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Superclimbing modes are hallmark degrees of freedom of transverse quantum fluids describing
wide superfluid one-dimensional interfaces and/or edges with negligible Peierls barrier. We re-
port the first direct numeric evidence of quantum shape fluctuations—caused by superclimbing
modes—in simple lattice models, as well as at the free edge of an incomplete solid monolayer of 4He
adsorbed on graphite. Our data unambiguously reveals the defining feature of the superclimbing
modes—canonical conjugation of the edge displacement field to the field of superfluid phase—and
its unexpected implication, i.e., that superfluid stiffness can be inferred from density snapshots.

I. INTRODUCTION

The term “superclimb” [1] emerged in the context of
interpreting the effect of anomalous isochoric compress-
ibility (a.k.a. syringe effect) accompanying superflow
through solid observed in an imperfect 4He crystal [2].
More specifically, it refers to the climbing motion of an
edge dislocation supported by superfluidity of its core
(distinguishing it from the conventional climb of edge
dislocation supported by the pipe diffusion of vacancies
along the core). From the very outset it was clear [1]
that if the Peierls barrier can be neglected the super-
climb would have a profound impact on what otherwise
would be standard superfluid phonon modes of a Lut-
tinger liquid (LL). The Hamiltonian H[h, ϕ] =

∫
dxH of

the effective long-wave field theory for such superclimb-
ing edge can be written as

H =
χ

2
(∂xh)

2 +
ns
2
(∂xϕ)

2 , (1)

in terms of the canonically conjugate fields—the “verti-
cal” coordinate (height) of the edge h(x), and the su-
perfluid phase, ϕ(x), with x the position along the edge.
Here ns is the superfluid stiffness and χ is the edge ten-
sion. The dependence of the Hamiltonian density H on
∂xh rather than h reflects translation invariance of H
with respect to the vertical motion of the edge as a whole,
h(x) → h(x) + h0. To be more precise, we are dealing
with discrete translation symmetry, but if the edge width,
d, is significantly larger than the lattice distance, a, i.e.
the edge is microscopically rough, then the Peierls bar-
rier can be neglected on exponentially large (larger than
system size) length-scales.

By integrating out one of the canonically conjugate
fields we obtain two equivalent actions each suitable for
straightforward computation of the remaining field prop-
erties. Starting from

S[h, ϕ] =

∫
(ih ∂τϕ + H) dxdτ , (2)

we obtain Sh[h] and Sϕ[ϕ] from Gaussian integrals

e−Sh[h] =

∫
e−S[h,ϕ] Dϕ , e−Sϕ[ϕ] =

∫
e−S[h,ϕ] Dh . (3)

In the Fourier representation, we have

Sh =
1

2

∑
ω,k

[
n−1
s

ω2

k2
+ χk2

]
|hω,k|2 , (4)

Sϕ =
1

2

∑
ω,k

[
χ−1 ω

2

k2
+ nsk

2

]
|ϕω,k|2 . (5)

In what follows, we assume that h(x) is counted from
the equilibrium height value, i.e. h(ω, k = 0) = 0. The
superclimbing modes described by the action (4) have
quadratic dispersion [1]

ωk = Dk2 , D =
√
nsχ , (6)

involving two quite different types of quasi-one-
dimensional motion along and perpendicular to the edge:
oscillations of the mass current and the geometric shape,
respectively.
Recently, counter-intuitive properties and a much

broader physics context for considering the model (1)
have been revealed, which lead to the formulation of
the transverse quantum fluid (TQF) paradigm [3–6]. It
has been realized that infinite compressibility is the key
ingredient defining the TQFs along with their unusual
properties: (i) the quadratic dispersion relation for nor-
mal modes (or even the absence thereof), (ii) off-diagonal
long-range order (ODLRO) at T = 0, and (iii) expo-
nential dependence of the phase slip probability on the
inverse flow velocity. From conceptual point of view,
the TQF state is a striking demonstration of conditional
character of many dogmas associated with superfluidity,
including the existence of low-energy elementary excita-
tions, in general, and the ones obeying the Landau crite-
rion of homogeneous superflow stability, in particular.
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Depending on the nature of “transverse” particle reser-
voirs that guarantee the infinite compressibility of the
quasi-1D superfluid, TQFs are divided into two sub-
groups: (i) the “ordinary” TQFs and (ii) incoherent ones
(iTQF) [5]. In the TQF case, the reservoirs are insu-
lating (gaped) states, qualitatively similar to the half-
plane of atoms associated with an edge dislocation in an
insulating solid. Infinite effective 1D compressibility in
such reservoirs is exclusively due to the translation invari-
ant superclimbing motion of the edge. The gaped reser-
voir modes play no role in the long-wave physics, which,
therefore, is universally described by the 1D Hamiltonian
(1). In the iTQF case, the edge is not climbing and at
least one of the reservoirs must be gapless because its
soft modes are required for infinite 1D compressibility
and, thus, play crucial part in the long-wave dynamics
of the superfluid phase. In some cases, the resulting dy-
namics has a diffusive character and is described by an
effective action Sϕ rather than an effective Hamiltonian
(see Ref. [5] and references therein). While being quite
different in terms of the linearized long-wave dynamics,
TQF and iTQF both feature ODLRO and share similar
instanton physics [5].

