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Measurable structure factors of dense dispersions containing polydisperse,

optically inhomogeneous particles
Joel Diaz Maier, Katharina Gaus, and Joachim Wagnera)

Institut für Chemie, Universität Rostock, 18051 Rostock, Germany

We exemplarily investigate how optical properties of single scatterers in interacting multi-particle systems
influence measurable structure factors. Both particles with linear gradients of their scattering length density
and core-shell structures evoke characteristic deviations between the weighted sum 〈S(Q)〉 of partial structure
factors in a multicomponent system and experimentally accessible, measurable structure factors SM(Q). While
〈S(Q)〉 contains only structural information of self-organising systems, SM(Q) additionally is influenced by
optical properties of their constituents resulting in features such as changing amplitudes, additional peaks in
the low wavevector region or splitting of higher-order maxima which are not related to structural reasons.
Hence, a careful data analysis regarding size-distribution and optical properties of single scatters is mandatory
to avoid a misinterpretation of measurable structure factors.

I. INTRODUCTION

Colloidal dispersions attract wide interest in condensed
matter physics as highly tunable model systems, mim-
icking atoms and molecules on the much larger, meso-
scopic scale with typical length scales between 10 nm
to 1000nm. Studying these systems enabled major ad-
vances in the comprehension of the characteristics of
simple fluids and solids and in return stimulated the pro-
gress of significant theoretical developments towards the
understanding of complex systems and materials (Lu &
Weitz, 2013).
Scattering experiments serve as essential methods

for structural and dynamical investigations in colloidal
many-particle systems (Li et al., 2016). Small-angle scat-
tering (SANS with neutrons or SAXS with X-rays as a
probe, respectively) enables the characterisation of col-
loidal suspensions across the entire range of relevant scat-
tering vectors Q (Glatter, 2018). Employing visible light,
which is also a natural choice since its wavelength is of
the same order of magnitude as the typical size of a col-
loidal particle, the same type of analysis is in principle
also possible in a simpler laboratory setup. This is how-
ever connected with the cost of a limited resolution and,
as a consequence thereof, the restriction to comparatively
large structures (Bohren & Huffmann, 1983).
In non-interacting systems, the positions and orient-

ations of the colloidal particles are completely uncorrel-
ated. Thus, the scattered intensity results solely from
the superposition of the scattering functions of the single
constituents. Contrary, when the particles do inter-
act, higher-level structures emerge from inherent self-
organisation due to interparticle forces, such as electro-
static and steric interactions or van der Waals attrac-
tions. The intensity is then influenced both by the optical
properties of the scatterers themselves and the spatial
correlations between them. For idealised, monodisperse
systems, where all particles are assumed to be identical,
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the two contributions can be rigorously separated into the
form factor P (Q), containing the single-particle proper-
ties and the structure factor S(Q), which encodes the
structural correlations, employing the well-known factor-
isation I(Q) ∝ P (Q)S(Q) (Hansen et al., 1991).

Realistic dispersions typically exhibit a distribution of
characteristics, prominently through particle size. In
polydisperse, interacting systems, the characterisation
via scattering experiments is in general significantly more
complicated, as the factorisation of the intensity into
form factor and structure factor can no longer be em-
ployed in a straightforward way (Salgi & Rajagopalan,
1993). Additionally, the observed diffraction patterns
become increasingly featureless for broader size distri-
butions, further obstructing the interpretation of exper-
imental intensities. The analysis of multi-component
systems thus requires a thorough understanding of the
underlying distributions of scattering properties and
particle interactions. Insights can be gained through
contrast-variation techniques (Ballauff, 2001): Select-
ively altering the contrast between specific particle types
or between particles and the surrounding medium allows
for the isolation and probing of distinct species, aiding
the validation of theoretical models.

From an experimental standpoint, it is useful to ana-
lyse the so-called measurable structure factor SM(Q),
which is defined in such a way that the factorisation prop-
erty I(Q) ∝ P (Q)SM(Q) is recovered also in the polydis-
perse case (Hansen et al., 1991). SM(Q) is comparatively
easy to access experimentally from the ratio between the
intensities of an interacting suspension and a highly di-
luted, non-interacting one. It is as such widely used as
a measure for structural correlations also in polydisperse
systems, where especially the height of the principal peak
is well-established as an order parameter (Banchio et al.,
1998). Under specific circumstances, this type of ana-
lysis can however turn into a serious pitfall: SM(Q) is
fundamentally also affected by optical properties of the
particles and not only by their interactions.

