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Gibbs-preserving operations have been studied as one of the standard free processes in quantum
thermodynamics. Although they admit a simple mathematical structure, their operational signifi-
cance has been unclear due to the potential hidden cost to implement them using an operatioanlly
motivated class of operations, such as thermal operations. Here, we show that this hidden cost can
be infinite—we present a family of Gibbs-preserving operations that cannot be implemented by ther-
mal operations aided by any finite amount of quantum coherence. Our result implies that there are
uncountably many Gibbs-preserving operations that require unbounded thermodynamic resources
to implement, raising a question about employing Gibbs-preserving operations as available thermo-
dynamics processes. This finding is a consequence of the general lower bounds we provide for the
coherence cost of approximately implementing a certain class of Gibbs-preserving operations with a
desired accuracy. We find that our lower bound is almost tight, identifying a quantity—related to
the energy change caused by the channel to implement—as a fundamental quantifier characterizing
the coherence cost for the approximate implementation of Gibbs-preserving operations.

Introduction.— A central question in
thermodynamics—and quantum extension thereof—
is to formalize feasible state transformations under
available thermodynamic operations. Recent studies
have uncovered that this can effectively be studied by
a resource-theoretic approach, which admits a rigorous
analytical platform. There, one considers a class of
operations that are “freely accessible” in thermodynamic
settings and studies operational consequences, e.g.,
work extraction, under such operations. Therefore, the
outcome of the analysis can naturally depend on the
choice of the accessible operations, and it is crucial to
recognize and appreciate the justification and potential
drawback of those operations.

The bare minimum of the thermodynamically free op-
erations is that they should map a thermal Gibbs state to
a Gibbs state [1, 2]. One standard choice for thermody-
namic operations, known as Thermal Operations [1, 3],
is to impose an additional physical restriction, where
energy-conserving unitary interacting with an ambient
heat bath is only allowed. This class is operationally
well supported, but at the same time it is often hard to
analyze due to this additional structure. Another stan-
dard approach is to consider all operations that meet the
minimum Gibbs-preserving requirement, so-called Gibbs-
preserving Operations, as available thermodynamic pro-
cesses. This rather axiomatic approach benefits from a
great mathematical simplification, which allowed for sev-
eral recent key findings in quantum thermodynamics [4–
12].

Although these two classes have been flexibly chosen
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depending on the goal of the study, the precise rela-
tion between them has largely been unclear. In partic-
ular, it is not clear at all whether Gibbs-preserving Op-
erations admit physically reasonable realization with re-
spect to Thermal Operations—if not, the status of Gibbs-
preserving Operations as thermodynamic processes would
be put into question. Indeed, it has been known for
a while that the set of Gibbs-preserving Operations is
strictly larger than the set of Thermal Operations [13],
making the gap between these two classes worth ana-
lyzing. In fact, Ref. [13] revealed that a key difference
between these two maps resides in the capability of cre-
ating quantum coherence—superposition between energy
eigenstates—which is known to serve as a useful ther-
modynamic resource [14–17]. Thermal Operations can-
not create quantum coherence from incoherent states, but
Gibbs-preserving Operations can. This demands that to
realize Gibbs-preserving Operations with Thermal Oper-
ations, one generally needs to aid them with extra quan-
tum coherence. Beyond this, not much is known about
the implementability of Gibbs-preserving Operations, ex-
cept for the limited case of trivial Hamiltonian [18]. In
particular, it is crucial to clarify whether there is a univer-
sally sufficient amount of thermodynamic resources that
admits implementation of any Gibbs-preserving operation
of a fixed size with Thermal Operations, which would
secure a certain level of physical justification of Gibbs-
preserving Operations.

Here, we show that it is not the case. We present a
continuous family of Gibbs-preserving Operations that
cannot be implemented by any finite amount of quan-
tum coherence. We provide an explicit way of construct-
ing such Gibbs-preserving Operations, which can be ap-
plied to arbitrary dimensional systems and almost arbi-
trary Hamiltonian. Interestingly, these operations are not
the ones that create coherence—like the one discussed in
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Ref. [13]—but the ones that detect coherence. We show
that the former can actually be implemented by a finite
amount of coherence, showing an intriguing asymmetry
between coherence creation and detection in terms of im-
plementation cost.
We show the phenomenon of infinite coherence cost

by obtaining the general lower bounds for the coherence
cost required to approximately implement a certain class
of Gibbs-preserving Operations, which diverges at the
limit of zero implementation error. We show that our
lower bound is almost tight, where we in turn find that
a quantifier introduced in Ref. [19], which is linked to
the capability of changing energy, characterizes the op-
timal coherence cost for certain Gibbs-preserving Oper-
ations. We also find that an arbitrary (not necessarily
Gibbs-preserving) quantum channel can generally be ap-
proximately implemented by Thermal Operations with a
coherence cost that scales with the error in the same way
as the aforementioned lower bound for Gibbs-preserving
Operations, showing that some Gibbs-preserving Oper-
ations are, roughly speaking, belong to the most costly
class of quantum operation.
Our results provide a partial solution to the open prob-

lem raised in Ref. [20] and particularly confirm the exis-
tence of thermodynamically infeasible Gibbs-preserving
Operations. Our finding therefore implies that one needs
to interpret the operational power of Gibbs-preserving
Operations with extra caution in light of their physical
implementability.
Preliminaries.— We begin by introducing relevant

settings and frameworks. (See Appendix A for more ex-
tensive descriptions.) Throughout this work, we consider
a situation where systems are surrounded by a thermal
bath with an arbitrary finite inverse temperature β. We
assume that the specification of a system X always comes

with its Hamiltonian HX =
∑dX
i=1EX,i|i⟩⟨i| with dimen-

sion dX . Then, the thermal Gibbs state in system X is
written by τX = e−βHX/Tr(eβHX ).
We consider a quantum channel, i.e., completely-

positive trace-preserving (CPTP) map, from a system S
to another system S′. A central class of quantum chan-
nels we consider is the set of Gibbs-preserving Opera-
tions. As the name suggests, these are the operations
that map Gibbs states to Gibbs states. Here, we employ
a generalized notion of Gibbs-preserving Operations, in
which input and output systems can generally be differ-
ent [1, 5, 10, 11, 21]. Namely, we call a channel Λ : S → S′

Gibbs-preserving if Λ(τS) = τS′ .
Another class, which is supported by an operational

consideration, is the set of Thermal Operations. We call
a channel Λ : S → S′ Thermal Operation if there are
environments E and E′ such that S ⊗E = S′ ⊗E′ and a
unitary U on the whole system satisfying

Λ(ρ) = TrE′
(
Uρ⊗ τEU

†) , [U,Htot] = 0 (1)

where Htot = HS⊗1E+1S⊗HE = HS′⊗1E′+1S′⊗HE′

is the total Hamiltionian [1, 3].

It is not difficult to see that Thermal Operations are al-
ways Gibbs preserving. However, the converse is not true.
Ref. [13] showed this by considering a simple example of
a qubit channel Λ : S → S defined by

Λ(ρ) = ⟨1|ρ|1⟩η + ⟨0|ρ|0⟩σ (2)

where η is some quantum state one can choose, and
σ = ⟨0|τS |0⟩−1(τS − ⟨1|τS |1⟩η). One can explicitly check
that this is Gibbs preserving by definition. On the other
hand, by choosing η as a state containing energetic co-
herence, i.e., off-diagonal term with respect to the energy
eigenbasis, one can see that this channel can prepare a
coherent state from the state |1⟩⟨1|, which does not have
energetic coherence. Since Thermal Operations are not
able to create energetic coherence from scratch, one can
conclude that such a channel is Gibbs-preserving but not
a Thermal Operation.
This indicates that the key notion to fill the gap be-

tween Gibbs-preserving and Thermal Operations is the
energetic coherence, and we would like to formalize this
quantitatively. Formally, we say that a state ρ in S has
energetic coherence if ρ ̸= e−iHStρeiHSt for some time t,
which is equivalent to having a nonzero block off-diagonal
element with respect to energy eigenbasis. For a quantita-
tive analysis of energetic coherence, we employ quantum
Fisher information defined for a state ρ in system S by

F(ρ) = 2
∑
i,j

(λi − λj)
2

λi + λj
|⟨ei|HS |ej⟩|2, (3)

where {λi}i and {|ei⟩}i are the sets of eigenvalues and
eigenstates of a state ρ such that ρ =

∑
i λi|ei⟩⟨ei|. Quan-

tum Fisher information is a well-known coherence quan-
tifier that comes with a natural operational interpreta-
tion [22, 23].