The fingerprints of TQFs are universal off-diagonal
space–(imaginary-)time correlations. Despite radical dif-
ference between the TQF and iTQF cases in terms of the
underlying physics, their phase correlations are described
by self-similar functions derived from the corresponding
effective theories [4, 5] and revealed in recent ab initio
simulations of simple iTQF models in Ref. [6]. In Mat-
subara representation, many aspects of the long-range
and mesoscopic off-diagonal order in TQF and iTQF look
similar. In particular, for both cases Sϕ[ϕ] is charac-
terized by infinite compressibility, which in terms of the
Fourier components of the field ϕ is defined as [5]

κ = lim
ω→0

1

ω2
lim
kx→0

δ2Sϕ[ϕω,kx
, ϕ∗ω,kx

]

δϕω,kx
δϕ∗ω,kx

= ∞ . (7)

This property is both necessary and sufficient to ensure
ODLRO and power-law binding of instantons irrespective
of other system details such as gaped or gapless bulk
excitations, spectrum of elementary excitation, or their
very existence. At κ ̸= ∞, the low-energy physics of the
system would corresponds to that of LL.

While emphasizing deep similarities between TQF and
iTQF, we should also keep in mind important qualitative
differences. The key feature distinguishing TQF from
iTQF is the presence of well-defined and most specific el-
ementary excitations—the superclimbing modes, which
are the main focus of this work. We present numeri-
cal evidence supported by rigorous quantitative analysis
that edge/interface shape fluctuations in two distinct 2D
lattice models are indeed originating from superclimbing
TQF modes. The first model describes phase separated
one-component hard-core bosons (microscopically equiv-
alent to an easy-axis XY ferromagnet) while the sec-
ond one deals with the two-component soft-core bosons
at integer total filling in the regime of phase separation

when each component is in the Mott-insultor (MI) phase.
In both models, the bulk phases are insulating. In the
hard-core system, the interface is a standard superfluid,
while in the two-component case, the phase boundary is
a supercounterfluid [7]. Despite these microscopic differ-
ences, the emerging low-energy physics turns out to be
the same and that of the TQF.
In an attempt to identify an actual physical system

in which this behavior could be observed experimentally,
we carried out microscopic numerical simulations of an
incomplete 4He monolayer adsorbed on graphite. Our
results indicate that this system is a promising candidate
for a TQF at the free edge.

II. CORRELATORS

The simplest correlation functions revealing universal
TQF fluctuations are [4]

K̃(x, τ) =
1

2
⟨ [h(x, τ)− h(0, 0) ]2 ⟩ (8)

and

F̃ (x, τ) =
1

2
⟨ [ϕ(x, τ)− ϕ(0, 0) ]2 ⟩ . (9)

Phase correlations control the asymptotic behavior of the
correlator of the superfluid order-parameter field ψ ∝ eiϕ:

⟨ψ(x, τ)ψ∗(0, 0) ⟩ ∝
〈
ei[ϕ(x,τ)−ϕ(0,0)]

〉
= e−F̃ (x,τ) .

In the low/zero-temperature regime, and at large |x|
and/or |τ |, correlators (8) and (9) have the same uni-
versal functional form, if one makes a substitution

ns ↔ χ (10)

after subtracting non-universal additive constants K∞
and F∞, see Eqs. (11) and (12) below. This is the
hallmark of TQF implied by the fact that the Hamil-
tonian (1) is symmetric with respect to simultaneously
swapping h(x) with ϕ(x) and χ with ns. Compactness
of the field ϕ(x) is irrelevant for the asymptotic behav-
ior. However, in a large but finite system with periodic
boundary conditions and at a low but finite temperature,
the compactness of the field ϕ(x) requires taking into ac-
count states with nonzero phase winding numbers (see in
Ref. 6). Such a generalization is absolutely straightfor-
ward because fluctuations of the phase winding numbers
are purely classical and statistically independent from all
other fluctuations. In this work, we focus on the height-
height correlations and their precise connection to the
compact phase-phase correlations.
The prominent feature of (8) and (9) is the long-range

order expressed as saturation of both correlators to finite
values in the thermodynamic limit at T = 0:

K∞ ≡ K̃(∞,∞) = ⟨ [h(0, 0) ]2 ⟩ < ∞ , (11)



3

F∞ ≡ F̃ (∞,∞) = ⟨ [ϕ(0, 0) ]2 ⟩ < ∞ . (12)