For certain types of dispersions, some simplifying as-
sumptions can be employed. In dilute suspensions of
strongly interacting charged particles as an example, the
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interparticle distances typically are about an order of
magnitude larger than particle sizes because of the large
electrostatic repulsion (Hayter & Penfold, 1981). In such
a case, the correlation between the particle positions and
the scattering amplitudes can be neglected. This neglect
of correlations leads to the so-called ‘decoupling approx-
imation,’ whereunder SM(Q) can be decomposed into a
structure factor that genuinely represents the averaged
structural correlations and weighting factors solely de-
pendent on the scattering amplitudes (Pusey et al., 1982;
Kotlarchyk & Chen, 1983). This type of analysis was also
recently used in a SANS-study of moderately concen-
trated poly(N -isopropylacrylamide) microgels (Zhou et
al., 2023), where again the importance of an accurate
treatment of polydispersity was stressed.

In highly concentrated suspensions, where particles
are in close contact, such an approximation is no longer
valid, as in these systems the correlation lengths of the
particles’ centre of masses are comparable to the correla-
tion lengths inside the particles themselves. At such high
particle volume fractions, excluded volume effects are the
predominant contribution to the total interaction poten-
tial. The fundamental interactions in dense colloidal dis-
persions consisting of spherical particles can to a good
approximation be theoretically described with the hard
sphere model (Kirkwood & Boggs, 1942; Widom, 1967).
The radial distribution functions of an n-component mix-
ture of hard spheres can be calculated within the Percus-
Yevick closure of the Ornstein-Zernike equation (Per-
cus & Yevick, 1958) using Baxter’s technique (Baxter,
1970) giving access to the corresponding partial struc-
ture factors (Vrij, 1978, 1979; Blum & Stell, 1979, 1980).
Building on Vrij’s work (Vrij 1979; van Beurten & Vrij,
1981), Griffith et al. (1987) presented an analytical scat-
tering function of a polydisperse hard-sphere fluid with
a Schulz-Flory distribution (Flory, 1936; Schulz, 1939)
of particle diameters. Despite very helpful, these ex-
pressions are not widely used because of their perceived
complexity. Nayeri et al. (2009) later extended this ap-
proach to core-shell structured hard spheres and used
their expressions to describe experimental intensities of
a hard-sphere-like microemulsion system. Only recently,
Botet et al. (2020) provided expressions for SM(Q) in a
simple, accessible form and for a number of commonly
encountered size distributions. Their analytical expres-
sions are valid for hard, optically homogeneous spheres.

This resurge of interest is an incentive to systematic-
ally examine how different form factor models affect the
characteristics of measurable structure factors. The pur-
pose of this contribution is to raise awareness on how the
particles’ optical properties influence the shape of SM(Q)
while the underlying interactions remain unchanged and
under which circumstances such a structure factor can
still serve as a valid order parameter. We show typ-
ical examples of shapes which can be realistically en-
countered during contrast variation experiments, so even
without explicitly employing theoretical models from this
contribution or from the existing literature, a qualitat-

ive assessment of experimental findings is possible. We
exemplarily analyse two simplified models for optically
inhomogeneous particles: Those with a linear gradient
of the scattering contrast and spheres with a core-shell
structure. Nevertheless, the approach is readily adapt-
able to any model and provides a toolbox for the model-
ling of measurable structure factors for hard-sphere sus-
pensions with arbitrary form factors.

II. SCATTERING OF HARD-SPHERE MIXTURES

We consider a mixture of spherical particles, where
each particle can be categorised into one of n species.
The composition of the mixture is specified by the num-
ber fractions xα = Nα/N , where N is the total number
of particles and Nα is the number of particles belong-
ing to species α. We further restrict ourselves to elastic,
single scattering events where the Born approximation is
applicable. In such a case, the mean intensity

I(Q) ∝
∑

α,β

(xαxβ)
1/2fα(Q)fβ(Q)Sαβ(Q) (1)

is proportional to the weighted sum of the single-particle
scattering amplitudes fα(Q) and the partial structure
factors Sαβ(Q) (Salgi & Rajagopalan, 1993). Herein, the
scattering amplitude

fα(Q) = 4π

∞
∫

0

ρα(r)r
2 sin(Qr)

Qr
dr (2)

is the Fourier-Bessel transform of the scattering con-
trast ρα(r) whereas the partial structure factors Sαβ(Q)
are obtained from the solution of the multicomponent
Ornstein-Zernike equation. Expressions for Sαβ(Q) of
the hard-sphere fluid within the Percus-Yevick closure
are given by Vrij (1979), but for convenience of the
reader, the solution is re-articulated in Appendix A,
presented in a manner that is accessible and easily ap-
plicable.
For non-interacting particles, the partial structure

factors are simply Sαβ(Q) = δαβ , where δαβ denotes
the Kronecker symbol. Eq. (1) then reduces to the size-
average of the squared scattering amplitudes,

I(Q) ∝ 〈f2(Q)〉 =
∑

α

xαf
2
α(Q). (3)