Fundamental coherence cost.— We investigate
how costly it is to implement Gibbs-preserving Opera-
tions by analyzing the amount of coherence needed to
implement a desired Gibbs-preserving Operation by a
Thermal Operation. Here, we measure the accuracy of
implementation by a channel purified distance [24]

DF (Λ1,Λ2) := max
ρ

DF (id⊗Λ1(ρ), id⊗Λ2(ρ)) (4)

where DF (ρ, σ) =
√

1− F (ρ, σ)2 and F (ρ, σ) =

Tr
√√

ρσ
√
ρ. We particularly write Λ1 ∼ϵ Λ2 to denote

DF (Λ1,Λ2) ≤ ϵ.
The primary quantity we study is the minimum co-

herence cost for implementing a channel Λ with error ϵ
defined by

Fϵ
c (Λ) := min

{
F(η)

∣∣∣ Λ(·) ∼ϵ Λ̃(· ⊗ η), Λ̃ ∈ OTO

}
(5)

where OTO is the set of Thermal Operations, and η is
a state in an arbitrary ancillary system. Namely, we re-
gard the coherence cost as the minimum amount of co-
herence attributed to an ancillary state that—together
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with a Thermal Operation—realizes the approximation
implementation of the target channel Λ.
The key idea in evaluating this is to connect our setting

to the recent trade-off relation between coherence cost for
channel implementation and the degree of reversibility of
the channel to implement [19], which was shown to unify,
e.g., the Wigner-Araki-Yanase theorems on quantum pro-
cesses [25–34] and the Eastin-Knill theorems on quantum
error correcting codes [34–39]—see Appendix A for de-
tails. In light of this, we find that the following class of
Gibbs-preserving Operations plays a central role.

Definition 1. We call a Gibbs-preserving Operation Λ
pairwise reversible if there exists a pair P = {ρ1, ρ2} of or-
thogonal states, i.e., Tr(ρ1ρ2) = 0, and a quantum chan-
nel R such that R ◦ Λ(ρj) = ρj for j = 1, 2. We also call
P a reversible pair of Λ.

We now introduce a central quantity for characterizing
coherence cost. Let P = {ρ1, ρ2} be a reversible pair for
a Gibbs-preserving channel Λ : S → S′. Then, we define

C(Λ,P) := ∥√ρ1(HS − Λ†(HS′))
√
ρ2∥2 (6)

where Λ† is the dual map such that Tr(Λ†(A)B) =
Tr(AΛ(B)) for arbitrary operators A and B, and ∥X∥2 :=√
Tr(X†X) is the Hilbert-Schmidt norm. This quan-

tity particularly admits a simpler form for pure-state re-
versible pair P = {ψ1, ψ2} as

C(Λ,P) = |⟨ψ1|HS − Λ†(HS′)|ψ2⟩|. (7)

The quantity HS − Λ†(HS′) is an operator that corre-
sponds to the local energy change in the system, and the
forms in (6) and (7) indicate that C(Λ,P) measures the
off-diagonal element of this operator with respect to the
reversible states. More discussions about this quantity
can be found in Ref. [19].
We are now in the position to present our first main re-

sult, which establishes a universal lower bound for the co-
herence cost for pairwise reversible Gibbs-preserving Op-
erations. (Proof in Appendix B.)

Theorem 2. Let Λ : S → S′ be a pairwise re-
versible Gibbs-preserving Operation with a reversible pair
P. Then,√

Fϵ
c (Λ) ≥

C(Λ,P)
ϵ

−∆(HS)− 3∆(HS′), (8)

where ∆(O) is the difference between the minimum and
maximum eigenvalues of an operator O.

This particularly establishes a demanding coherence
cost in the small error regime. Notably, Theorem 2 im-
plies that no pairwise reversible Gibbs-preserving Opera-
tion Λ with C(Λ,P) > 0 can be exactly implemented with
a finite amount of coherence cost, as the lower bound
diverges as ϵ approaches 0.
Therefore, the problem of whether cost-diverging

Gibbs-preserving Operations exists reduces to whether

there exists a pairwise reversible Gibbs-preserving Op-
eration Λ and a reversible pair P such that C(Λ,P) > 0
at all. The following result not only shows the existence
of such operations but provides a continuous family of
those.

Theorem 3. Let τX,i = ⟨i|τX |i⟩X be the Gibbs distribu-
tion for the Gibbs state for a system X with Hamiltonian
HX =

∑
iEX,i|i⟩⟨i|X . Then, if there are integers i, j,

and i′ for systems S and S′ such that

τS,i < τS′,i′ < τS,j , (9)

there exists a pairwise reversible Gibbs-preserving Op-
eration Λ : S → S′ and a reversible pair P such that
C(Λ,P) > 0.

We prove this in Appendix C, which also provides an
explicit construction of the corresponding pairwise re-
versible Gibbs-preserving Operation. Here is an illus-
trative example encompassed in Theorem 3. Let S and
S′ be qubit systems with HS = |1⟩⟨1| and HS′ = 0.
Since τS,0 = 1/(1 + e−β), τS,1 = e−β/(1 + e−β), and
τS′,0 = τS′,1 = 1/2, these systems satisfy (9) for arbitrary
finite temperature. The corresponding pairwise reversible
Gibbs-preserving Operation Λ : S → S′ is

Λ(ρ) = ⟨+|ρ|+⟩|0⟩⟨0|+ ⟨−|ρ|−⟩|1⟩⟨1| (10)

where |±⟩ = 1√
2
(|0⟩ ± |1⟩) is the maximally coher-

ent state on S. It is easy to see that this is Gibbs-
preserving. This is also pairwise reversible with a re-
versible pair P = {|+⟩⟨+|, |−⟩⟨−|} because a recovery
channel R(·) = ⟨0|·|0⟩|+⟩⟨+| + ⟨1|·|1⟩|−⟩⟨−| satisfies R ◦
Λ(|±⟩⟨±|) = |±⟩⟨±|. Direct computation also shows that
C(Λ,P) = 1

2 > 0.
It is insightful to see the structural difference between

the Gibbs-preserving Operations in Eqs. (2) and (10).
The one in (2) can create coherence from an incoherent
state input state |1⟩⟨1|. On the other hand, the channel in
(10) cannot create coherence at all—in fact, output states
are always incoherent for any input states. Instead, it can
perform a measurement in a coherent basis. As we show
in Appendix D, the coherent cost for the channel in (2)
is upper bounded by F(η) + F(σ), which corresponds to
the sum of coherence that can be created by the channel.
This shows a drastic asymmetry between creation and
detection of coherence when it comes to its realization.

We also remark that Theorem 3, together with The-
orem 2, guarantees the existence of a Gibbs-preserving
Operation with infinite coherence cost for the case when
input and output systems are identical. Indeed, when-
ever the system’s Hamiltonian comes with at least three
distinct eigenenergies, the condition in Theorem 3 with
S′ being replaced with S is satisfied.
Theorems 2 and 3 provide an overview of the classifica-

tion of Gibbs-preserving Operations (Fig. 1). We remark
that not all pairwise reversible Gibbs-preserving Opera-
tions come with a diverging coherence cost (e.g., identity
channel)—Theorem 2 ensures the infinite cost only when
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Gibbs-preserving

Pairwise-reversible

Cost-diverging

Thermal

FIG. 1. Classification of Gibbs-preserving Operations. Theo-
rem 2 ensures that pairwise reversible Gibbs-preserving Oper-
ations (Definition 1) for which there is a reversible pair P such
that C(Λ,P) > 0 comes with diverging coherence cost, and the
existence of those operations is guaranteed by Theorem 3. The
existence of a cost-diverging Gibbs-preserving channel outside
of C(Λ,P) > 0 circle has neither been confirmed nor ruled out.

there is a reversible pair P satisfying C(Λ,P) > 0. On
the other hand, our results do not rule out the possibility
that all cost-diverging Gibbs-preserving Operations are
pairwise reversible.
Upper bounds.— A natural next question is how

good the bound in Theorem 2 can be. Interestingly, we
find that it is almost tight in the following sense.

Theorem 4. For every real number a > 0, there is a
pairwise reversible Gibbs-preserving Operation Λ and a
reversible pair P such that C(Λ,P) > 0 and

C(Λ,P)
ϵ

− a ≤
√
Fϵ
c (Λ) ≤

√
2C(Λ,P)
ϵ

+ a. (11)

Proof can be found in Appendix E. This particularly
ensures that the quantity C(Λ,P) defined in (6) serves as
a key quantity that characterizes the coherence cost for
a certain class of Gibbs-preserving Operations, which in
turn provides an operational interpretation to this quan-
tity.
Theorem 4 ensures the existence of a Gibbs-preserving

Operation that almost achieves the lower bound. How-
ever, it does not tell much about the general upper bound
that could be applied to an arbitrary Gibbs-preserving
Operation. In the following, we show that, by giving up
obtaining the form that almost matches the lower bound,
we can obtain the general sufficient coherence cost that
can be universally applied to all Gibbs-preserving Opera-
tions. In fact, we find that the applicability of our bound
is much beyond Gibbs-preserving Operations—it gives a
sufficient coherence cost for an arbitrary quantum chan-
nel. (Proof in Appendix E.)