Physically, Eq. (11) means that the edge is asymptoti-
cally smooth (despite appearing quantum rough on the
edge-width scale), while Eq. (12) is the ORLRO state-
ment implying Bose-Einstein condensation because the
field correlator at infinity ∝ e−F∞ ̸= 0. For a number
of fundamental and circumstantial reasons, the values of
K∞ and F∞ are nonuniversal, and, to a certain extent,
arbitrary. Indeed, the harmonic form of the Hamiltonian
(1) implies a certain system-dependent UV cutoff for the
fields h(x) and ϕ(x) beyond which the physics is neither
harmonic nor universal. Furthermore, the fact that h(x)
and ϕ(x) are collective rather than microscopic variables
implies that these do not have unique definitions at short
distance. These ambiguities are removed by dealing with
relative quantities:

K(x, τ) = K̃(x, τ) − K∞ , (13)

F (x, τ) = F̃ (x, τ) − F∞ . (14)

At large enough |x| and/or |τ |, the behavior of K(x, τ)
and F (x, τ) is universal and fully controlled by the effec-
tive harmonic action (4)–(5).

Since two actions are identical up to the substitution
(10), in what follows we proceed with analysing one of
them; specifically, we consider the phase action Sϕ and
evaluate (14). Despite our ultimate interest in its coun-
terpart (13), we prefer to work with phase fluctuations
thereby emphasizing close qualitative and quantitative
similarities between the two. After mentioning ground-
state thermodynamic limit results reported in Ref. 6 (for
the purpose of self-contained presentation) we derive and
test numerically analytic TQF predictions for finite-size
system at non-zero temperature.

III. GROUND-STATE FLUCTUATIONS

We start by reminding that all results apply to both
K(x, τ) and F (x, τ) because these functions are related
to each other by the transformation (10):

χK(x, τ) = nsF (x, τ) ≡ C(x, τ) = −
∫
k,ω

eikx+iωτ c(ω, k),

(15)

c(ω, k) =
k2

(ω/D)2 + k4
. (16)

Here
∫
k,ω

≡
∫

dωdk
(2π)2 . Parameter D is invariant under

the transformation (10) and thus is the only TQF con-
stant controlling the shape of correlation functions. To
be precise, the integral over k in (15) contains an ultra-
violet cutoff, k0, irrelevant at large enough |x| and/or
|τ | but setting limitations on the applicability of (15)–
(16) when both |x| and/or |τ | are small: |x| ≲ k−1

0 and
|τ | ≲ (Dk0)

−2. For microscopically wide edges k0 ∼ 1/d.

Straightforward integration over ω in (15) results in
a Gaussian integral over k and the final answer for the
ground state in the thermodynamic limit:

C(x, τ) = −
√
De−

x2

4D|τ|

4
√
π|τ |

. (17)

It is very instructive to compare this expression with its
LL counterpart. While the latter is scale-invariant and
isotropic (up to rescaling of the imaginary-time variable)
in the (1 + 1)-dimensional Euclidean spacetime, the for-
mer is not. The prominent feature of Eq. (17) is self-
similarity: Up to a scale-invariant prefactor ∝ |τ |−1/2,
the dependence on x and τ reduces to a function of the
dimensionless argument x2(D|τ |)−1. Similar type of scal-
ing (with different meaning of the parameterD) describes
correlations in the iTQF state [6].
A striking feature distinguishing TQF from iTQF is

the form of the equal-time correlator C(x, 0). It is sup-
posed to be a decaying power-law function of x, and con-
sistent with this observation, in iTQF we have C(x, 0) ∝
1/|x| [6]. In a sharp contrast to that, the TQF case proves
to be special because

C(x, 0) ≡ 0 , x ̸= 0 , (18)

meaning that equal-time universal correlations are sim-
ply absent in the TQF ground state. [It should be noted
that this result does not apply to fast non-universal short-
range decay governed by the UV physics.] This is a re-
markable example of how zero-point fluctuations above
the UV limit can sum up into exact zero; which is im-
portant in the context of distinguishing TQF from both
LL and iTQF. The result (18) points to a certain sub-
tlety when it comes to the problem of revealing univer-
sal quantum mechanics of the superclimbing modes ex-
perimentally because equal-time correlators are the most
natural experimental observables, e.g. for the ultracold-
atomic systems. However, the situation changes signifi-
cantly when non-zero temperature satisfies the condition
Dβ < L2, where L is the edge length.

IV. NON-ZERO TEMPERATURE

Finite temperature is a resource that should be ana-
lyzed with care. On the one hand, superclimbing modes
need to be excited to become visible in the universal sig-
nal C(x, 0). On the other hand, classical harmonic be-
havior settles in at large distances because the dominant
contribution is coming from modes with large occupa-
tion numbers, rendering correlations trivially universal.
In the classical limit, the fields h and ϕ become statisti-
cally independent, so that their thermal fluctuations are
independently controlled by the parameters χ and ns,
respectively. This, in particular, means than all the in-
dividual features of TQF are lost in this limit.

To reveal the universal behavior at finite T it is suffi-
cient to subtract the zero-temperature constant C∞ from
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the finite-temperature correlator C̃(x, τ), i.e. there is no
need to modify relations (14). At low but finite T all
we need is to replace frequency integrals with Matsubara
sums over ωm = 2πmT, m = 0,±1,±2, ...,

C̃(x, τ) =
∑
m

∫ k0 dk

2πβ

[
1−eiωmτ+ikx

]
c(ωm, k) + C∗(k0).