The average form factor

P (Q) =
〈f2(Q)〉

〈f2(0)〉
. (4)

is familiarly obtained from the normalisation to forward
scattering. As the measurable structure factor should
satisfy the relation I(Q) ∝ P (Q)SM(Q), the expression

SM(Q) =
[

〈f2(Q)〉
]

−1 ∑

α,β

(xαxβ)
1/2fα(Q)fβ(Q)Sαβ(Q)

(5)
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results from the combination of Eq. (1) and (3). The
averaged structure factor

〈S(Q)〉 =
∑

α,β

(xαxβ)
1/2Sαβ(Q) (6)

provides information about the total spatial correlations
between all present particles, regardless of their species
labels. It represents a true thermodynamic average inde-
pendent of any optical properties. Any deviation between
SM(Q) and 〈S(Q)〉 is thus a measure for the perturbation
of 〈S(Q)〉 caused by the scattering amplitudes.
We now want to explore the influence of the scattering

amplitudes on the shape of SM(Q). The aim is to gain a
qualitative understanding of generic patterns, so to keep
the analysis tractable, only a single representative size
distribution is considered. For this purpose, the Schulz-
Flory distribution with probability density

c(R) =
1

Γ(Z + 1)

(

Z + 1

〈R〉

)Z+1

RZ exp

(

−
Z + 1

〈R〉
R

)

(7)

is chosen. Here, R is the particle radius with mean 〈R〉
and Γ(x) represents the Gamma function. The polydis-
persity p of the system is specified by the shape para-
meter Z via p2 = (〈R2〉 − 〈R〉2)/〈R〉2 = 1/(Z + 1).
The idea is now to discretise the distribution to a rep-
resentative n-component mixture. For the Schulz-Flory
distribution, an efficient way to achieve this is by ex-
ploiting the generalised Gauss-Laguerre quadrature rule
specifically used to calculate integrals with a weighting
function like Eq. (7). (D’Aguanno, 1992, 1993; Olver et
al., 2010) The nodes and weights generated by such a
procedure are equivalent to the particle radii and num-
ber fractions of a discrete mixture which shares the first
2n − 1 moments 〈Rn〉 with the original continuous dis-
tribution. For each calculated scattering function, we
carefully checked that the number of nodes necessary for
convergence was reached. The numerical scheme was
further tested against the analytical SM(Q) for homo-
geneous spheres provided by Botet et al. (2020), where
excellent agreement was found.

III. MEASURABLE STRUCTURE FACTORS OF

POLYDISPERSE SYSTEMS

A. General remarks

Fig. 1 provides a general overview of the influence of
the polydispersity on P (Q), SM(Q) and 〈S(Q)〉, exem-
plarily discussed for a dense suspension of homogeneous
spheres. Concerning the form factors, only those corres-
ponding to polydispersities less than 10% appear struc-
tured. Familiarly, the characteristic minima in P (Q) be-
come increasingly smeared out for broader size distribu-
tions.

Polydispersity also causes a change of the initial slope
of P (Q) in the Guinier region. Reflecting the distribution
of particle sizes when calculating the Taylor expansion of
P (Q), the slope is now given by −Q2〈R2

G〉/3, where the
familiar radius of gyrationRG is substituted by an appar-
ent radius of gyration 〈R2

G〉
1/2 (Glatter, 2018; Tomchuk

et al., 2014). For homogeneous spheres,

〈R2
G〉 =

3

5

〈R8〉

〈R6〉
(8)

is obtained, which reduces to the well-known result of
R2

G = (3/5)R2 for monodisperse systems.
Similar to P (Q), both the measurable structure factor

SM(Q) and the average structure factor 〈S(Q)〉 become
increasingly featureless at high polydispersities, distinct-
ively noticeable as the principal peak’s amplitude de-
creases and the secondary oscillations gradually disap-
pear. Shifting the focus to the direct comparison between
the two structure factors SM(Q) and 〈S(Q)〉, multiple
observations are apparent: While the amplitude of the
principal peak is similar for both functions, differences
appear at larger wavevectors, where secondary peaks
in SM(Q) appear at roughly the locations of the form-
factor-minima, similarly noticed by Ginoza and Yasutomi
(1999). With increasing polydispersity, these maxima
evolve into broad shoulders which get smeared out even-
tually. As also noted by Ginoza and Yasutomi (1999),
sharp secondary maxima are hard to observe experi-
mentally because a very narrow size distribution in com-
bination with a homogenous distribution of the scat-
tering length density (SLD) inside the particles is re-
quired. Shoulder-like features in experimentally determ-
ined structure factors are on the other hand well doc-
umented, see as an example (Di Cola et al., 2009). In
the low-Q region, a striking observation is the significant
increase of 〈S(0)〉 at elevated polydispersities in compar-
ison to SM(Q). According to the fluctuation-dissipation
theorem from statistical mechanics, the isothermal com-
pressibility κT is for monodisperse systems connected to
the zero-wavevector limit of S(Q) via S(0) = ρkBTκT,
where ρ denotes the number density and kBT the thermal
energy. The extension of this concept to mixtures must
however be treated with caution, because for multi-
component systems, the connection between structure
and thermodynamics is not simply given by the size av-
erage 〈S(0)〉, but according to the Kirkwood-Buff the-
ory of solutions instead via the relation (ρkBTκT)