Theorem 5. Let Λ : S → S′ be an arbitrary quantum
channel admitting a dilation form

Λ(ρ) = TrE′
(
V (ρ⊗ |η⟩⟨η|)V †) (12)

for some environments E and E′ such that S⊗E = S′ ⊗
E′, some unitary V on S ⊗E, and some pure incoherent
state |η⟩ on E. Then,

√
Fϵ
c (Λ) ≤

∆(Htot − V †HtotV )

2ϵ
+

√
2∆(Htot) (13)

where Htot = HS ⊗ 1E + 1S ⊗HE = HS′ ⊗ 1E′ + 1S′ ⊗
HE′ , and ∆(O) is the difference between the minimum
and maximum eigenvalues of an operator O.

Notably, this upper bound also scales as ∼ 1/ϵ with the
implementation error, which coincides with the asymp-
totic scaling of the lower bound in Theorem 2 for pair-
wise reversible Gibbs-preserving Operations. Combining
these two, we can understand that the optimal coherence
cost for all pairwise reversible Gibbs-preserving Opera-
tions with C(Λ,P) > 0 are roughly characterized by N/ϵ
where N is an extensive quantity that grows with a par-
ticle number of the system. This, together with the fact
that Theorem 5 applies to an arbitrary quantum chan-
nel, also implies that pairwise reversible Gibbs-preserving
Operations are as costly as general quantum operations,
putting them into the “most costly” class to implement.

Let us now remark a unique characteristic of our re-
sults in relation to the previous result for trivial Hamil-
tonian. When input and output states are only equipped
with trivial Hamiltonian, every state becomes an inco-
herent state, i.e., invariant under Hamiltonian evolution,
and thus coherence loses its status as a precious re-
source. Therefore, the meaningful question in such a
setting is to ask the work cost (the minimum number
of work bit required) for implementing unital channels
using Noisy Operations [40], which respectively corre-
sponds to the Gibbs-preserving and Thermal Operations
for trivial Hamiltonian. Ref. [18] showed that the mini-
mum work cost is upper bounded by a quantity scaling
as ∼ log(1/ϵ) with implementation error ϵ, which par-
ticularly diverges at the limit of exact implementation.
Nevertheless, its lower bound has still not been estab-
lished, and therefore it is still unclear if this diverging
cost is a fundamental phenomenon or merely an artifact
of their specific construction, which is based on a decou-
pling technique [41]. On the other hand, our Theorem 2
provides a lower bound that scale with 1/ϵ, which is com-
plemented by upper bounds in Theorems 4 and 5 with the
same scaling. To the best of our knowledge, our results
are the first ones that establish the inherently diverging
thermodynamic cost for implementing Gibbs-preserving
Operations.

Conclusions.— We established bounds for the min-
imum coherence cost for implementing Gibbs-preserving
Operations with a desired target error. A major conse-
quence of them is that there are Gibbs-preserving Op-
erations that cannot be implemented with a Thermal
Operation aided by any finite amount of quantum co-
herence, and the approximate implementation of these
Gibbs-preserving Operations requires roughly the same
amount of coherence that suffices to implement the most
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costly class of quantum channels. Our results therefore
clarify an enormous hidden cost in Gibbs-preserving Op-
erations, indicating their unphysical nature as thermody-
namically available operations.

This particularly motivates us to revisit and scrutinize
the prior results based on Gibbs-preserving Operations
from a physical and operational perspective. Indeed, op-
timal Gibbs-preserving Operations in the standard task
of state transformation, e.g., work extraction, are often
found to possess a measure-and-prepare structure, which
takes a similar form to the one in (10). A close investi-
gation of the coherence cost for such channels will make
an important future work. Another potential direction is
to obtain a finer characterization of thermodynamic costs

for Gibbs-preserving Operations. This includes the com-
plete tight characterization of the coherence cost for all
Gibbs-preserving Operations, as well as obtaining corre-
sponding evaluation for work cost—complementary ther-
modynamic resource besides quantum coherence.

Acknowledgments.— We thank Kaito Watanabe for
discussions. H.T. was supported by JSPS Grants-
in-Aid for Scientific Research No. JP19K14610, No.
JP22H05250, and JST PRESTO No. JPMJPR2014, JST
MOONSHOT No. JPMJMS2061. R.T. acknowledges the
support of JSPS KAKENHI Grant Number JP23K19028,
JP24K16975, JST, CREST Grant Number JPMJCR23I3,
Japan, and MEXT KAKENHI Grant-in-Aid for Trans-
formative Research Areas A “Extreme Universe” Grant
Number JP24H00943.

[1] D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and T. Beth,
Thermodynamic Cost of Reliability and Low Tempera-
tures: Tightening Landauer’s Principle and the Second
Law, Int. J. Theor. Phys. 39, 2717 (2000).

[2] M. Lostaglio, An introductory review of the resource the-
ory approach to thermodynamics, Rep. Prog. Phys. 82,
114001 (2019).

[3] R. Horodecki, P. Horodecki, M. Horodecki, and
K. Horodecki, Quantum entanglement, Rev. Mod. Phys.
81, 865 (2009).

[4] P. Faist and R. Renner, Fundamental work cost of quan-
tum processes, Phys. Rev. X 8, 021011 (2018).

[5] P. Faist, M. Berta, and F. Brandão, Thermodynamic ca-
pacity of quantum processes, Phys. Rev. Lett. 122, 200601
(2019).

[6] F. Buscemi, D. Sutter, and M. Tomamichel, An
information-theoretic treatment of quantum dichotomies,
Quantum 3, 209 (2019).

[7] X. Wang and M. M. Wilde, Resource theory of asymmet-
ric distinguishability, Phys. Rev. Res. 1, 033170 (2019).

[8] Z.-W. Liu, K. Bu, and R. Takagi, One-shot operational
quantum resource theory, Phys. Rev. Lett. 123, 020401
(2019).

[9] B. Regula, K. Bu, R. Takagi, and Z.-W. Liu, Bench-
marking one-shot distillation in general quantum resource
theories, Phys. Rev. A 101, 062315 (2020).

[10] P. Faist, M. Berta, and F. G. S. L. Brandao, Thermody-
namic Implementations of Quantum Processes, Commun.
Math. Phys. 384, 1709 (2021).

[11] T. Sagawa, P. Faist, K. Kato, K. Matsumoto, H. Na-
gaoka, and F. G. S. L. Brandão, Asymptotic reversibility
of thermal operations for interacting quantum spin sys-
tems via generalized quantum stein’s lemma, J. Phys. A:
Math. Theor. 54, 495303 (2021).

[12] N. Shiraishi and T. Sagawa, Quantum thermodynamics of
correlated-catalytic state conversion at small scale, Phys.
Rev. Lett. 126, 150502 (2021).

[13] P. Faist, J. Oppenheim, and R. Renner, Gibbs-preserving
maps outperform thermal operations in the quantum
regime, New J. Phys. 17, 043003 (2015).

[14] F. G. S. L. Brandão, M. Horodecki, J. Oppenheim, J. M.
Renes, and R. W. Spekkens, Resource theory of quantum
states out of thermal equilibrium, Phys. Rev. Lett. 111,

250404 (2013).
[15] M. Lostaglio, K. Korzekwa, D. Jennings, and

T. Rudolph, Quantum coherence, time-translation sym-
metry, and thermodynamics, Phys. Rev. X 5, 021001
(2015).

[16] G. Gour, D. Jennings, F. Buscemi, R. Duan, and
I. Marvian, Quantum majorization and a complete set
of entropic conditions for quantum thermodynamics, Nat.
Commun. 9, 5352 (2018).

[17] H. Kwon, H. Jeong, D. Jennings, B. Yadin, and
M. S. Kim, Clock–work trade-off relation for coherence in
quantum thermodynamics, Phys. Rev. Lett. 120, 150602
(2018).

[18] P. Faist, F. Dupuis, J. Oppenheim, and R. Renner, The
minimal work cost of information processing, Nat. Com-
mun. 6, 7669 (2015).