(19)
Here we explicitly cut off the momentum integration
at appropriately low momentum k0 with simultane-
ously introducing cutoff-dependent (and temperature-
independent) constant C∗(k0), which absorbs all non-
universal UV contributions. With this parametrization,

C∞ =

∫
dω

2π

∫ k0 dk

2π
c(ω, k) + C∗(k0) . (20)

This brings us to the following decomposition for C(x, τ)
(in which we safely take the limit k0 → ∞ assuming that
|x| and/or τ are large enough)

C(x, τ) = C0 + Cqu(x, τ) + Ccl(x) , (21)

where

Cqu(x, τ) = −
∑
m̸=0

eiωmτ

∫
dk

2πβ
eikx c(ωm, k) (22)

is the quantum contribution coming from nonzero Mat-
subara frequencies and vanishing at |x| → ∞,

Ccl(x) =

∫
dk

2πβ

(
1− eikx

)
c(0, k) (23)

is the (diverging with |x|) classical contribution coming
from zero Matsubara frequency, and

C0 =

∫
dk

2π

T ∑
m ̸=0

c(ωm, k) −
∫
dω

2π
c(ω, k)

 (24)

is a temperature-dependent universal constant [guaran-
teeing, in particular, that C(x, τ) approaches the expres-
sion (17) in the limit |τ | ≪ β].
Performing straightforward integration over k in

Eqs. (22)–(24), we find

C0 = −c0

√
D

πβ
, (25)

where

c0 = lim
m∗→∞

[√
m∗ + 1/2 −

m∗∑
m=1

1

2
√
m

]
≈ 0.730 , (26)

Ccl(x) =
|x|
2β

, (27)

and (using a compact notation s = 2τ/β ∈ [0, 2])

Cqu(x, τ)=

√
D

2πβ

∞∑
m=1

e−
√

mx
x∗ cos(πms) sin(

√
mx
x∗

− π
4 )√

m
,

(28)

x∗ =

√
Dβ

π
. (29)

We need to take the limit in (26) because after integrating
over momenta the remaining frequency integral and sum
in Eq. (24) are separately UV divergent; the term 1/2
under the square root dramatically enhances convergence
to the limit.
Somewhat counter-intuitively, it is still possible to ex-

tract parameter D from fluctuations at distances |x| ≫
x∗, where the x-dependent quantum contribution (28) is
exponentially suppressed and the classical contribution
(27) increases linearly with |x|: the sub-leading constant
term C0 is controlled by D.

V. NON-ZERO TEMPERATURE AND FINITE
SYSTEM SIZE

The only difference between the T ̸= 0 treatment of
correlations in infinite and finite systems (with periodic
boundary conditions) is coming from replacing momen-
tum integrals with discrete sums over kn = 2πn/L, n =
0,±1,±2, ..., in Eqs. (19)–(24). In this case, the uni-
versal part of the correlator, C(x, τ), approaches the
ground-sate thermodynamic value (17), in the limit |x| ≪
L, |τ | ≪ β; it also reproduces the finite-temperature
thermodynamic value (21) at |x| ≪ L. Using compact
notation r = 2x/L ∈ [0, 2] we have

C(x, τ) = C0 −
∞∑

m,n = −∞
(|m| + |n| ̸= 0)

eiπnr+iπms cmn , (30)

with

cmn =
c(ωm, kn)

βL
≡ π2D2β

L3

n2

(πm)2 + (νn2)2
, (31)

ν =
2π2Dβ

L2
, (32)

and

C0 =

∞∑
m,n = −∞

(|m| + |n| ̸= 0)

cmn −
∫
ω,k

c(ω, k). (33)

In the last expression, both the integral and the sum have
ultraviolet momentum cutoffs, which mutually cancel to
the leading order.
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After summation over m using standard relation

∞∑
m=−∞

cos(πms)

(πm)2 + a2
=

cosh[(1− s)a]

a sinh a

we get

C(x, τ) =
L

2β
λ̄(r, s) , (34)

λ̄(r, s) = λ0 + λ1(r, s) , (35)

λ0 =
ν

π2

∞∑
n=1

[
coth(νn2)− 1

]
, (36)

λ1(r, s) = − ν

π2

∞∑
n=1

cos(πnr)
cosh(|1− s|νn2)

sinh(νn2)
. (37)

Special care should be taken of the important equal-time
case s = 0 [or s = 2, which is the same by the sym-
metry of the expression (37)]. At s = 0, the series (37)
does not converge. It is easy to see, however, that the
problem is all about the δ-functional contribution devel-
oping at r = 0, 2 as s → 0. While remaining meaningful
up to certain small non-zero values of s, the diverging
contribution ultimately becomes non-physical and thus
needs to be removed from the answer for λ1(r, s) once its
width gets smaller than the characteristic microscopic
cutoff scale. From the theory of Fourier series we have

1

2
δ(r) +

1

2
δ(2− r) =

1

2
+

∞∑
n=1

cos(πnr) .