−1 =
∑

xαxβS
−1
αβ (0), where S−1

αβ (Q) is the αβ-element of the

inverse structure factor matrix (Hansen & McDonald,
2013).

B. Linear contrast gradient

As a prototypical example for particles with inhomo-
geneous scattering strength, particles with a linear gradi-
ent of the SLD are investigated. This is particularly
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Figure 1. Comparative analysis of scattering functions for an ensemble of optically homogeneous hard spheres with varying
degrees of polydispersity. Shown are: a) Probability density function illustrating the Schulz-Flory distributed-radius R. b)
Form factor P (Q). c) Average structure factor 〈S(Q)〉. d) Measurable structure factor SM(Q), all evaluated at a total volume
fraction of ϕ = 0.5, spanning polydispersities from 5% to 25%. 〈R〉 denotes the mean radius of the spheres.

relevant for swellable particles into which the suspen-
sion medium can diffuse. This can occur with micro-
gel particles (Karg et al., 2019), as an example. Under
certain reaction conditions, an inhomogeneous degree of
cross-linking arises, which also leads to inhomogeneous
scattering properties. Particles with intrinsic material
gradients are also plausible, for example by continuously
changing the monomer composition in a feed process dur-
ing synthesis. Then, in principle, a suspension in which
the contrast within a particle changes its sign can also be
realised. The form of a linear gradient is assumed for the
sake of simplicity in order to investigate the phenomen-
ology of continuous contrasts as an example.

The scattering contrast in dependence of the distance r
from the centre can for a single particle be parametrised
as

ρ(r) =

{

ρ0 + (ρR − ρ0)
r

R
, if 0 ≤ r ≤ R,

0, otherwise,
(9)

where R is the particle radius, ρ0 is the contrast in the
centre and ρR is the contrast at the interface to the
surrounding medium. Accordingly, the resulting single-

particle scattering amplitude is given by

f(Q) = 4π

[

ρ0
sin(QR)−QR cos(QR)

Q3
+

ρR − ρ0
R

×
2QR sin(QR)− [(QR)2 − 2] cos(QR)− 2

Q4

]

, (10)

which reduces to

f(0) = πR3
(ρ0
3

+ ρR

)

(11)

in the forward scattering limit. A closer look at Eq. (11)
reveals that the forward scattering contribution disap-
pears if the condition ρR/ρ0 = −1/3 is fulfilled. Es-
pecially when the maximum accessible scattering vec-
tor is limited, as in the case of light scattering, forward
scattering contributes significantly to the total scatter-
ing cross-section. If the forward scattering is zero, a
sample appears almost optically transparent. Refract-
ive index matching can be achieved for particles with a
homogeneous scattering capacity if the SLD of the sus-
pension medium is adapted to that of the particles. If
the scattering capacity is inhomogeneous, index match-
ing can only minimise the total scattering cross-section,
which is often achieved by making the forward scattering
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Figure 2. Illustrative breakdown of the classification of the scattering functions of spheres with a linear contrast gradient into
the three regimes discussed in the text, where each column corresponds to a unique region. In the top row, the reduced, squared
radius of gyration R2

G/R
2 in dependence on the contrast ratio ρR/ρ0 is depicted. The location of the respective region labelled

I), II) or III) is indicated by the darker shaded area. The middle and bottom rows display selected form factors P (Q) and
measurable structure factors SM(Q) that exemplify each region’s variability in shapes observed during contrast variation. 〈R〉
indicates the mean radius of the particles. Note the shared axes of P (Q) and SM(Q) between rows and columns.

almost zero. In the following, the condition when the
forward scattering power is minimal is referred to as the
index-match-point.
To gain a systematic understanding of the behaviour

of the measurable structure factor SM(Q) in dependence
of the contrast ratio ρR/ρ0, it will prove advantageous to
investigate the Guinier region of the form factor. Using
the contrast profile from Eq. (9), for a single particle with
radius R,

R2
G =

2

5

ρ0 + 5ρR
ρ0 + 3ρR

R2 (12)

is obtained for the effective squared radius of gyration,
which depends besides the particle’s radius also on the
two contrast parameters ρ0 and ρR. For polydisperse
suspensions, a similar expression emerges:

〈R2
G〉 =

2

5

ρ0 + 5ρR
ρ0 + 3ρR

〈R8〉

〈R6〉
. (13)

As such, the contrast-dependence of the prefactor is not
altered by polydispersity and the qualitative discussion
can instead be based on monodisperse suspensions. We
will thus refer to the prefactor simply as R2

G/R
2, even in

the polydisperse case.