[19] H. Tajima, R. Takagi, and Y. Kuramochi, Univer-
sal trade-off structure between symmetry, irreversibil-
ity, and quantum coherence in quantum processes,
arXiv:2206.11086 (2022).

[20] Open quantum problems, Problem 46.
[21] J. M. Renes, Work cost of thermal operations in quantum

thermodynamics, Eur. Phys. J. Plus 129, 153 (2014).
[22] B. Yadin and V. Vedral, General framework for quantum

macroscopicity in terms of coherence, Phys. Rev. A 93,
022122 (2016).

[23] I. Marvian, Operational interpretation of quantum fisher
information in quantum thermodynamics, Phys. Rev.
Lett. 129, 190502 (2022).

[24] A. Gilchrist, N. K. Langford, and M. A. Nielsen, Distance
measures to compare real and ideal quantum processes,
Phys. Rev. A 71, 062310 (2005).

[25] E. P. Wigner, Die Messung quantenmechanischer Opera-
toren, Zeitschrift fur Physik 133, 101 (1952).

[26] H. Araki and M. M. Yanase, Measurement of quantum
mechanical operators, Phys. Rev. 120, 622 (1960).

[27] M. Ozawa, Conservation laws, uncertainty relations, and
quantum limits of measurements, Phys. Rev. Lett. 88,
050402 (2002).

[28] H. Tajima and H. Nagaoka, Coherence-variance uncer-
tainty relation and coherence cost for quantum measure-
ment under conservation laws, arXiv:1909.02904 (2019).

[29] Y. Kuramochi and H. Tajima, Wigner-araki-yanase theo-

http://dx.doi.org/10.1023/A:1026422630734
http://dx.doi.org/10.1088/1361-6633/ab46e5
http://dx.doi.org/10.1088/1361-6633/ab46e5
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/RevModPhys.81.865
http://dx.doi.org/10.1103/PhysRevX.8.021011
http://dx.doi.org/10.1103/PhysRevLett.122.200601
http://dx.doi.org/10.1103/PhysRevLett.122.200601
http://dx.doi.org/10.22331/q-2019-12-09-209
http://dx.doi.org/10.1103/PhysRevResearch.1.033170
http://dx.doi.org/10.1103/PhysRevLett.123.020401
http://dx.doi.org/10.1103/PhysRevLett.123.020401
http://dx.doi.org/10.1103/PhysRevA.101.062315
http://dx.doi.org/10.1007/s00220-021-04107-w
http://dx.doi.org/10.1007/s00220-021-04107-w
http://dx.doi.org/10.1088/1751-8121/ac333c
http://dx.doi.org/10.1088/1751-8121/ac333c
http://dx.doi.org/10.1103/PhysRevLett.126.150502
http://dx.doi.org/10.1103/PhysRevLett.126.150502
http://dx.doi.org/10.1088/1367-2630/17/4/043003
http://dx.doi.org/10.1103/PhysRevLett.111.250404
http://dx.doi.org/10.1103/PhysRevLett.111.250404
http://dx.doi.org/10.1103/PhysRevX.5.021001
http://dx.doi.org/10.1103/PhysRevX.5.021001
http://dx.doi.org/10.1038/s41467-018-06261-7
http://dx.doi.org/10.1038/s41467-018-06261-7
http://dx.doi.org/10.1103/PhysRevLett.120.150602
http://dx.doi.org/10.1103/PhysRevLett.120.150602
http://dx.doi.org/10.1038/ncomms8669
http://dx.doi.org/10.1038/ncomms8669
http://arxiv.org/abs/2206.11086
https://oqp.iqoqi.oeaw.ac.at/open-quantum-problems
http://dx.doi.org/10.1140/epjp/i2014-14153-8
http://dx.doi.org/10.1103/PhysRevA.93.022122
http://dx.doi.org/10.1103/PhysRevA.93.022122
http://dx.doi.org/10.1103/PhysRevLett.129.190502
http://dx.doi.org/10.1103/PhysRevLett.129.190502
http://dx.doi.org/10.1103/PhysRevA.71.062310
http://dx.doi.org/10.1007/BF01948686
http://dx.doi.org/10.1103/PhysRev.120.622
http://dx.doi.org/10.1103/PhysRevLett.88.050402
http://dx.doi.org/10.1103/PhysRevLett.88.050402
http://arxiv.org/abs/1909.02904


6

rem for continuous and unbounded conserved observables,
Phys. Rev. Lett. 131, 210201 (2023).

[30] H. Emori and H. Tajima, Error and disturbance as irre-
versibility with applications: Unified definition, wigner–
araki–yanase theorem and out-of-time-order correlator,
arXiv:2309.14172 (2023).

[31] M. Ozawa, Conservative quantum computing, Phys. Rev.
Lett. 89, 057902 (2002).

[32] H. Tajima, N. Shiraishi, and K. Saito, Uncertainty rela-
tions in implementation of unitary operations, Phys. Rev.
Lett. 121, 110403 (2018).

[33] H. Tajima, N. Shiraishi, and K. Saito, Coherence cost
for violating conservation laws, Phys. Rev. Res. 2, 043374
(2020).

[34] H. Tajima and K. Saito, Universal limitation of quan-
tum information recovery: symmetry versus coherence,
arXiv:2103.01876 (2021).

[35] B. Eastin and E. Knill, Restrictions on transversal en-
coded quantum gate sets, Phys. Rev. Lett. 102, 110502
(2009).

[36] P. Faist, S. Nezami, V. V. Albert, G. Salton,
F. Pastawski, P. Hayden, and J. Preskill, Continuous
symmetries and approximate quantum error correction,
Phys. Rev. X 10, 041018 (2020).

[37] A. Kubica and R. Demkowicz-Dobrzański, Using quan-
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Appendix A: Background and setting

1. Quantum resource theories

Quantum resource theories [42, 43] provide a useful platform on which quantitative analysis of the
underlying quantum features can be performed. The core idea of resource theories is to consider
relevant sets of quantum states (called free states) and operations (called free operations) that are
easily accessible in the given physical setting. This results in a framework where one can quantify
the amount of precious resources attributed to a given state with respect to the set of free states and
investigate the feasible state transformations that can be realized by free operations.
Different physical settings of interest can be specified by appropriately choosing the sets of free

states and operations, which leads to different resource theories. One standard example is to consider
the set of separable states and local operations and classical communication (LOCC), resulting in an
operational framework of studying quantum entanglement [3]. Here, we remark that for a given set
of free states, one can consider choosing a different set of free operations while keeping the essence of
the physical setting represented by the necessary requirement for free operations

Λ(σ) ∈ F, ∀Λ ∈ O (A1)

for a set F of free states and a set O of free operations. Employing the flexibility in choosing different
sets of free operations is usually effective when O comes with a complicated structure and is difficult
to analyze. For instance, in the case of entanglement, it is notoriously hard to study the full potential
of LOCC, and therefore several classes of other operations, which include LOCC as their subset,
were investigated. One such set is separability-preserving operations, which is the maximal set that
satisfies (A1). This admits a great simplification of the analysis and results in significant insights into
entanglement transformation [44–46].
The two examples of free operations in the entanglement theory mentioned above have different

perspectives and focuses. In particular, LOCC is motivated by an operational viewpoint, which
aims to reflect the reasonable operations that two distant parties can actually accomplish, while
separability-preserving operations employ an axiomatic approach that respects the bear minimum
constraint that operations should not create entanglement for free. It is clear from the definition
that the latter contains the former, and the inclusion is indeed strict [46]. Although each choice is
able to extract different aspects of underlying quantum resources, it is still important to clarify the
relationship between them. In particular, one crucial question here is how much resources are needed
for a free operation in the smaller set O1 to simulate the action of a free operation in the larger set
O2, which provides the idea of how “operationally reasonable” the axiomatic free operations are. One
can formalize this by asking a channel implementation cost for a channel Λ ∈ O1 defined by

CRF(Λ) := min
{
RF(η)

∣∣∣ Λ(·) = Λ̃(· ⊗ ϕ), Λ̃ ∈ O2

}
(A2)

for some resource quantifier RF with respect to the set F of free states. In this work, we study this
question in the setting of quantum thermodynamics.