This observation provides us with counter-terms for tak-
ing the limit τ → 0 of the series (37) at 0 < x < 2. We
thus get

λ̄(r, 0) =
ν

π2

{
1

2
+

∞∑
n=1

[1−cos(πnr)]
[
coth(νn2)−1

]}
.

(38)

VI. HARD-CORE BOSONS:
MOTT-INSULATOR–VACUUM INTERFACE

The Hamiltonian of the hard-core system is arguably
the most simple of all possible TQF realizations. It
consists of the nearest-neighbor hopping and interaction
terms on the square lattice:

Hhc = −t
∑
⟨i,j⟩

b†jbi + V
∑
⟨i,j⟩

njni , (39)

with the constraint on the occupation numbers, ni ≤ 1
(here bi is the bosonic annihilation operator on site i). In

MI

Vacuum

2V t 

t

0 



x

y

FIG. 1. Phase separated state of the hard-core bosonic Hamil-
tonian with nearest-neighbor attraction V < −2t at half fill-
ing. It can be also viewed as the phase separated state of the
easy-axis XY ferromagnet at zero total magnetisation.

what follows, we use the hopping amplitude, t, and the
lattice constant as units of energy and length, respec-
tively. The model can be re-written identically as the
spin-1/2 ferromagnetic XY Z model with Jx = Jy = −2t
and Jz = −V . At V = −2t particles gain as much en-
ergy, −4t, from attractive interactions in the MI state
with ni = 1 as they get from delocalization in an empty
lattice, or vacuum state, with ni → 0. By decreasing V
below −2t, we ensure a MI-vacuum phase-separated state
with the width of the interface diverging as V → −2t. To
create such an interface oriented along the x-direction it
is sufficient to pin the structure by adding small poten-
tials ±δµ at the lattice edges in the y-direction. This
setup is illustrated in Fig. 1 for half-filled lattice. What
makes this model very efficient numerically, is absence
of quantum fluctuations in the bulk, i.e. the “active”
simulation volume is limited to the close vicinity of the
domain wall.

The model (39) has been simulated using quantum
Monte Carlo Worm Algorithm (WA) [8]. The superfluid
stiffness in the x-direction was deduced from statistics of
winding number, Wx, fluctuations as ns = TLx⟨W 2

x ⟩ [9].
The instantaneous shape h(x, τ) of the edge at a given
imaginary time τ is defined by summing up the number
of particles nx,y(τ) along y for all grid points x, τ as

h(x, τ) =

Ly−1∑
y=0

nx,y(τ)− 1/2 . (40)

The equilibrium edge position at half filling is located at
h0 = (Ly − 1)/2. Since WA works in the Fock basis, the
corresponding Monte Carlo estimator for h(x, τ) is based
on straightforward processing of the many-body {ni(τ)}
path-integral configuration.

The density profiles across the edge (and its width)
were obtained using density snapshots, nx,y(τ), and time-

averaged density distributions n̄x,y = T
∫ β

0
nx,y(τ)dτ .
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FIG. 2. Instantaneous and time-averaged edge profiles for
model (39) at V/t = −2.2 and βt = 32 for a system with
Ly = 32 and Lx = 64. The pinning potential strength was
δµ/t = 2. Dashed line is to guide the eye. Solid line is the fit
described in the text.

The profile coordinate was counted from the instanta-
neous edge position

p(x, y, τ) = nx,y−h(x,τ)+h0
(τ) . (41)

The same protocol was applied to the time-averaged den-
sity distribution

p̄(x, y) = n̄x,y−h̄(x)+h0
, (42)

with h̄(x) = T
∫ β

0
h(x, τ)dτ . After statistical averag-

ing both profiles—instantaneous and time-averaged—
depend on y coordinate only due to system’s translation
invariance in x and τ , and both functions are centered at
the equilibrium position h0. In Fig. 2, we present these
microscopic characteristics computed for V/t = −2.2.
As expected, the time-averaged profile is broader by ac-
counting for dynamic fluctuations. By fitting the ⟨p̄⟩ pro-
file to p̄(y) = [1 + tanh(2(y − h0)/d)]/2 we find that for
V/t = −2.2 the edge has a width of d = 3.15. As we
will see below, this value is already large enough to guar-
antee that the Peierls potential for our system sizes is
negligible and all low-energy/long-wavelength properties
are governed by the TQF action.

Simulation data for 2K̃(x, τ) = ⟨[h(x, τ)−h(0, 0)]2⟩ are
presented in Fig. 3 along with their fit using the equation

K̃(x, τ) = K∞ +
L

2βχ
λ̄(r, t), (43)

see Eqs. (34)–(37). Out of three fitting parameters (K∞,
χ, D), only D is controlling the shapes of all curves in

Fig. 3, while K∞ is responsible for their vertical shift
and χ for the overall scale. The quality of asymptotic
analytical predictions for domain wall shape fluctuations
demonstrated by Fig. 3 is remarkable: despite using only
large x and τ points for the fit (the selection criterion
was x2 + (τt)2 ≥ 16) we observe near perfect agreement
between the theory and simulations all the way to x = 1
at τ = 0 and τt = 0.5 at x = 0. This “fingerprint” type
of agreement leaves no doubt that we are dealing with
the TQF system.