Inspecting Eq. (12), several characteristic ratios ρR/ρ0
are apparent: R2

G becomes zero for ρR/ρ0 = −1/5, ex-
hibits a pole at ρR/ρ0 = −1/3, incident with the index-
match-point and has an asymptotic limit of R2

G/R
2 =

2/3 for ρR/ρ0 → ±∞. It will be shown that the beha-
viour of the scattering functions can be divided into three
qualitatively distinct classes and that form factors and
measurable structure factors within each domain share
unique features. The classification based on the beha-
viour of R2

G, together with form factors P (Q) and meas-
urable structure factors SM(Q) representative for each
region is visualised in Fig. 2. The regions are character-
ised as follows:

(I) For ρR/ρ0 > −1/5, R2
G is positive and the form

factors have the familiar decaying shape known from
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Figure 3. a) Influence of the contrast ratio ρR/ρ0 on the principal peak value SM(Qmax) for spheres with a linear contrast
gradient, for polydispersities in a range between 5% and 25% at a total volume fraction of ϕ = 0.5. The horizontal dashed
lines mark for comparison the height of the principal peak of the average structure factor 〈S(Qmax)〉. The distinction between
the different introduced contrast regimes from Fig. 2 is indicated by the vertical dashed lines. b) Relative deviation between
SM(Qmax) and 〈S(Qmax)〉 for an enlarged region.

homogeneous spheres. With decreasing contrast ratio,
the decay becomes increasingly gradual until R2

G = 0
is reached for ρR/ρ0 = −1/5. Around the principal
peak of SM(Q) and for lower wavevectors, changes in the
contrast have a negligible influence on the measurable
structure factors. Contrarily, at wavevectors beyond the
principal peak’s location, SM(Q) is greatly affected by
contrast variation. Depending on the specific location
of the first form factor minimum, which shifts to larger
wavevectors with lower contrast ratios, the shoulder-like
artefact also visible in Fig. 1 moves through SM(Q) to-
wards larger wavevectors and therein most prominently
affects the shape of the first local minimum and the fol-
lowing secondary maximum.

(II) For the contrast ratios −1/3 < ρR/ρ0 < −1/5,
R2

G becomes negative, which implies an imaginary ra-
dius of gyration RG leading to a positive initial slope of
P (Q). Form factors in this region therefore initially in-
crease from P (0) = 1 until a global maximum is reached
at QR ≈ 4, after which they decay. The height of the
maximum increases as the contrast ratio moves towards
the index-match-point at ρR/ρ0 = −1/3. Curiously,
the measurable structure factors in this domain are al-
most indistinguishable, even though the variation of R2

G

is much more pronounced in comparison to region (I),
where the span of R2

G is small, but SM(Q) shows a much
more diverse behaviour. Also, the distorting artefacts
from region (I) disappear almost completely.

(III) Contrast ratios ρR/ρ0 < −1/3 again result in pos-
itive R2

G and negative initial slopes. Close to the index-
match-point, where R2

G is comparatively large, P (Q) ex-
hibits an intriguing shape: At small wavevectors, an
unusually sharp minimum occurs even in very polydis-
perse suspensions. Beyond the minimum, P (Q) rises to a
global maximum reminiscent of region (II). For contrasts
in this range, an additional local maximum in SM(Q)
appears at low wavevectors, caused by the presence of
the first form factor minimum. Such secondary max-

ima are often discussed in the literature as an indication
of self-organisation on length scales beyond the distance
of nearest neighbours, i.e., the formation of correlated
clusters (Sciortino et al. 2004; Liu et al., 2005). The
secondary maxima occurring here are exclusively caused
by the scattering amplitudes and cannot be attributed
to structural properties of the sample. This constitutes
a valuable example for a situation where a careless in-
spection of experimentally determined SM(Q) can in the
worst case lead to unjustified assumptions about the
structure of a system. Moving further away from the
index-match-point, the first form factor minimum moves
towards larger wavevectors and gets shallower. At the
same time, the following maximum declines and as such,
the shape of P (Q) morphs back into the familiar decay-
ing shape from region (I). Simultaneously, the location of
the secondary maximum in SM(Q) drifts towards higher
wavevectors. Fig. 2 also displays a situation where the
form factor minimum exactly coincides with the location
where the principal peak of SM(Q) would normally oc-
cur. In this case the main peak is drastically diminished,
which is again not an indicator for a less pronounced
short-range order in this particular instance, but can cer-
tainly be mistaken as such.