2. Thermal and Gibbs-preserving Operations

One of the major approaches in quantum thermodynamics is to employ a resource-theoretic
framework [1, 3, 14], which focuses on the ultimate operational capability of thermodynamic op-
erations in the manipulation of quantum systems. In this approach, the thermal Gibbs state
τS = e−βHS/Tr(e−βHS ) for a system S with Hamiltonian HS is considered to be a state that is
freely accessible, and allowed thermodynamic operations are chosen so that they map a Gibbs state
to another Gibbs state.
One of the standard choices for such thermodynamic operations is based on an operational moti-

vation and is known as Thermal Operations [2, 3, 47]. A channel Λ : S → S′ is called a Thermal
Operation if there exists an environment E and E′ with S ⊗ E = S′ ⊗ E′ and an energy-conserving
unitary U on S ⊗ E such that

Λ(ρ) = TrE′
(
Uρ⊗ τSU

†) , [U,Htot] = 0 (A3)
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where Htot = HS ⊗ 1E + 1S ⊗ HE = HS′ ⊗ 1E′ + 1S′ ⊗ HE′ is the total Hamiltonian. On the
other hand, one can also consider a broader class based on the axiomatic formulation, which is only
restricted by the minimum requirement that they should map Gibbs states to Gibbs states. This is
known as Gibbs-preserving Operations—a channel Λ : S → S′ is called a Gibbs-preserving operation
if

Λ(τS) = τS′ . (A4)

We remark that we here allow the final system S′ to differ from the initial system S. This setting is
motivated by the observation that discarding an arbitrary subsystem should operationally be allowed,
which may result in a different system from the initial one [1, 3, 21, 47]. One could also formulate
the change in the initial and final systems by inducing different Hamiltonians by introducing ancillary
systems working as a switch [3, 11, 48], which generally comes with a different work cost to realize
state transformation. Although these distinctions should carefully be taken into account when one
investigates the work cost, here we do not delve into this discussion further, as our main focus here is
the coherence cost, which is not affected by these subtleties. We also note that the main consequences
of our results, i.e., diverging coherence cost and its bounds for approximate implementation, still hold
for the restricted settings with identical initial and final systems, particularly because of the broad
applicability of Theorem 3. See the main text for relevant discussions.
It is elementary to see that any thermal operation is Gibbs-preserving, and therefore the set OTO

of thermal operations and the set OGP of Gibbs-preserving operations satisfy the inclusion relation
OTO ⊆ OGP. Furthermore, this inclusion is shown to be strict, i.e., OTO ⊊ OGP [13]. A key
observation to see this strict inclusion relation is to study energetic coherence, which we review in the
following.

3. Quantum coherence in energy eigenbasis

Recent studies found that, in the realm of quantum thermodynamics, quantum coherence also
plays a major role that allows one to extract work and thus serves as another type of quantum
resource besides out-of-equilibrium energy distribution [14–17]. To formalize quantum coherence, let
H =

∑
nEn|n⟩⟨n| be a Hamiltonian where {En}n is the set of (possibly degenerate) energy eigenvalues

and {|n⟩}n is the orthonormal set of energy eigenstates. We say that a state ρ has quantum coherence
or energetic coherence if ρ has an off-diagonal term, i.e., superposition, for different energy levels.
Formally, let ΠE be a projector onto the subspace with energy E given by

ΠE =
∑

n:En=E

|n⟩⟨n|. (A5)

Then, a state ρ has energetic coherence if
∑
E ΠEρΠE ̸= ρ. Equivalently, a state ρ has nonzero

coherence if e−HtρeiHt ̸= ρ for some t ∈ R.
The letter expression particularly allows us to formalize energetic coherence in relation to a group

action represented by a unitary representation of U(1) (or R if the Hamiltonian contains relatively
irrational eigenvalues). Namely, incoherent states—states that do not have coherence—are equivalent
to the states invariant under a unitary representation {e−iHt}t. This observation provides a way of
quantifying the amount of energetic coherence employing the resource theory of asymmetry [42, 49],
which considers states invariant under action of a unitary representation of a group G as free states,
i.e., F = {σ |UgσU†

g = σ, ∀g ∈ G}, and the operations covariant with such group actions as free

operations, i.e., O = {Λ : S → S′ |US′,gΛ(ρ)U
†
S′,g = Λ(US,gρU

†
S,g), ∀g ∈ G} where UX,g is a unitary

representation acting on a system X. One can then realize that incoherent states coincide with
the set of free states in the framework of resource theory of asymmetry with U(1) group with the
representation Ut = e−iHt, equipped with

Finc = {σ | e−iHtσeiHt = σ, ∀t} (A6)

and free operation called Covariant Operations

Ocov = {Λ : S → S′ | e−iHS′ tΛ(ρ)eiHS′ t = Λ(e−iHStρeiHSt) ∀t}. (A7)

It is easy to check that covariant operations are indeed free operations for energetic coherence in the
sense that it does not create a state with nonzero energetic coherence from an incoherent state.
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Another insightful characterization of covariant operations is that an arbitrary covariant operation
Λ : S → S′ admits the following dilation form [49, 50]

Λ(ρ) = TrE′
(
Uρ⊗ σU†) , [U,HS ⊗ 1E + 1S ⊗HE ] = 0, σ ∈ Finc (A8)

for some systems E and E′. The similarity between (A3) and (A8) represents an intriguing interplay
between resource theories for quantum thermodynamics and energetic coherence. Indeed, since Gibbs
states do not have energetic coherence by definition, we immediately notice that

OTO ⊆ Ocov. (A9)

On the other hand, Ref. [13] presented a Gibbs-preserving operation Λ ∈ OGP that can create a
coherent state from an incoherent state, showing Λ ̸∈ Ocov. This shows the strict inclusion OTO ⊊
OGP. In other words, in an operationally driven approach with thermal operations, energetic coherence
serves as a precious resource that cannot be created for free, while in an axiomatic approach with
Gibbs-preserving operations, energetic coherence loses the status of the precious resource.

4. Coherence cost for Gibbs-preserving operations

The aforementioned gap between thermal and Gibbs-preserving operations naturally raises a ques-
tion [20]: what is the coherence cost for thermal operations to implement Gibbs-preserving operations?
Indeed, Gibbs-preserving operations have been widely studied because of their simple mathematical
structure [4–12]. However, if it requires unreasonable additional resource costs to implement, it would
lose the physical ground as a reasonable set of free operations from an operational perspective.
This motivates us to study the channel implementation cost introduced in Sec. A 1 in our setting,

which corresponds to F = Finc, O1 = OGP, and O2 = OTO. For a coherence quantifier RFinc
, we

employ quantum Fisher information, the standard measure of coherence (and asymmetry in general),
defined for an arbitrary state ρ by

F(ρ) = 2
∑
i,j

(pi − pj)
2

pi + pj
|⟨i|H|j⟩|2 (A10)

where H is the Hamiltonian of the system that ρ acts on, and {pj}j and {|j⟩}j are the eigenvalues
and eigenstates of ρ =

∑
j pj |j⟩⟨j|. The coherence cost of a channel Λ is then

Fc(Λ) := min
{
F(η)

∣∣∣ Λ = Λ̃(· ⊗ η), Λ̃ ∈ OTO

}
. (A11)

To encompass general and practical scenarios, we extend this quantity to the cost for approximate
implementation, admitting some error ϵ. Here, we measure the error by a channel purified distance [24]

DF (Λ1,Λ2) := max
ρ

DF (id⊗Λ1(ρ), id⊗Λ2(ρ)) (A12)

where

DF (ρ, σ) =
√
1− F (ρ, σ)2, F (ρ, σ) = Tr

√√
ρσ

√
ρ. (A13)

We particularly write Λ1 ∼ϵ Λ2 to denote DF (Λ1,Λ2) ≤ ϵ. We then define the approximate imple-
mentation cost for a channel Λ by

Fϵ
c (Λ) := min

{
F(η)

∣∣∣ Λ ∼ϵ Λ̃(· ⊗ η), Λ̃ ∈ OTO

}
. (A14)

5. Trade-off relation between symmetry, irreversibility, and quantum coherence

The main goal of this work is to evaluate the coherence cost in (A14) for Gibbs-preserving Op-
erations. In particular, we are interested in the fundamental limitations on the implementation of
Gibbs-preserving Operations, which could be analyzed by obtaining lower bounds for Fϵ

c . Lower
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bounds can never obtained by studying specific implementation protocols, and we thus need an ap-
proach that can put general restrictions on all feasible implementation strategies.
The key technique we employ to this end is the universal trade-off relation between symmetry,

irreversibility, and quantum coherence recently found in Ref. [19]. Let us define a measure of the
irreversibility of a channel Λ : S → S′ for an orthogonal state pair P := {ρ1, ρ2} on S satisfying
F (ρ1, ρ2) = 0 as follows:

δ(Λ,P) := min
R:S′→S

√√√√ 2∑
j=1

1

2
DF (ρj ,R ◦ Λ(ρj))2. (A15)

Here R runs over all CPTP maps from S′ to S. This irreversibility measure gives lower bounds for
other relevant quantities, e.g., the entropy production and recovery errors of error-correcting codes [19],
and various errors and disturbances of quantum measurements and the out-of-time-ordered correlators
(OTOC) [30].
For an arbitrary orthogonal state pair P = {ρ1, ρ2}, we define

C(Λ,P) := ∥√ρ1(HS − Λ†(HS′))
√
ρ2∥2, (A16)

where ∥O∥2 =
√
Tr(O†O) is the Hilbert-Schmidt norm. We also define coherence cost for channel

implementation by covariant operations

Fc,cov(Λ) := min
{
F(η)

∣∣∣ Λ = Λ̃(· ⊗ η), Λ̃ ∈ Ocov

}
. (A17)

Then, it turns out that there is a fundamental trade-off relation between these quantities and the
coherence cost for exact channel implementation.