The ultimate confirmation comes from agreement be-
tween the simulated superfluid stiffness, ns = 1.492(2),
and its value deduced from the ns = D2/χ = 1.49(4)
relation. We are not aware of any other case where equi-
librium system shape fluctuations would allow one to di-
rectly measure ns. Finally, in Fig. 4 we show a fit-free
comparison between the simulation data and TQF pre-
dictions (keeping the same parameter set for K∞, κ, and
D) when going to a much lower temperature βt = 128.

K̃(x, 1.92)
K̃(x, 0)
K̃(0, τ)
K̃(2, τ)
K̃(3, τ)

2K̃
Lx = 64

βt = 32

x, τt

Fit : D = 1.02, χ = 0.699, K∞ = 0.72

FIG. 3. Edge fluctuations in space and imaginary time for
model (39) at V/t = −2.2 and βt = 32 for a system with Ly =
32 and Lx = 64. The data were fitted to the TQF function
K̃(x, τ) (solid lines) and the fit resulted in D = 1.02(2), χ =
0.699(3), and K∞ = 0.72(1).
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Lx = 64

K̃(x, 0)
K̃(x, 1.92)
K̃(0, τ)
K̃(2, τ)
K̃(3, τ)

βt = 128
2K̃

x, τt

Fit free β ⇒ 4β

FIG. 4. Edge fluctuations in space and imaginary time for
model (39) at V/t = −2.2 and βt = 128 for a system with
Ly = 32 and Lx = 64. The data were fitted to the TQF
function K̃(x, τ) (solid lines) using parameters deduced from
βt = 32 simulations, see Fig. 3.

As the nearest-neighbor attraction is increased, the do-
main wall becomes narrower and, ultimately, the Peierls
potential becomes relevant on length scales comparable
or smaller than the system size. This signals the expected
crossover between the TQF and LL long-wave fluctua-
tions [5]. Figure 5 presents simulation data for K̃ at
V/t = −2.5 when the domain wall width is about one
lattice spacing, d ≈ 1.3. These graphs cannot possibly be
described by the TQF action because shape fluctuations
in space are decreasing with distance, contrary to the
TQF predictions (see Figs. 3 and 4), and quickly saturate
to a constant value. The domain wall of length Lx = 64 is
still displaying superfluid properties [with ns = 0.59(1)]
but the LL parameter is already close to the critical value
of 2 for the standard superfluid-insulator BKT transition
at integer filling factor. Any further increase of the at-
tractive interaction results in an insulating wall. Similar
behavior has been observed in model simulations of the
superclimbing dislocation [10–12].

VII. TWO-COMPONENT BOSONS

TQF physics is also expected to occur in the 2D lat-
tice occupied by two species of repulsive bosons (labeled
by index α = 1, 2) at the total integer filling and in the
regime of the phase separation between the components
[5]. If the bulk of each spatially separated component
is in the MI state, there is a regime when the bound-
ary between the two species supports supercurrents with
counter-propagating flows of the components along the
boundary, i.e. it is an edge in the supercounterfluid state
[7]. An illustration of the system under discussion is
shown in Fig. 6.

2K̃

x, τt

Lx = 64

βt = 32
K̃(x, 0)
K̃(x, 1.92)
K̃(0, τ)
K̃(2, τ)
K̃(3, τ)

FIG. 5. Edge fluctuations in space and imaginary time for
model (39) at V/t = −2.5 and βt = 32 for a system with
Ly = 32 and Lx = 64. Dashed lines are guides to the eye.

MI

MI

t

2 1 0   

1 2 0   
CU U

U

V U x

y

FIG. 6. Two-component bosons (red and blue circles) at
unity filling in the regime of phase separation. Counter-
propagating motion by exchanging particles’ places of differ-
ent types along the boundary results in the the boundary
motion in the transverse direction.

The corresponding microscopic Hamiltonian is given
by

H = −t
∑

α=1,2;⟨i,j⟩

b†α,ibα,j

+
∑
i

[
U

2
(n21,i + n22,i) + V n1,in2,i

]
, (44)

where bα,i are bosonic annihilation operators, and nα,i =

b†α,ibα,i. [We consider the symmetric case when all pa-

rameters for different types of bosons are the same]. The
onsite interaction constants U > 0, V > 0 are chosen
in such a way that U exceeds the critical value Uc for
MI phase in the single-component system, and V > U
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ensures phase-separation when the two components are
mixed. (If V < U and U > Uc, the miscible state is
in the counter-superfluid phase at low temperature [7].)
The width of the supercounterfluid boundary between
the two insulators is controlled by the proximity of V
to U (at large enough V the counter-transport ceases
to exist). To establish a boundary oriented along the
x-direction, it suffices to stabilize the structure by intro-
ducing potentials ±δµ1 = ∓δµ2 at the lattice edges in the
y-direction for these two species. The hopping across pe-
riodic boundary conditions (PBC) along the y-direction
is turned off to ensure that the second boundary is sharp.
If the other phase interface is thick enough, the Peielrs
barrier restricting its transverse motion can be neglected
and we obtain an edge in the TQF regime.

