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Abstract – Commonly, the notion of “quantum chaos” refers to the fast scrambling of information
throughout complex quantum systems undergoing unitary evolution. Motivated by the Krylov
complexity and the operator growth hypothesis, we demonstrate that the entropy of the population
distribution for an operator in time is a useful way to capture the complexity of the internal
information dynamics of a system when subject to an environment and is, in principle, agnostic to
the specific choice of operator basis. We demonstrate its effectiveness for the Sachdev–Ye–Kitaev
(SYK) model, examining the dynamics of the system in both its Krylov basis and the basis of
operator strings. We prove that the former basis minimises spread complexity while the latter is
an eigenbasis for high dissipation. In both cases, we probe the long-time dynamics of the model
and the phenomenological effects of decoherence on the complexity of the dynamics.

Introduction. – In classical mechanics, chaos is of-
ten considered synonymous to an exponential sensitivity
of the trajectories to initial conditions. However, rigor-
ously defining quantum chaos is significantly more difficult
[1]. The first breakthrough for defining chaos in quantum
systems originated in the development of random matrix
theory, independently by Wigner [2] and Dyson [3].

Subsequently, interest in dynamical signatures of chaos
has grown, with much focus on the behaviour of autocor-
relation functions [4], the Loschmidt echo [5], and out-
of-time-order correlation functions (OTOCs) [6, 7]. The
latter, in particular, are notable as they place bounds on
the rate of the spread of information in a system and can
be used to calculate a quantum analogue of the Lyapunov
exponent [8]. However, it has been shown that the bal-
listic spreading of information that leads to the decay of
an OTOC is an indicator of scrambling–the spread of ini-
tially local information throughout a many-body system–a
necessary but not sufficient condition for a system to be
chaotic [9,10]. Much progress in recent years has come by
shifting focus to the hydrodynamical behaviour of many-
body quantum systems [11–17], and the spread of support
of both states and operators [18–20]. For a non-integrable
spin-chain with local interactions, an operator that is ini-
tially local to one site will gain support over different sites
in the chain over time as many-body correlations form.
While this is an intuitive picture, we stress that the growth
of an operator really refers to the increasing support in

Hilbert space, which is a more applicable definition to
models that have non-local interactions.

The operator growth hypothesis (OGH) [21] has gained
significance as a tractable method of calculating the com-
plexity of a system and has placed upper bounds on the
Lyapunov exponent extracted from the OTOC at infinite
temperature. Recent work has explored the competition
and similarities of scrambling and decoherence [22–29].
Decoherence is a channel for information from the system
to leak into the environment, as opposed to being spread
into entanglement structures in a many-body system. The
OTOC has been shown to not distinguish between these
two effects [22], meaning that other measures must be used
in the open system setting.

Complex spacing ratios [30] and dissipative form factors
[31] have been developed to characterise the level repul-
sion for chaotic systems in dissipative and non-Hermitian
settings, where the spectrum is no longer purely real. Ex-
traction of complexity or growth rates in general open set-
tings is less clear. While successful for closed systems, the
methods of the OGH must be modified to be used with
systems described by a Lindblad master equation. Fur-
ther still, it is not clear if the methods prescribed by the
OGH can be applied to more general maps such as those
that give rise to non-Markovian evolution.

This provides the starting point of our work, in which
we propose a tractable method for characterising chaotic
dynamics and operator complexity in open quantum sys-
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tems. In particular, we introduce the operator spread en-
tropy as a general notion for examining operator growth
that provides a measure of complexity as well as allowing
for insights into the operator population dynamics. Cru-
cially, the spread entropy does not prescribe a particular
basis, and therefore in principle any suitable basis can
capture the same qualitative behaviour for the spread en-
tropy as the Krylov basis. We apply our framework to the
Sachdev-Ye-Kitaev (SYK) model, probing the late time
dynamics under decoherence, complementing recent work
on operator complexity and decoherence [32,33].