Theorem S.1 (in Ref. [19]). For an arbitrary quantum channel Λ : S → S′ and an arbitrary
orthogonal state pair P, the following inequality holds:

C(Λ,P)√
Fc,cov(Λ) + ∆(HS) + ∆(HS′)

≤ δ(Λ,P), (A18)

where ∆(O) is the difference between the minimum and maximum eigenvalues of an operator O.

We remark that the above relation can be extended to a general state ensemble {pj , ρj}j that
may not be orthogonal to each other [19]. The relation (A18) is given as a unification between the
Wigner-Araki-Yanase (WAY) theorems on quantum measurements [25–29] and unitary gates [31–34]
and the Eastin-Knill theorems on quantum error correcting codes [34–39]. It also allows restrictions
on the classical information recovery in the Hayden-Preskill thought experiments [51] imposed by the
energy conservation [19] and extends the WAY theorem to various errors and disturbances of quantum
measurements and the out-of-time-ordered correlators [30]. Here, we utilize this relation to obtain
a lower bound for coherence cost for approximately implementing Gibbs-preserving Operations by
Thermal Operations.

Appendix B: Lower bound for pairwise reversible Gibbs-preserving Operations
(Proof of Theorem 2)

Recall that we call a channel Λ pairwise reversible with a reversible pair P if each state in P is
perfectly reversible, i.e., δ(Λ,P) = 0. (See Definition 1 in the main text.) We then obtain the
following lower bound for coherence cost.

Theorem S.2 (Theorem 2 in the main text). Let Λ : S → S′ be a pairwise reversible Gibbs-preserving
Operation with a reversible pair P. Then,√

Fϵ
c (Λ) ≥

C(Λ,P)
ϵ

−∆(HS)− 3∆(HS′), (B1)

where ∆(O) is the difference between the minimum and maximum eigenvalues of an operator O.
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Proof. Let Λϵ be a channel that approximates Λ with error ϵ, i.e., DF (Λϵ,Λ) ≤ ϵ (recall (A12)). We
aim to apply Theorem S.1 to Λϵ while expressing each term by the quantities in (B1) relevant to the
desired channel Λ and the accuracy of implementation.

We first bound δ(Λϵ,P) by the implementation error ϵ. Let R be a recovery channel such that
R ◦ Λ(ρ) = ρ for each state ρ ∈ P, whose existence is ensured by assumption. Then, for each state ρ
in P, we have

DF (R ◦ Λϵ(ρ), ρ) ≤ DF (R ◦ Λϵ(ρ),R ◦ Λ(ρ)) +DF (R ◦ Λ(ρ), ρ)
= DF (R ◦ Λϵ(ρ),R ◦ Λ(ρ))
≤ DF (Λϵ(ρ),Λ(ρ))

≤ max
ρ

DF (id⊗Λϵ(ρ), id⊗Λ(ρ))

≤ ϵ

(B2)

where in the first line we used the triangle inequality of the purified distance [24], the second line
is because of the perfect reversibility of ρ with R, the third line follows from the data-processing
inequality of the purified distance, and the fifth line is because of the assumption that Λϵ ∼ϵ Λ. This
particularly means that

δ(Λϵ,P) ≤
√

1

2
DF (R ◦ Λϵ(ρ1), ρ1)2 +

1

2
DF (R ◦ Λϵ(ρ2), ρ2)2 ≤ ϵ. (B3)

We next obtain an expression of C(Λϵ,P) in terms of C(Λ,P). We first get

C(Λϵ,P) = ∥√ρ1(HS − Λ†
ϵ(HS′))

√
ρ2∥2

≥ ∥√ρ1(HS − Λ†(HS′))
√
ρ2∥2 − ∥√ρ1(Λ†(HS′)− Λ†

ϵ(HS′))
√
ρ2∥2

= C(Λ,P)− ∥√ρ1(Λ†(HS′)− Λ†
ϵ(HS′))

√
ρ2∥2

(B4)

where in the second line we used the triangle inequality of the Hilbert-Schmidt norm. We therefore
focus on upper bounding the second term ∥√ρ1(Λ†(HS′) − Λ†

ϵ(HS′))
√
ρ2∥2. For states ρ1, ρ2 ∈ P,

let ρ1 =
∑
k qkψk and ρ2 =

∑
k q

′
kϕk be their spectral decompositions, i.e., ⟨ψk1 |ψk2⟩ = δk1k2 and

⟨ϕk′1 |ϕk′2⟩ = δk′1k′2 . Then, direct computation gives

∥√ρ1(Λ†(HS′)− Λ†
ϵ(HS′))

√
ρ2∥2 =

∥∥∥∥∥∥
∑
k,k′

√
qk

√
q′kψk(Λ

†(HS′)− Λ†
ϵ(HS′))ϕk′

∥∥∥∥∥∥
2

=

√∑
k,k′

qkqk′
∣∣∣⟨ψk|(Λ†(HS)− Λ†

ϵ(HS′))|ϕk′⟩
∣∣∣2.

(B5)

We further remark that ⟨ψk|ϕk′⟩ = 0 for all k and k′ because Tr(ρ1ρ2) = 0 by the definition of
reversible pairs. For arbitrary orthogonal pure states ψ and ϕ, the following relation holds:
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|⟨ψ|Λ†
ϵ(HS′)− Λ†(HS′)|ϕ⟩| ≤ 1

2
|⟨ψ|Λ†

ϵ(HS′)− Λ†(HS′)|ϕ⟩+ ⟨ϕ|Λ†
ϵ(HS′)− Λ†(HS′)|ψ⟩|

+
1

2
|⟨ψ|Λ†

ϵ(HS′)− Λ†(HS′)|ϕ⟩ − ⟨ϕ|Λ†
ϵ(HS′)− Λ†(HS′)|ψ⟩|

=
1

2
|Tr(HS′(Λϵ − Λ)(|ψ⟩⟨ϕ|+ |ϕ⟩⟨ψ|))|+ 1

2
|Tr(HS′(Λϵ − Λ)(|ψ⟩⟨ϕ| − |ϕ⟩⟨ψ|))|

=
1

2
|Tr((HS′ − a1S′)(Λϵ − Λ)(|ψ⟩⟨ϕ|+ |ϕ⟩⟨ψ|))|

+
1

2
|Tr((HS′ − a1S′)(Λϵ − Λ)(|ψ⟩⟨ϕ| − |ϕ⟩⟨ψ|))|

≤ 1

2
∥HS′ − a1S′∥∞∥(Λϵ − Λ)(|ψ⟩⟨ϕ|+ |ϕ⟩⟨ψ|)∥1

+
1

2
∥HS′ − a1S′∥∞∥(Λϵ − Λ)(|ψ⟩⟨ϕ| − |ϕ⟩⟨ψ|)∥1

=
1

2
∥HS′ − a1S′∥∞∥(Λϵ − Λ)(|η+⟩⟨η+| − |η−⟩⟨η−|)∥1

+
1

2
∥HS′ − a1S′∥∞∥(Λϵ − Λ)(|η′+⟩⟨η′+| − |η′−⟩⟨η′−|)∥1

≤ 4∥HS′ − a1S′∥∞ϵ
≤ 2∆(HS′)ϵ

(B6)
where a is an arbitrary real number, and |η±⟩ := 1√

2
(|ψ⟩ ± |ϕ⟩) and |η′±⟩ := 1√

2
(|ψ⟩ ± i|ϕ⟩). In the

second last line, we used the triangle inequality for the trace norm and 1
2∥ρ− σ∥1 ≤ DF (ρ, σ). In the

last line, we fixed a to satisfy ∥HS′∥∞ = ∆(HS′)/2.
Together with (B5), this particularly implies

∥√ρ1(Λ†(HS′)− Λ†
ϵ(HS′))

√
ρ2∥2 ≤

√∑
k,k′

qkqk′2∆(HS′)ϵ

= 2∆(HS′)ϵ.