FIG. 7. Time-averaged edge profiles of two species (red and
blue) for model (44) at U/t = 18, V/t = 19, δµ1 = δµ2 = t
and βt = 16 for a system with Ly = 24 and Lx = 16. Solid
lines are the fit described in the text.

The instantaneous shape, h(x, τ), of the edge at a given
imaginary time τ , is defined by summing up the number
of particles of the first species, n1,x,y(τ), along y for all
grid points x, τ , but only if they reside on the side pre-
dominantly occupied by the second species; to be precise,
α = 1 bosons are in “majority” at Ly/2 + 1 to Ly, while
α = 2 bosons are in “majority” at 1 to Ly/2, see Fig. 6.

h(x, τ) =

Ly/2∑
y=1

n1,x,y(τ)−
Ly∑

Ly/2+1

n2,x,y(τ) . (45)

Since there is no difference between these two species,
the equilibrium edge position at half filling is located at
h0 = (Ly + 1)/2. The density profiles across the edge
(and its width) were obtained using time-averaged den-

sity distributions n̄α,x,y = T
∫ β

0
nα,x,y(τ)dτ . The rest of

the numerical protocol for obtaining profiles is identical

to what was described above for the hard-core case. In
Fig. 7, we present this microscopic characteristic com-
puted for U/t = 18.0, V/t = 19.0 and δµ1 = δµ2 = t. By
fitting both profiles to p̄(y) = [1±tanh(2(y−h0)/d)]/2 we
find that for this parameter set the edge has a width of
d = 4.05(7). We expect—and the simulations confirm—
that for this width the Peierls potential for our system
size and temperature is negligible.

FIG. 8. Edge fluctuations in space and imaginary time for
model (44) at U/t = 18, V/t = 19, δµ1 = δµ2 = t and
βt = 16 for a system with Ly = 24 and Lx = 16.

In Fig. 8, we compare TQF predictions with simulation
data for model (44). Since insulating bulk states are close
to the quantum critical point, Monte Carlo simulations
with two worms are far more demanding than for the
single-components hard-core system, explaining why we
limit ourselves here with system size Ly = 24, Lx = 16.
The validity of asymptotic analytical predictions for do-
main wall shape fluctuations, as demonstrated by Fig. 8,
is evident. Despite only using large x and τ points for the
fit (with the selection criterion being x2 + (τt)2 ≥ 16),
good agreement between the theoretical framework and
simulation outcomes extends to smaller values of x and
τt ∼ 3; deviations at |x|, τ t < 2 are expected because
the edge width is large. The TQF interpretation gains
final support from the agreement between the simulated
supercounterfluid stiffness, ns = 0.51(4), and its value
deduced from the relation ns = D2/χ = 0.48(3).

VIII. INCOMPLETE HELIUM-4 LAYER ON
GRAPHITE

In order to identify a real-material system in which
some of the above predictions could be tested experimen-
tally, we have carried out microscopic numerical simula-
tions at low temperature of an incomplete monolayer of
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4He adsorbed on a graphite substrate, and studied the
behavior of the system near the free edge, where a TQF
may exist.

Thin films of 4He on graphite have been extensively
investigated experimentally, mainly because the strong
attractiveness of this substrate, and its pronounced cor-
rugation, lead to the stabilization of crystalline phases
of 4He not observed in the bulk. (On weakly attrac-
tive substrates 4He does not crystallize at low tempera-
ture; rather, “wetting,” i.e., continuous growth of a su-
perfluid film as a function of chemical potential is ob-
served [13, 14].) It is known both experimentally and
theoretically [15, 16] that the equilibrium phase of a 4He
monolayer on graphite is a commensurate crystal, reg-
istered with the underlying carbon substrate. Such a
phase, which corresponds to a coverage (effective 2D den-
sity) θ0 = 0.0636 Å−2, is commonly referred to as C1/3,

as 4He atoms occupy one of the three equivalent sub-
lattices of preferred adsorption sites. As the coverage is
increased, a transition to an incommensurate crystalline
layer takes place, while for coverages below θ0 coexistence
of solid regions of coverage θ0 and low-density vapor is
predicted [17]. This is therefore a well-suited physical
system in which the physical picture described above can
be investigated experimentally.

FIG. 9. Representative density map (particle world lines) for
an incomplete 4He monolayer adsorbed on graphite, a tem-
perature T = 0.25 K. Only the region in the vicinity of the
free edge is shown. The total number of 4He is 144. The
crystalline phase has 2D density θ0 (see text).

