational fluxes. These conditions are fulfilled in the case when
k = (k,0), where k and q form the states with rational periods. Making the Ansatz for the wave function
ψ(m,n) = exp(ikyn)gm (which determines the state with the energy ε) we obtain the Harper equation for
the Hamiltonian (1), (3)

εgm =−gm+1 −gm−1 −2cos(ky +2πmφ)gm +λ cos(km)gm. (4)

This equation is studied in10.

Composite Hofstadter bands
First of all, let’s first define what is meant by the term ”composite HBs”. For this purpose, let us perform
numerical calculations of the dispersion of HBs in the semiclassical limit for ν = 1

2 filling. The formation
of a 2q−cell leads to the splitting of HBs into two subbands, and their structure does not depend on q (see
Figs.1 a),b)). These subbands intersect at the Dirac point at k = ky = π . The dispersion of the spectrum
is sharply anisotropic along the direction of the wave vector, so that at q = 20 it is of order 4 ·10−2 in
the ky- direction and 5 ·10−10 in the k-direction (see Fig.1c)), at q = 100 we have the following values
5 ·10−3 and 4 ·10−14 (see Fig.1d)). In the semiclassical limit, the gap in the excitation spectrum closes
and dispersion is transformed into a Dirac point, the spectrum itself is symmetric with respect to the
half-filling, which once again confirms the results obtained in6. The calculations of the spectrum of the
lowest HB are given in Figs 1, we do not give similar calculations of other bands corresponding to the
edge of the spectrum of the model Hamiltonian because their behavior is analogous. At 3q-cell HBs split
into three subbands (see Figs 2). In the semiclassical limit the spectrum of quasi-particle excitations is
characterized by two Dirac points at k = π , ky = 0,π , where each Dirac point is similar to the one at
half-filling (see Figs 1 c),d)). In semiclassical limit the lowest and highest subbands in HBs are symmetric
about their centrum, at same time the energies of these subbands are shiften on π in ky-direction.

It follows from the numerical results that in the semiclassical limit in a periodic potential with a cell
equal to a = 1

ν
q, the Dirac points split each HB into 1

ν
-subbands, from which composite HB is formed.
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Figure 1. (Color online)
1
2 -filling (a = 2q): the spectrum of the first (lowest energy) HB as a function of wave vector (k,ky),
calculated at U = 1

2 , ρ = 1
a : a) q = 20, b) q = 100; the quasi-gap in the spectrum of the first HB as a

function wave vector k calculated at ky = π c) q = 20, d) q = 100.

a) b)

Figure 2. (Color online)
1
3 -filling (a = 3q): the spectrum of two lower energy HBs as a function of wave vector (k,ky), calculated
at U = 1

2 , q = 100, ρ = 1
a for the first HB a) and ρ = 4

a for the second HB b).
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a) b)

Figure 3. (Color online)
1
2 -filling (a = 2q) ρ = 3

a a), 1
3 -filling (a = 3q) ρ = 4

a b)
a fine structure of the spectrum of two lower energy HBs as a function of wave vector ky, calculated at
q = 100, U = 1 for sample in the form of a hollow cylinder with open boundary conditions along
y-direction, red dashed lines denote the Fermi energies, the dotted lines mark the dispersion of chiral edge
modes.

Hall conductance of composite Hofstadter bands
The topological order of γ-isolated band is denoted by the Chern number Cγ

Cγ =
1

2π

∫
BZ

Bγ(k)d2k, (5)

where the Berry curvature Bγ(k) = ∇k ×Aγ(k) is integrated over the Brillouin zone (BZ). The Berry
potential

Aγ(k) =−i < uγ(k)|∇k|uγ(k)>

is defined in terms of the Bloch functions uγ(k). The Chern number for the set of isolated bands is equal
to CΓ = ∑γ∈ΓCγ .

At the point of topological phase transition the Chern number changes, the gap in the spectrum of
quasi-particle excitations closes at the Dirac point(s). In the simplest case the Chern number changes by
a jump from unity to zero at the phase transition point11, which corresponds to the Dirac spectrum, the
Chern number is equal to half12. Thus, in the case of a symmetric two-band excitation spectrum in which
the subbands are separated by a Dirac point, the Chern number of each subband is equal to C

2 , where C is
the Chern number of an isolated band. Since 1

2-filling corresponds to a symmetric spectrum of HBs in
which two subbands are separated by a Dirac point, there is ν = 1

2 FQHE6.
As an example, in Fig 3a) we present calculations of the fermion spectrum of the two lowest energy

HBs for 1
2 -filling at q = 100, U = 1

2 and ρ = 3
a (a = 2q). The value of gap between HBs equal to 10−1, the

subband width 3 ·10−2 and quasi-gap between subbands 10−14 (for comparison). The periodic potential
does not break the time reversal symmetry, so its addition to the Hofstadter model does not change the
Chern numbers, which characterize the topological state of the fermion liquid. As expected, the number
of chiral modes localized at the sample boundaries does not depend on the periodic potential, the Chern
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numbers of each HB are equal to unity (see Fig 3 a)). The spectrum of each HB is symmetric about the
band centrum, 1

2 -filling each bands corresponds to Hall conductance with the Chern number 1
2 . Taking into

account γ isolated full-filled HBs, we obtain CΓ = ∑γ∈ΓCγ +
1
2 . Thus the numerical calculations obtained

within the Hamiltonian (1),(3) agree with6.
Let us calculate the spectrum of two lower energy HBs for 1

3 -filling of the second band, the calculations
are illustrated in Fig 3b). As we show below, the behavior of fermion liquid for an arbitrary fractional
filling is no different from 1

2 discussed above. Since in the semiclassical limit the spectra of HBs are
symmetric about their center (in this case, the spectra of the outermost subbands are shifted by π relative
to each other). The Chern number of each subband is equal to 1

3 , as in the case of 1
2 -filling, since the Chern

number for a separate HB is equal to one.
Thus at ν-filling of γ +1 HB, the Chern number, which determines the Hall conductance is equal to

CΓ = ∑γ∈ΓCγ +νCγ+1.

Conclusions
In the semiclassical limit (which satisfies experimental conditions) within the Hofstadter model the Chern
number was calculated for fractional filling of HB. Numerical calculations have shown that the periodic
potential can lead to a steady state with lattice formation with the same period10. In this case a fine
structure of the spectrum of HBs is formed with the formation of subbands, the subbands are separated by
the Dirac points (it is very important). In other words, composite HBs are formed. The Chern number of
a fully filled γ-composite HB does not differ from that of HB Cγ . Due to the symmetry of the spectrum
of quasi-particle excitations of composite HBs relative to their center, at ν-filling of γ-composite HB its
Chern number is equal to νCγ . The results are in agreement with calculations for 1

2 -filling6, in which the
composite fermion paradigm is taken as a basis. To the question of Dam Son ”Is a composite fermion
a Dirac particle?”6 can be answered in the affirmative in the sense that HB, which defines the spectrum
of quasiparticle excitations, is a composite one. Thus, within the framework of a unified approach, the
nature of both integer and fractional quantum Hall effects, which are directly realized on the experiment, is
studied. This allows us to consistently describe the experiment rather than to consider separate sequences
of the Hall plateaus13.
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