(B7)

Combining this with (B4), we get

C(Λϵ,P) ≥ C(Λ,P)− 2∆(HS′)ϵ. (B8)

We finally note that since OTO ⊆ Ocov as in (A9), Fϵ
c (Λ) ≥ Fϵ

c,cov(Λ) always holds. We conclude
the proof by combining all these observations. Let us particularly take Λϵ to be the optimal channel
achieving the coherence cost with error ϵ, i.e., Λϵ ∼ϵ Λ and Fc,cov(Λϵ) = Fϵ

c,cov(Λ). Then,√
Fϵ
c (Λ) ≥

√
Fϵ
c,cov(Λ)

=
√

Fc,cov(Λϵ)

≥ C(Λϵ,P)
δ(Λϵ,P)

−∆(HS)−∆(HS′)

≥ C(Λ,P)
ϵ

−∆(HS)− 3∆(HS′)

(B9)

where we used Theorem S.1 in the third line and (B3) and (B8) in the fourth line.

Appendix C: Construction of pairwise reversible Gibbs-preserving Operations
(Proof of Theorem 3)

We first show a general sufficient condition for the existence of pairwise reversible Gibbs-preserving
Operations. To this end, let ψ be a pure state in S. We define the min-relative entropy with respect
to the Gibbs state by [6, 8, 52, 53]

Dmin(ψ∥τS) = − log Tr(ψτS). (C1)
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Also, for an arbitrary state ρ in S, max-relative entropy with respect to the Gibbs state is defined
by [6, 8, 52, 53]

Dmax(ρ∥τS) = logmin
{
s
∣∣∣ ρ ≤ sτS

}
. (C2)

We then obtain the following result.

Theorem S.3. Let S be a system with Hamiltonian HS =
∑
nEn,S |n⟩⟨n| and S′ be a system with

some arbitrary Hamiltonian. If there exists a pair of pure states ψ ∈ S and ϕ ∈ S′ such that

⟨i|ψ|i⟩ ≠ 0, ⟨j|ψ|j⟩ ≠ 0, Ei,S ̸= Ej,S (C3)

and

Dmin(ψ∥τS) = Dmin(ϕ∥τS′) = Dmax(ϕ∥τS′), (C4)

there exists a pairwise reversible Gibbs-preserving Operation from S to S′.

Proof. Let ψ and ϕ be the pure states in (C3) and (C4). Define

Λ(ρ) = Tr(ψρ)ϕ+Tr [(1− ψ)ρ] η (C5)

where

η =
τS′ − Tr(ψτS)ϕ

Tr [(1− ψ)τS ]
. (C6)

The operator η is a valid state because it clearly has the unit trace and

ϕ ≤ 2Dmax(ϕ∥τS′ )τS′ = 2Dmin(ψ∥τS)τS′ = Tr(ψτS)
−1τS′ (C7)

where the first inequality is by definition of Dmax, the first equality is due to (C4), and the last equality
is by definition of Dmin. This ensures that η ≥ 0 and that Λ is a valid Gibbs-preserving channel.
Moreover,

Tr(ϕη) ∝ Tr(ϕτS′)− Tr(ψτS) = 2−Dmin(ϕ∥τS′ ) − 2−Dmin(ψ∥τS) = 0 (C8)

where the final equality is due to (C4). This implies that ϕ and η are perfectly distinguishable and
thus ensures that δ(Λ,P) = 0 for a choice of state pair P = {ψ, σ} where σ is an arbitrary state in S
such that Tr(ψσ) = 0.
As a choice of σ, we can particularly choose an orthogonal pure state ψ⊥ defined as follows. Let

ai := ⟨i|ψ⟩ and aj := ⟨j|ψ⟩ be the coefficients for i th and j th energy of ψ, where i and j are the labels
in (C3). We assume ai,j ∈ R without loss of generality, as incoherent unitary—which can arbitrarily
adjust the relative phase—is energy conserving. We then choose

|ψ⊥⟩ = 1√
|aj |2 + |ai|2

(aj |i⟩ − ai|j⟩) , (C9)

for which one can directly check that the condition Tr(ψψ⊥) = 0 is satisfied. Since

Λ†(HS′) = Tr(ϕHS′)ψ +Tr(ηHS′)(1− ψ), (C10)

we get

⟨ψ|Λ†(HS′)|ψ⊥⟩ = 0. (C11)

Therefore, ∣∣⟨ψ|H − Λ†(HS′)|ψ⊥⟩
∣∣ = ∣∣⟨ψ|H|ψ⊥⟩

∣∣ = |aiaj |√
a2i + a2j

|Ei,S − Ej,s| > 0 (C12)

where the last inequality is because of the assumption that Ei,S ̸= Ej,S . This ensures

C(Λ,P) =
∣∣⟨ψ|H − Λ†(HS′)|ψ⊥⟩

∣∣ > 0 (C13)

with a reversible pair P = {ψ,ψ⊥}, concluding the proof.
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Theorem S.3 admits the following simple sufficient condition.

Corollary S.4 (Theorem 3 in the main text). Let τX,i = ⟨i|τX |i⟩X be the Gibbs distribution for the
Gibbs state for a system X with Hamiltonian HX =

∑
iEX,i|i⟩⟨i|X . Then, if there are integers i, j,

and i′ for systems S and S′ such that

τS,i < τS′,i′ < τS,j , (C14)

there exists a pairwise reversible Gibbs-preserving Operation Λ : S → S′ and a reversible pair P such
that C(Λ,P) > 0.

Proof. Let r ∈ (0, 1) be a real positive number satisfying

τS′,i′ = rτS,i + (1− r)τS,j , (C15)

whose existence is guaranteed because of (C14). Let ψ and ϕ be the pure states defined by

|ψ⟩ :=
√
r|i⟩S +

√
1− r|j⟩S , (C16)

|ϕ⟩ := |i′⟩S′ . (C17)

It suffices to show that ψ and ϕ satisfy (C3) and (C4). It is straightforward to check (C3) noting
0 < r < 1. Eq. (C4) can be checked as follows:

Dmin(ψ∥τS) = − log Tr(ψτS)

= − log(rτS,i + (1− r)τS,j)

= − log τS′,i′

= − log Tr[ϕτS′ ] = Dmin(ϕ∥τS′)

= logmin
{
s
∣∣∣ |i′⟩⟨i′|S′ ≤ sτS′

}
= Dmax(ϕ∥τS′). (C18)

We also provide an alternative construction.

Proposition S.5. For a countably infinite series {En}n of real numbers, let Sd({En}n) be an arbitrary

d-dimensional system equipped with Hamiltonian Hd =
∑d−1
n=0En|n⟩⟨n|. Then, for arbitrary d ≥ 3 and

d′ ≤ d, and an arbitrary energy spectrum {En}n with Ei ≥ Ej , ∀i, j such that it is not fully degenerate
above the ground energy, i.e., there exists 1 ≤ i ≤ d − 1 such that Ei+1 > Ei, there exists a pairwise
reversible Gibbs-preserving map Λ : Sd({En}n) → Sd′({En}n) with a reversible pair P such that
C(Λ,P) > 0.

Proof. Let τS =
∑
n τS,n be the Gibbs state for Sd({En}n) and τS′ =

∑
n τS′,n be the Gibbs state for

Sd′({En}n). Let i be an integer such that 1 ≤ i ≤ d − 1 and Ei+1 > Ei ensured by the assumption.
Define

Λ(ρ) = Tr(|+⟩⟨+|i,i+1ρ)|0⟩⟨0|+Tr(|−⟩⟨−|i,i+1ρ)|1⟩⟨1|+Tr(P⊥
i,i+1ρ)η (C19)

where P⊥
i,i+1 = 1d − (|i⟩⟨i| + |i+ 1⟩⟨i+ 1|) is the projector onto the input space complement to

span{|i⟩, |i+ 1⟩}, and

η :=
τS′ − Tr(|+⟩⟨+|i,i+1τS)|0⟩⟨0| − Tr(|−⟩⟨−|i,i+1τS)|1⟩⟨1|

Tr(P⊥
i,i+1τS)

. (C20)

The operator η is a valid state because it clearly has a unit trace and

η ∝
(
τS′,0 −

τS,i + τS,i+1

2

)
|0⟩⟨0|+

(
τS′,1 −

τS,i + τS,i+1

2

)
|1⟩⟨1|+

∑
j≥2

τS′,j |j⟩⟨j| ≥ 0 (C21)

where we used the fact that for any k,

τS′,k − τS,k =
(Z − Z ′)e−βEk

ZZ ′ ≥ 0, Z :=

d−1∑
n=0

e−βEn , Z ′ :=

d′−1∑
n=0

e−βEn (C22)
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because d ≥ d′ by assumption, which implies Z ≥ Z ′. We then get