The principal peak height of a structure factor is an
often employed structural order parameter. Scheffold
and Mason (2009) noticed in their investigation of highly
concentrated nanoemulsions that the peak amplitude in
SM(Q) is deeply affected by polydispersity. As such,
also the evolution of this height during contrast vari-
ation is of special interest. Fig. 3 compares the peak
height of the average structure factor 〈S(Qmax)〉 to the
value of SM(Qmax) at the same wavevector in depend-
ence on the contrast ratio ρR/ρ0 and for different de-
grees of polydispersity. Overall, it is clearly shown that
SM(Qmax) is deeply affected by changes in the contrast.
There exist two contrast ratios where SM(Qmax) and
〈S(Qmax)〉 coincide. One of them is to a good approx-
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imation given by ρR/ρ0 ≈ −1/5, the location where the
apparent radius of gyration disappears and P (Q) decays
very slowly. The other location is at a positive contrast
ratio and drifts towards higher ρR/ρ0 with increasing
polydispersity. Bounded by those two ratios is a regime
where SM(Qmax) exceeds 〈S(Qmax)〉, while for all other
contrast ratios, the peak height from SM(Qmax) underes-
timates the actual height. For comparatively small poly-
dispersities around 5%, the deviation from 〈S(Qmax)〉 is
small and only amounts to a few percent, as long as the
contrast ratio is larger than ρR/ρ0 ≈ −1/5. For lower ra-
tios, SM(Qmax) is strongly diminished, most pronounced
at contrast ratios of ρR/ρ0 ≈ −1. For higher polydis-
persities, the deviations become even more severe, as
best visualised in Fig. 3 b), where the relative deviation
between 〈S(Qmax)〉 and SM(Qmax) is depicted. Even
in the immediate vicinity of 〈S(Qmax)〉 = SM(Qmax),
already deviations in the order of 5−10% appear for the
highest shown polydispersities. This shows that — no
matter the actual degree of polydispersity — SM(Qmax)
can only serve as a reliable order parameter for very spe-
cific contrast ratios.

C. Core-shell particles

Core-shell models are commonly employed to describe
particles consisting of different layers of material, for ex-
ample nanoparticles with grafted stabiliser shells (Hal-
let et al., 2020; Diaz Maier & Wagner, 2024) or micellar
structures (Szymusiak, 2017). As core and shell naturally
differ in their material properties, in principle both pos-
itive and negative contrast differences with respect to the
surrounding medium can occur, similar to particles with
continuous material gradients. For Schulz-Flory distrib-
uted core-shell particles, analytical expressions for the
form factor P (Q) exist in the case of a polydisperse core
and a shell of constant thickness (Bartlett & Ottewill,
1992), a polydisperse total diameter and a constant core-
to-shell ratio (Wagner, 2004) and for both core radius
and shell thickness independently distributed (Wagner,
2012). Moreover, an analytical solution for the problem
of correlated hard-sphere core-shell systems was provided
by Nayeri et al. (2009).

The scattering amplitude of a single core-shell particle

f(Q) = 4π

[

(ρc − ρs)
sin(QRc)−QRc cos(QRc)

Q3

+ ρs
sin(QR)−QR cos(QR)

Q3

]

(14)

is the sum of the amplitudes of a sphere and a spherical
shell, weighted by their respective contrasts, ρc and ρs.
Rc and R are, respectively, the core radius and the total
radius of the particle and we specifically consider the case
where the core radius and the total radius are connected
by a constant, species-independent size ratio δ = Rc/R.
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Figure 4. Influence of the contrast ratio ρs/ρc on the reduced
squared radius of gyration R2

G/R
2 for core-shell particles with

different ratios δ between core radius and total radius, along
with three representative sets of form factors, each sharing
the same radius of gyration for different size ratios.

Similar to the gradient model, the forward scattering
contribution

f(0) =
4

3
πR3

[

δ3(ρc − ρs) + ρs
]

(15)

disappears for specific contrast combinations ρs/ρc =
δ3/(δ3 − 1), where the ratio of contrasts now addition-
ally depends on the size ratio δ. For the effective radius
of gyration of a polydisperse system, an expression with
similar structure to Eq. (13) emerges:

〈R2
G〉 =

3

5

δ5ρc + (1− δ5)ρs
δ3ρc + (1− δ3)ρs

〈R8〉

〈R6〉
. (16)

That again, a prefactor containing the contrasts can be
decoupled from the size average is a peculiarity of this
model with constant size ratio and a key reason why this
assumption was made for this investigation.
In Fig. 4, the contrast-dependence of R2