Operator Growth and the Bi-Lanczos Algo-
rithm. – The OGH [21] defines an analogue of the clas-
sical Lyapunov exponent even for quantum systems which
may not have a well-defined semi-classical limit. To de-
termine the growth rate, consider a system described by
a Hamiltonian H, and an initially local Hermitian opera-
tor, X0, which one may view as a “vector” in the operator
Hilbert space, denoted by |X0). The operator evolves un-
der the action of the superoperator L.
The Maclaurin series expansion of the operator follows

as |Xt) = eiLt |X0) =
∑

n
(it)n

n! Ln |X0). In the closed case
L• := [H, •], and operators that do not correspond to a
conserved quantity with respect to the Hamiltonian will
spread in support with repeated applications of this com-
mutator. All of the information about the evolution of
the operator is therefore contained in the set {Ln |X0)},
which is intuitively the minimal basis needed to encode
the dynamics.

We will focus on the case when the time evolution of an
operator X0 is governed by a Markovian Lindblad master
equation

dX0

dt
= iLX0,

= i[H,X0] +
∑
n

µn[±L†
nX0Ln − 1

2
{L†

nLn, X0}],

(1)

where “ − ” is taken when both the operator X0 and the
jump operators Ln are fermionic [34] and “ + ” other-
wise. To create a basis for the dynamics from {Ln |X0)}
we first need to define an inner product. Due to an inher-
ent ambiguity over what inner product one should take at
finite temperatures [21,35], we choose to take the infinite-
temperature inner product (A|B) := Tr[A†B]/Tr[1].
A variety of methods to create an orthonormal basis

in this setting have been explored [34, 36–39]. We shall
focus on the bi-Lanczos algorithm [40] which satisfies the
conditions for being a “K-complexity” as defined in [21],
and recovers the Lanczos algorithm for zero decoherence.
The bi-Lanczos algorithm evolves the left and right vec-

tors of X0 separately, enforcing orthonormality between
elements of each set. This recipe leads to a tri-diagonal
structure, with diagonal coefficients an, and super- and
sub-diagonal coefficients bn and cn. Taking the initial val-
ues of b0 = c0 = 0, the bi-Lanczos algorithm proceeds with

the following steps

|An) := (L − an−1) |On−1)− cn−1 |On−2) ,

|Bn) := (L† − a∗n−1) |On−1)− bn−1 |On−2) ,

|On) := b−1
n |An) , ˜(On| = c−1

n (Bn| , with

an :=
(
Õn|L|On

)
, bn =

√
(An|An), cn =

√
(Bn|An)

bn
.

(2)
The algorithm terminates when bn=0 for finite systems or
when successive Krylov basis elements align. We output
two sets of vectors for which we have the orthogonality

relation
(
Õn|Om

)
= δnm, where we remark that each set

by itself is not necessarily orthogonal and in the bi-Lanczos
basis the superoperator takes the tridiagonal form

L =
∑
n,m

(
Õn|L|Om

)
|On) (Õm| =


a0 b1 0 · · ·
c1 a1 b2 · · ·
0 c2 a2 · · ·
...

...
...

. . .

 .

(3)
The superoperator is analogous to the tight-binding

chain, which we will refer to as the “Krylov chain”. In this
picture, the operator “hops” to higher basis elements in
the Krylov chain over time, with higher-n elements generi-
cally having larger support. We can write the time-evolved
operator in both spaces as

|Xt) =
∑
n=0

inϕn(t) |On) , (Xt| =
∑
n=0

(−i)nφ∗
n(t)

˜(On|.

(4)
We can use the Krylov basis to define a dynamical indica-
tor of scrambling, the Krylov complexity

K(t) =

∑MK−1
n=0 nφ∗

n(t)ϕn(t)∑MK−1
n=0 φ∗

n(t)ϕn(t)
, (5)

where MK is the dimension of Krylov space. Due to the
fact that the norm of the operator is not preserved in time
for open dynamics, we have to renormalise the popula-
tions. We can interpret eq. (5) as the expected position on
the Krylov chain that the operator lies on i.e. how deeply
it has saturated into the Krylov basis. Closer study of the
Krylov complexity has given additional insight into the op-
erator growth [41, 42], deriving the conditions needed for
a model to saturate an upper bound on its rate of change.
The SYK model is such a system.

Finally, we note that the an coefficients are purely imag-
inary, while the bn and cn are purely real. In the limit of
closed system dynamics µ → 0, we have an → 0, cn → bn
and φn → ϕn, recovering both the Krylov basis and the
Krylov complexity of the closed dynamics which forms the
foundation of the OGH [21].