τS′,0 −
τS,i + τS,i+1

2
≥ τS,0 −

τS,i + τS,i+1

2
≥ 0

τS′,1 −
τS,i + τS,i+1

2
≥ τS,1 −

τS,i + τS,i+1

2
≥ 0

(C23)

where the last inequalities hold because Ei+1 ≥ Ei ≥ E1 ≥ E0 and thus τS,i+1 ≤ τS,i ≤ τS,1 ≤ τS,0.
This ensures that Λ is a measure-and-prepare channel, and due to the definition of η, Λ is Gibbs-
preserving.
In addition, a state pair {|+⟩⟨+|i,i+1, |−⟩⟨−|i,i+1} is reversible because Λ(|+⟩⟨+|i,i+1) = |0⟩⟨0|

and Λ(|−⟩⟨−|i,i+1) = |1⟩⟨1| are perfectly distinguishable. This ensures δ(Λ,P) = 0 for P =
{|+⟩⟨+|i,i+1, |−⟩⟨−|i,i+1}.
One can also check C(Λ,P) > 0 as follows. We have

Λ†(Hd′) = Tr(Hd′ |0⟩⟨0|)|+⟩⟨+|i,i+1 +Tr(Hd′ |1⟩⟨1|)|−⟩⟨−|i,i+1 +Tr(Hd′η)P
⊥
i,i+1 (C24)

resulting in

i,i+1⟨+|Λ†(Hd′)|−⟩i,i+1 = 0. (C25)

On the other hand,

|i,i+1⟨+|Hd|−⟩i,i+1| =
Ei+1 − Ei

2
> 0 (C26)

because Ei+1 > Ei by assumption. This ensures C(Λ,P) > 0.

Appendix D: Upper bound for the coherence cost of Eq. (2)

We show that the coherence cost Fc(Λ) for the channel Λ : S → S′ defined by

Λ(ρ) = ⟨1|ρ|1⟩η + ⟨0|ρ|0⟩σ (D1)

satisfies the upper bound

Fc(Λ) ≤ F(η) + F(σ). (D2)

Proof. Let E be an ancillary system with HE = 0. Let Λ1 : S → E and Λ2 : E → S′ be the channels
defined by

Λ1(κS) := ⟨1|κS |1⟩|1⟩⟨1|E + ⟨0|κS |0⟩|0⟩⟨0|E (D3)

and

Λ2(κE) := ⟨1|κE |1⟩η + ⟨0|κE |0⟩σ (D4)

for arbitrary states κS in S and κE in E.
Let S̃ be a system identical to S (equipped with Hamiltonian HS). The channels Λ1 and Λ2 can be

implemented by unitaries U on SE and V on ESS̃ by

Λ1(κS) = TrS [UκS ⊗ |0⟩⟨0|EU†] (D5)

Λ2(κE) = TrES̃ [V κE ⊗ η ⊗ σV †] (D6)

where

U := |00⟩⟨00|SE + |11⟩⟨10|SE + |01⟩⟨01|SE + |10⟩⟨11|SE , (D7)

V := |0⟩⟨0|E ⊗ 1SS̃ + |1⟩⟨1|E ⊗ USWAP (D8)

where USWAP is the swap operator between S and S̃. Because of HE = 0 and HS = HS̃ , the relations
[U,HS +HE ] = 0 and [V,HE +HS +HS̃ ] = 0 are satisfied. Therefore, we obtain

Fc(Λ1) ≤ F(|0⟩⟨0|) = 0 (D9)

Fc(Λ2) ≤ F(η ⊗ σ) = F(η) + F(σ). (D10)

Since Fc(Λ) ≤ Fc(Λ1) + Fc(Λ2), we obtain (D2).
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Appendix E: Upper bounds (Proofs of Theorems 4 and 5)

We first show Theorem 5, which we later utilize to prove Theorem 4.

Theorem S.6 (Theorem 5 in the main text). Let Λ : S → S′ be an arbitrary quantum channel
admitting a dilation form

Λ(ρ) = TrE′
(
V (ρ⊗ |η⟩⟨η|)V †) (E1)

for some environments E and E′ such that S ⊗ E = S′ ⊗ E′, some unitary V on S ⊗ E, and some
pure incoherent state |η⟩ on E. Then,√

Fϵ
c (Λ) ≤

∆(Htot − V †HtotV )

2ϵ
+

√
2∆(Htot) (E2)

where Htot = HS ⊗ 1E + 1S ⊗HE = HS′ ⊗ 1E′ + 1S′ ⊗HE′ , and ∆(O) is the difference between the
minimum and maximum eigenvalues of an operator O.

Proof. Ref. [33, Theorem 2] shows that an arbitrary unitary channel V(·) = V · V on a system with

Hamiltonian H can be implemented with error ϵ with coherence cost ∆(H−V †HV )
2ϵ +

√
2∆(H). Let Vϵ

be such a channel approximating V satisfying DF (Vϵ,V) ≤ ϵ, and define Λϵ := TrE′ ◦ Vϵ ◦ P|η⟩ where
P|η⟩(ρ) = ρ ⊗ |η⟩⟨η| is a state preparation channel. Noting that P|η⟩ and TrE′ can be implemented
with no coherence cost, we get√

Fc(Λϵ) ≤
√
Fc(Vϵ) ≤

∆(Htot − V †HtotV )

2ϵ
+

√
2∆(Htot). (E3)

Therefore, it suffices to show that DF (Λϵ,Λ) ≤ ϵ, which would ensure that
√
Fϵ
c (Λ) ≤

√
Fc(Λϵ)

and result in the advertised upper bound. This can indeed be checked by

DF (Λϵ,Λ) = DF (TrE′ ◦ Vϵ ◦ P|η⟩,TrE′ ◦ V ◦ P|η⟩)

≤ DF (TrE′ ◦ Vϵ,TrE′ ◦ V)
≤ DF (Vϵ,V)
≤ ϵ

(E4)

where the second line comes from the definition of the channel purified distance (A12), the third line
is because of the data-processing inequality of the purified distance, and the fourth line follows from
the assumption of Vϵ.

We next show Theorem 4, which shows that the lower bound in Theorem 2 is almost tight, where
C(Λ,P) serves as a fundamental quantity that characterizes the coherence cost for a Gibbs-preserving
operation.

Theorem S.7 (Theorem 4 in the main text). For every real number a > 0, there is a pairwise
reversible Gibbs-preserving Operation Λ and a reversible pair P such that C(Λ,P) > 0 and

C(Λ,P)
ϵ

− a ≤
√

Fϵ
c (Λ) ≤

√
2C(Λ,P)
ϵ

+ a. (E5)

Proof. For a given a > 0, consider a qubit system S with Hamiltonian HS = ã|1⟩⟨1| with ã = a/
√
2

and another qubit system S′ with trivial Hamiltonian HS′ = 0. Consider a channel Λ : S → S′ defined
by

Λ(ρ) = ⟨+|ρ|+⟩|0⟩⟨0|+ ⟨−|ρ|−⟩|1⟩⟨1|. (E6)

This is evidently a Gibbs-preserving operation, noting that HS′ = 0. Take the state pair P =
{|+⟩⟨+|, |−⟩⟨−|}. Since both states are reversible under Λ, we have δ(Λ,P) = 0, and C(Λ,P) > 0
can be checked by direct computation. This ensures that Theorem S.2 can be applied, and the lower
bound in (E5) then immediately follows noting that ∆(HS) = ã ≤ a and HS′ = 0.
To get the upper bound, notice that the channel Λ can be implemented by

Λ(ρ) = TrS(V ρ⊗ |0⟩⟨0|S′V †) (E7)
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where V = CNOTSS′ UH ⊗1S′ is a unitary on SS′ where UH is the Hadamard gate and CNOTSS′ is
the CNOT gate controlled on S. Noting that HS′ = 0 and thus Htot = HS ⊗ 1S′ , we get

Htot − V †HtotV = HS ⊗ 1− V †(HS ⊗ 1)V = (HS − UHHSUH)⊗ 1. (E8)

This gives

∆(Htot − V †HtotV ) = ∆(HS − UHHSUH) =
√
2ã. (E9)

On the other hand,

C(Λ,P) = |⟨+|HS − UHHSUH |−⟩| = ã

2
. (E10)

Combining (E9) and (E10) gives

∆(Htot − V †HtotV ) = 2
√
2 C(Λ,P), (E11)

from which the upper bound in (E5) follows by using Theorem S.6 and noting ∆(HS) = ã = a/
√
2

and ∆(HS′) = 0.
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