G/R
2 is visu-

alised for different size ratios δ. As in the case of
spheres with a linear gradient of the SLD, this results
in hyperbola-like curves, where the location of the pole
is now influenced by δ: An increasing ratio of core dia-
meter to total diameter shifts the location of the pole to
more negative contrast ratios ρs/ρc. The contrast ratio
where R2

G = 0 is in comparison only slightly altered by
δ. This leads to a larger range of contrast ratios with
negative R2

G as the shell thickness decreases.
This shows that core-shell particles exhibit qualitat-

ively comparable optical characteristics to particles with
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a linear density gradient. As such, the form factors P (Q)
of core-shell systems can likewise be categorised into
three classes based on their behaviour at low wavevectors.
Exemplary form factors for each class are also visualised
in Fig. 4.

Because of these similarities, we focus the remainder
of the discussion on aspects that are unique to core-shell
particles, i.e., how measurable structure factors are in-
fluenced by different core-to-shell ratios. For this pur-
pose, exemplarily, structure factors corresponding to two
important edge-cases, particles with a small core and
particles with a thin shell, are compared in Fig. 5 for
different degrees of polydispersity and chosen contrast
ratios ρs/ρc. Core-shell models with thin shells are of-
ten encountered when characterising particles stabilised
by a grafted polymer layer, which are prototypical col-
loidal model particles displaying hard-sphere behaviour
(Royall et al., 2013). The case of hard spheres with a
strongly scattering, small core, and a weakly scatter-
ing, comparatively large shell is equally of interest: Un-
der these conditions, essentially the behaviour of highly
charged, strongly repelling particles whose interparticle
distance is several times larger than their diameter, is
artificially mimicked. For these systems, the measurable
structure factor SM(Q) should in theory to a good ap-
proximation coincide with the average structure factor
〈S(Q)〉. To reasonably compare models with different
size ratios δ, two specific contrast ratios ρs/ρc are depic-
ted, the ratio ρs/ρc = δ3/(δ3 − 1) at the index matching
point, where forward scattering is minimised, and the ra-
tio ρs/ρc = δ5/(δ5−1), where 〈R2

G〉 = 0 and P (Q) shows
the weakest decay. In the case of δ ≪ 1, both conditions
basically lead to the same result: The shell is virtually
hidden with ρs ≈ 0.

As can be observed in Fig. 5, for moderate polydis-
persities of 5 - 10 %, the small core-to-total ratio δ = 0.1
indeed yields measurable structure factors SM(Q) which
are indistinguishable from 〈S(Q)〉 for both depicted con-
trast ratios. For particles with thin shells (δ = 0.9),
SM(Q) and 〈S(Q)〉 also agree well in the vicinity of the
principal peak. However, differences arise around the sec-
ondary maxima, where the peak amplitudes in SM(Q) are
diminished as a cause of the interference of the scattering
amplitudes. With increasing polydispersity, this devi-
ation becomes more pronounced. Still, even for particles
which are seemingly quite close to homogeneous spheres,
artefacts in SM(Q) can be significantly reduced by careful
contrast variation. Looking at highly polydisperse sys-
tems, it is evident that even for rather small cores with
δ = 0.1, 〈S(Q)〉 cannot be accurately represented by any
SM(Q). Only the height of the principle peak is correctly
estimated. This stresses again the importance of an ac-
curate treatment of very broad size distributions, where
any kind of approximation must be carefully checked for
validity.
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Figure 5. Comparison between measurable structure factor
SM(Q) and size-averaged structure factor 〈S(Q)〉 of core-shell
particles for different core-to-total ratios δ, contrast ratios
ρs/ρc and polydispersities as indicated in the figure. The total
volume fraction for all shown structure factors is ϕ = 0.5.

IV. CONCLUSIONS

Colloidal dispersions generally exhibit a particle size
distribution which needs to be taken into account when
interpreting results from scattering experiments. The
measurable structure factor SM(Q) is an experimental,
comparatively easy accessible measure for the inter-
particle structure in interacting systems. However, it
is important to be aware that in polydisperse systems,
SM(Q) is beyond the structural correlations also decis-
ively affected by the optical properties of the individual
particles. To this end, we systematically investigate the
influence of different form factor models on the shape
of SM(Q) of dense dispersions with hard-sphere inter-
actions. The characterisation of measurable structure
factors is extended to two classes of spherical particles
with inhomogeneous scattering capacity: First, spheres
with a linear SLD-profile as a general model for particles
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with continuous contrast gradients and second, a core-
shell-system as a prototype for particles with layered
structures.