In the closed case, the OGH states that the asymp-
totic growth of the Lanczos coefficients is maximal for
chaotic systems. Specifically, this is characterised by a
linear rate, α > 0, such that bn = αn + γ where γ is a
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constant. The OGH has been successful in demonstrating
the linear growth of Lanczos coefficients for chaotic sys-
tems, both analytically and numerically, for a number of
models [43–46]. However, while chaotic systems exhibit
a linear growth in the Lanczos coefficients, unstable yet
integrable systems may do the same [47, 48]. Thus, chaos
implies a linear growth in the Lanczos coefficients, but the
converse does not necessarily follow.

As we will see, for the open case the Krylov basis out-
put by the bi-Lanczos algorithm is the minimal basis for
describing the dynamics of a particular operator, making
it the natural choice of basis from which to extract univer-
sal behaviour. We use it to probe the long time dynamics
of the SYK model under decoherence, and demonstrate
its usefulness as a basis for the operator spread complex-
ity. While the bi-Lanczos algorithm lets us probe operator
complexity for dynamics generated by a Markovian Lind-
bladian, it remains to be seen how one can generate the
Krylov basis for general open system dynamics, or even
those for which the superoperator is not accessible such as
a collision model [49,50].

Operator Spread Complexity. – Motivated by the
OGH and the complexity spread of states [18], we now de-
fine an operator complexity measure for general dynamics.
Consider a general orthonormal Hermitian operator basis
G = {|Gn)}. The normalised overlap of an operator, |Xt),
at a time t with the nth element of this basis is

PG(n, t) =
|(Gn|Xt)|2∑
m |(Gm|Xt)|2

. (6)

The population distribution of an operator can be used
to study the onset of quantum chaos and has been shown
to be intrinsically related to the OTOC [51,52]. To turn it
into a measure of complexity we first demand that |G0) =
|X0). The extent of the operator in a given basis [53], or
the effective size of the Hilbert space needed to describe
the dynamics up to time t given by the complexity (which
can be recognised as both the diversity [54] and perplexity
[55] of a distribution)

CG(t) = eFG(t), (7)

where FG(t) = −
∑

n PG(n, t) logPG(n, t) is the Shannon
entropy for the operator distribution. For t = 0 we have
CG(0) = 1, which increases with time due to scrambling
of the operator, ultimately saturating at long times if the
operator is maximally spread over all available basis ele-
ments.

Two things must be noted about this measure: Firstly,
we must choose a-priori a basis to measure the spread of
the system over. Secondly, this measure distinguishes av-
erage operator size and complexity. For instance, consider
a spin chain system described using a basis constructed
from the strings of Pauli matrices. One could imagine a
scenario where the time evolved operator has full spatial
support over the chain, but is nevertheless “simply” a lin-
ear combination of a few strings of this maximal length.

The spread complexity will be low in this case, thus re-
flecting its low complexity in the bulk of the spin chain.
It is therefore relevant to consider whether other bases,
aside from the minimal one, capture operator dynamics
accurately.

Minimisation of the spread complexity. – To
show that the Krylov basis minimises the operator spread
complexity we will utilise a similar approach as that given
for the spread complexity of a state derived in Ref. [18].

Taking k derivatives of eq. (6) gives

P
(k)
G (n, t) =

∂kPG(n, t)

∂kt
(8)

=

∑k
j=0 i

k(−1)j
(
k
j

)
(Xt| L†j |Gn) (Gn| Lk−j |Xt)

∥Xt∥2

+
(Xt|Gn) (Gn|Xt) ∂t∥Xt∥2

∥Xt∥4
,

where we recognise that
∑

n |(Gn|Xt)|2 = ∥Xt∥2 for a
complete basis. Let us assume for both a general basis, G,
and the Krylov basis {|On)} ∈ K that the first element,
i.e, n = 0, is X0, and that the following m − 1 elements
are common to both. Therefore for n < m, we have that

P
(k)
K (n, t) = P

(k)
G (n, t).

Lemma If the first m elements of G are those of K then

P
(k)
G (n, 0) = 0 for n ≥ m and k < 2m.