We studied by computer simulation an incomplete
commensurate crystalline 4He monolayer on graphite in
thermodynamic equilibrium at low temperature, by mak-
ing use of the same microscopic model and computational
methodology utilized in Ref. [16], with the only difference
that we carried out canonical (i.e., constant density) sim-
ulations. Figure 9 shows a representative snapshot (2D
density obtained from particle world lines) of the region

near the free edge of an incomplete 4He monolayer ad-
sorbed on graphite (the system comprises altogether 144
4He atoms), at a temperature T=0.25 K. The position of
the edge (bottom row of atoms), classically, is at y = 0.

FIG. 10. Computed (unnormalized) probability for a 4He
atom to be part of a cycle of exchange, as a function of its
position y in the direction perpendicular to a free edge. In this
case, the crystalline sample occupies (classically) the y > 0
region.

The most important observation is that, while the un-
derlying crystalline monolayer (of 2D density θ0) remains
stable away from the free edge, atoms near the edge are
significantly delocalized and can “climb” on top of their
nearest neighbor, i.e., the interface is roughened by quan-
tum fluctuations. This leads to a local enhancement of
quantum-mechanical exchanges of 4He atoms, which are
essentially non-existent away from the edge (or, in a com-
plete monolayer).
This is quantitatively illustrated in Fig. 10, which dis-

plays the computed probability for a 4He atom to be part
of a cycle of exchange, as a function of its position along
the direction perpendicular to the free edge. The crys-
talline layer occupies the y > 0 region, but 4He atoms in
the vicinity of the edge are allowed to wander away from
it (i.e., into the y < 0 region), creating instantaneous
vacancies, which in turn can be filled by other atoms, ul-
timately leading to cycles of exchanges. These exchanges
are inhibited in the crystal by the short-distance hard-
core repulsion of the helium pairwise interaction. We see
that, at the temperature of this particular simulation, ex-
changes extend up to approximately four layers into the
crystal.
All of this constitutes a strong indication that at suf-

ficiently low temperature a TQF may exist in this sys-
tem, near the free edge. In a simulation like the one
described here, superfluidity is connected to the winding
around the periodic boundary conditions (in the direc-
tion along the edge) of the many-particle world lines [9].
Obviously, simulations carried out on systems of suffi-
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ciently large size are required in order to establish this
conclusion robustly, unambiguously detecting any signal
coming from the region near the edge (as opposed to spu-
rious effects arising from the finite width of the sample,
in the direction perpendicular to the edge). Such a com-
prehensive study is presently in progress. It is also worth
investigating the same system with reduced particle mass
and/or substrate potential to increase quantum delocal-
ization effects, not to mention that incomplete layers of
3He particles is yet another potentially interesting setup.

IX. CONCLUSION

Motivated by recent theoretical progress, we performed
numerically exact simulations of characteristic micro-
scopic models featuring transverse quantum fluid (TQF)
states in the edges/interfaces. The key feature distin-
guishing TQF from an incoherent transverse quantum
fluid (iTQF) are the climbing degrees of freedom canon-
ically conjugate to the field of superfluid phase and
responsible for the formation of superclimbing normal
modes described by the Hamiltonian (1). Our goal was
to check theoretical prediction that quantum fluctuations
of the superclimbing modes control long-wave correla-
tions of the edge/interface height. A delicate aspect of
this prediction is that it is supposed to work under the
condition of microscopic quantum roughness, while, in
accordance with the theory itself, Peierls barrier eventu-
ally becomes relevant in the asymptotic long-wave/low-
temperature limit and transforms TQF into a LL with
exponentially large LL parameter. Yet another subtle
aspect is related to the predicted properties of the equal-
time correlator of the universal quantum fluctuations of
the edge/interface height—the most natural direct ob-
servable in both experiment and simulations. The cor-
relator is a featureless constant in the zero-temperature
limit, meaning that one has to use a low but finite tem-
perature as a resource for resolving the universal quan-

tum character of the long-wave equal-time correlations
of the height. The same is also true for correlations of
the superfluid phase field, since the two fields are de-
scribed by the same [up to exchanging parameters χ and
ns places] effective action.
In light of these subtleties, the first question our simu-

lations were supposed to clarify was about the existence
of a reasonably large region in the space of model pa-
rameters, including the range of finite temperatures and
system sizes, where the desired universal physics would
be clearly observed. Our numeric results, demonstrating
impressive agreement with analytic predictions—even at
unexpectedly short distances on the order of few lattice
spacings—clearly demonstrate that such a region does
exist.
Quantitatively, the observed fingerprint universal fea-

tures clearly distinguish the TQF state not only from
the standard LL but also from the cousin iTQF state.
At the qualitative level, we numerically demonstrated
that quantum fluctuations of the edge/interface height
are controlled by—and thus allow one to extract—the
superfluid stiffness. This is the remarkable manifesta-
tion of the crucial circumstance behind the superclimb-
ing modes: the fields of the height and superfluid phase
are canonically conjugate to each other.
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