For both models, we find that the structure factors
can be categorised into three distinctive classes of shared
qualitative features, based on the behaviour of the form
factor P (Q) in the Guinier region. SM(Q) can for these
optically inhomogeneous model particles be significantly
influenced by the variation of the scattering contrasts rel-
ative to the surrounding medium. Depending on the spe-
cific contrast combination, shoulder-like features emerge,
maxima are diminished or split and even secondary max-
ima in the low wavevector region, reminiscent of cluster-
peaks, can be observed. These effects are solely due to
the optical properties of the particles and are not caused
by structural changes in the sample. We further show
that the height of the principal peak of SM(Q) can only
be regarded as a representative order parameter in a very
restricted range of contrasts, especially for broad size dis-
tributions.

These observations emphasise the need to properly ad-
dress the distribution of particle size (and possibly also
other characteristics) in the interpretation of static scat-
tering experiments. Actually, for many applications,
deliberately broad size distributions are a desired fea-
ture, an academically relevant example being studies of
deeply supercooled, glass-forming systems (Ninarello et
al., 2017), where crystallisation needs to be suppressed
and where polydispersity effects in any form certainly
cannot be neglected (Zaccarelli et al., 2015; Pihlajamaa
et al., 2023).

Beyond providing an enhanced qualitative understand-
ing of features which can possibly be encountered when
analysing experimentally extracted measurable structure
factors, the numerical scheme presented in this con-
tribution in principle provides a means to model the
scattered intensity of any polydisperse hard-sphere sys-
tem, provided a model for the single-particle scattering
amplitude and an appropriate size distribution is avail-
able. Performing fits with such advanced models dir-
ectly on experimentally observed intensities gives access
to the underlying partial structure factors, enabling a
characterisation and possible further theoretical analysis
on a genuine multi-component foundation, rather than
employing effective one-component approaches. The cur-
rent restriction to hard-sphere interactions is a major in-
centive to promote advancements in the analytical eval-
uation of partial structure factors for other interaction
potentials, since numerically solving integral equations
or employing computer simulations with reasonable stat-
istics is currently only realistically feasible for a restricted
number of components, especially in mixtures with large
size disparities (Allahyarov et al., 2022).
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Appendix A: Percus-Yevick structure factors for hard

sphere mixtures

The analytical solution of the Ornstein-Zernike equa-
tion for the hard-sphere potential within the Percus-
Yevick closure in terms of the partial structure factors
Sαβ(Q), presented by Vrij (1979) and reformulated by
Voigtmann (2003), is restated here. In short, an expres-
sion for the partial direct correlation functions cαβ(r) in
real space can be found using Baxter’s (1970) factorisa-
tion technique. The transformed solution in wavevector-
space cαβ(Q) can subsequently be used to obtain the par-
tial structure factors Sαβ(Q).
Let ϕ be the total volume fraction of all spheres,

dα be the diameter and xα be the number fraction of
the spheres of species α. The total number density

ρ of the system is related to the volume fraction by
ϕ = (π/6)ρ

∑

xαd
3
α. With the abbreviations

dαβ =
dα + dβ

2
, (A1)

dαβ =
dα − dβ

2
, (A2)

ξx =
π

6
ρ
∑

γ

xγd
x
γ , (A3)

the set of coefficients

aα =
1− ξ3 + 3dαξ2

(1− ξ3)
2 (A4)

bα = −
3

2

d2αξ2
(1− ξ3)2

(A5)

ã2 =
∑

γ

ργa
2
γ (A6)

β̂0 =
9ξ22 + 3ξ1(1− ξ3)

(1− ξ3)3
(A7)

Aαβ =
dαβ(1− ξ3) +

3
2dαdβξ2

(1− ξ3)2
(A8)

Bαβ =
1

1− ξ3
− β̂0dαdβ (A9)

Dαβ =
6ξ2 + 12dαβ(ξ1 + 3ξ22/(1− ξ3))

(1− ξ3)2
(A10)

can be determined. Introducing further Sα = sin(Qdα/2)
and Cα = cos(Qdα/2), the terms

µA = Aαβ
SαSβ − CαCβ

Q2
(A11)

µB = Bαβ
CαSβ + CβSα

Q3
(A12)

µD = Dαβ
SαSβ

Q4
(A13)

and

µ̃ =
4π

Q4
ã2

(

CαCβdαdβ
4

+
SαSβ

Q2

−
CαSβdα + CβSαdβ

2Q

)

. (A14)

can be calculated, which finally leads to

cαβ(q) = −4π (µA + µB + µD + µ̃). (A15)

The partial direct correlation functions form the matrix
C with elements Cαβ = (xαxβ)

1/2cαβ , which is related to
the matrix of partial structure factors S by the Ornstein-
Zernike relation

S = [1− ρC]−1 . (A16)

The partial structure factors here are defined within the
convention lim

Q→∞

Sαβ(Q) = δαβ , where δαβ is the Kro-

necker delta.