Proof. From eq. (8) we see that P
(k)
G (n, 0) has at most

k applications of the superoperator to |X0). Taking k <
m, it is clear that (Gn| Lk |X0) = (X0| L†k |Gn) = 0 for
n ≥ m and k < m as Lk |X0) requires at least k = m
applications of L to generate overlap with the first element
of G that is not also a Krylov element, |Gm). We note
that for all n > 0, the final term in eq. (8) is zero at
t = 0 as (Gn|X0) = δn,0. For k < 2m, all of the terms in

the sum for P
(k)
G (n, 0) will be zero as either (X0| L†j |Gn)

or (Gn| Lk−j |X0) will involve less than m applications of
the superoperator to |X0), making it zero by the same
argument, proving the lemma. □

It is clear that the spread complexity only begins to
differ between the two cases when n ≥ m. We write the
Shannon entropy of the terms that differ from the Krylov
basis as

Fn≥m(t) = −
∑
n≥m

PG(n, t) logPG(n, t). (9)

We are interested in the behaviour of PG(n, t) when n ≥ m.
We invoke the lemma to identify that the first non-zero
term in the Taylor series expansion around t = 0 occurs
when k = 2m,

PG(n, t) =
∑
k

P
(k)
G (n, 0)tk

k!

=
P

(2m)
G (n, 0)t2m

(2m)!
+O(t2m+1). (10)
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We substitute in eq. (10), and split the logarithm term
into two separate parts

Fn≥m(t) = − log(t)t2m

(2m− 1)!

∑
n≥m

P
(2m)
G (n, 0) (11)

−
∑
n≥m

P
(2m)
G (n, 0)t2m

(2m)!
log

[
P

(2m)
G (n, 0)/(2m)!

]
.

The non-zero part of P
(2m)
G (n, 0) can be written as

P
(2m)
G (n, 0) =

(
2m

m

)
(X0| L†m |Gn) (Gn| Lm |X0) , (12)

noting that ∥X0∥ = 1 and that the final term in eq. (8) is
zero for all n > 0. The non-zero contribution here comes
from |Y ), which is the part of Lm |X0) orthogonal to the
first m basis elements. We then write∑

n≥m

P
(2m)
G (n, 0) =

∑
n≥m

(
2m

m

)
(Y |Gn) (Gn|Y ) . (13)

As |Y ) is orthogonal to the first m elements of the basis,
we can extend this sum to start at zero, and invoke the
completeness of G to write∑

n≥m

P
(2m)
G (n, 0) =

(
2m

m

)
(Y |Y ) , (14)

which greatly simplifies the first part eq. (11) into some-
thing that is basis independent. The second term has the

form f(x) = x
(2m)! log

x
(2m)! with x = P

(2m)
G (n, 0), which

is a convex function that is negative for the domain con-

sidered. P
(2m)
G (n, 0) is a positive number for which the

sequence (αi) =
((

2m
m

)
(Y |Y ) , 0, 0, ...0

)
trivially majorises

any other sequence (βi) of positive numbers that add to(
2m
m

)
(Y |Y ). This implies, by Karamata’s inequality [56],

that
∑
f(αi) ≥

∑
f(βi), i.e., that the entropy (once we

take the overall minus sign) is always greater than or equal

to the case where
∑

n≥m P
(2m)
G (n, 0) has only contribution

from a single basis element, meaning that the Krylov ba-
sis element |Om) must be part of the basis to minimise
this term, allowing us (by induction) to conclude that the
Krylov basis minimises the entropy for the population dis-
tribution for both closed evolution and under dynamics
generated by a Markovian Lindbladian.

Sachdev-Ye-Kitaev Model. – To demonstrate our
framework, we analyze the SYK model, which consists
of N interacting Majorana fermions. This system is a
paradigmatic model of quantum chaos [57]. Majorana
fermions, ψi, are defined through their anticommutation
relation {ψi, ψj} = δij and the dimension of the Hilbert
space of N Majorana fermions is 2N/2. The SYK model
is an all-to-all coupled model with the Hamiltonian

HSYK = (i)q/2
∑

1≤i1<i2<...<iq≤N

Ji1i2...iqψi1ψi2 ...ψiq ,

(15)

where q denotes the number of fermions that interact in
a vertex, q = 2 being an integrable free fermion model,
and q > 2 giving rise to chaotic behaviour. The sum is
ordered in such a way as to include interactions between
any q fermions once, and the interaction strength is a real
number Ji1i2...iq drawn from a random Gaussian distribu-
tion with a zero mean and a variance

J2
i1i2...iq

=
J2(q − 1)!

Nq−1
, (16)

where the overline denotes the disorder average.
The SYK model is both a maximally chaotic model

(viewed through the framework of the operator growth
hypothesis [21]) and a fast scrambler (its scrambling time
scales logarithmically with the number of degrees of free-
dom of the system [58, 59]). Other models also have this
type of behaviour, such as random unitary circuits [58,59],
but the SYK is notable in that it is analytically solvable
in the thermodynamic limit. Importantly, it saturates the
bound on the rate of change of Krylov complexity [41,42].

While the SYK and its symmetries are well understood
as a closed many-body system, only recently has its open
dynamical behaviour been examined [60–64].

Operator growth and spread complexity for the
open SYK model. – We consider a Markovian Lind-
blad master equation for the SYKmodel as given by eq. (1)
with the minus sign taken. The fermionic jump operators
are Ln =

√
µψn where µ governs the strength of the dis-

sipation. We write it as L = LU + LD where

LU• = [HSYK , •], (17)

LD• = iµ

N∑
n=1

(
ψn • ψn +

1

4

{
1, •

})
, (18)

and we have used the anticommutation relation of the Ma-
jorana operators and that they are Hermitian.

As we shall discuss, the action of the dissipative part of
the master equation leads to a dampening of the Majorana
string terms contributing to the time evolved operator at
a rate proportional to their size. We define a Majorana
string Si of length si to be an operator formed as a prod-
uct of si Majorana fermions ordered such that the indices
are in ascending order from left to right, e.g., ψ1ψ3ψ7 is
a string of length three. We will use the set of Majorana
strings as an orthonormal basis for the spread complex-
ity of the SYK model. For the q = 4 SYK model under
dissipation, we only need half of the complete basis since
only strings of Majorana fermions of odd length can be
generated by the interaction vertices provided the initial
operator has odd length. Unlike the Krylov basis for the
SYK model, this basis is fixed and identical for each it-
eration for the SYK model. As a basis it is physically
well-motivated as it can be directly used to track the size
of operators [65].

We begin by showing that decoherence decreases com-
plexity and Krylov space dimension. We assume an initial
operator X0 =

∑
i piSi.
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Fig. 1: Dynamics for the open SYKmodel withN = 8 and 200 disorder realisations. Variance is shown as a shaded region (scaled
to 20% of its value in panel (a) for clarity). (a) The average Krylov complexity (eq. (5)) with µ/J = 0.0, 0.025, 0.05, 0.075, 0.1
corresponding to blue, orange, green, red, and black, respectively. (b) The average Krylov complexity at Jt = 120 vs decoherence
strength µ/J . (c) The average dimension of the Krylov space for the dynamics vs µ/J .

Considering the action of the non-unitary, decohering
term on one of the strings for now, we find

LDSi = iµ

N∑
n=1

ψnSiψn + iµ
N

2
Si. (19)

Now, we anticommute the first ψn through Si which will
allow us to then square it to 1/2. This typically takes si
anticommutations to move it through, unless ψn appears
in the string Si, in which case it takes si − 1. This leaves
us with

LDSi =
iµ

2

[
(−1)si(N − si) + (−1)si−1si +N

]
Si. (20)

Depending on whether si is odd or even, the right-hand
side reads iµsiSi or iµ(N − si)Si respectively. It is clear
that once we apply the same process to each of the strings
that appear in a linear combination to make X0, we obtain
an operator that is co-linear with X0

LDX0 = iµ
∑
i

αipiSi, (21)

where αi = si or N−si depending on whether si is odd or
even. Note that for our purposes, only odd strings are rele-
vant for the dynamics, meaning that the decoherence term
dampens strings at a rate proportional to their length. It
is clear that the unitary part is the source of the new op-
erators appearing in the support of the time evolved oper-
ator to Majorana strings not originally present in X0, as
described in [65]. In the limit of very strong decoherence,
the Lindbladian does not generate any new support from
its action on the initial operator, so viewed through the
lens of the Lanczos algorithm, it terminates immediately,
giving MK = 1.

This has similarities to Ref. [32], where the model of
decoherence acts like a measurement operator that is sen-
sitive to the string length. This string length measurement
has the same form as an isotropic dephasing on each site
in their random unitary circuit. The interplay between

information scrambling and decoherence interpolates be-
tween the closed case, where the system generates as much
support as is available to it, and the “Zeno-blocked” case
where decoherence term is measuring the initial string suf-
ficiently strongly such that it does not grow in support. In
the limit of strong decoherence, the operator evolves as

Xt ≈
∑
i

pie
−µsitSi. (22)

Thus, in the limit of strong decoherence, we see that any
operator strings are eigenoperators for the Lindbladian.

We next compare how the two bases–the Krylov basis K
generated from applying the bi-Lanczos algorithm and the
Majorana string basis S [32,65]–capture the spread com-
plexity. Clearly the Krylov basis is the natural choice to
examine universal behaviour and growth rates for systems.
However, the latter is arguably a more natural basis for
understanding the dynamics explicitly in terms of length
of operator size. We fix

√
2ψ1 as the initial operator.

Figure 1(a) depicts the Krylov complexity for the open
SYK model for a range of dissipation strengths, where
we average over 200 realisations to account for the ran-
dom couplings. We also show the closed case (topmost
blue line), i.e., µ = 0, where the bi-Lanczos algorithm
reduces to the regular Lanczos algorithm. We see that
initial growth in the closed case and under weak decoher-
ence is similar, however they saturate at different levels.
The saturation level of the Krylov complexity for a range
of decoherence strengths is shown in Fig. 1(b). Its de-
creasing value as the open system effects become stronger
indicates that information scrambles less throughout the
system when subject to decoherence and the dynamics be-
come less “complex”. Why the complexity of the dynamics
is reduced under decoherence becomes clear when we plot
the dimension of the Krylov basis for the SYK Lindbla-
dian vs decoherence strength in Fig. 1(c). The scaling
of the complexity naturally corresponds to the scaling of
the Krylov space. This suggests a competition between
information loss to the environment and the ability for a
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Fig. 2: Dynamics for the open SYK model with N = 8 and
200 disorder realisations with µ/J = 0.0, 0.025, 0.05, 0.075, 0.1
corresponding to blue, orange, green, red, and black, respec-
tively. Variance is shown as a shaded region scaled to 20 % of
its value for clarity. (a) Average spread complexity eq. (7) in
the Krylov basis. (b) Average spread complexity in the string
basis.

system to scramble its information internally.

Somewhat naturally, the cardinality of the Krylov ba-
sis appears as the quantity to infer the scrambling na-
ture of a system. However, only the Krylov complexity,
which weighs the contribution of the basis elements, is
a genuninely dynamical quantity from which scrambling
times and growth rates can be derived. Hence, we plot
the operator spread complexity eq. (7) vs time in Fig. 2.
Both the Krylov and string bases show the same hierarchy
in spread complexity for different decoherence strengths.
The rapid early growth of spread complexity in the string
basis case comes from the inherent non-local nature of the
SYK model. A few applications of the superoperator is all
that is needed to have contributions from all strings in the
basis. We postulate that for a local model, the qualitative
growth of the spread complexity in both the Krylov and
(Majorana or Pauli) string bases should be similar, as the
dynamics in the Krylov basis are that of a tight-binding
chain. This opens the door to moving past Markovian dy-
namics, allowing to assess whether information back flow
into the system has a potential competing effect alongside
decoherence and internal scrambling. Maps that gener-

ate dynamics with information back flow, even if they can
be written in a master equation form, are not amenable
to the bi-Lanczos approach. A pre-chosen basis, such as
the string basis, removes this roadblock. Since this basis
still allows to accurately capture the correct qualitative
behavior as evidenced from Fig. 2, it therefore allows one
to study the operator complexity in more general settings.

Concluding remarks. – We have explored competi-
tion between information scrambling within a system with
information leakage to the environment as described by a
Markovian master equation. We demonstrated that the
Krylov basis, constructed via the bi-Lanczos algorithm,
minimises the spread complexity and showed that quali-
tatively consistent operator dynamics can be captured by
considering other suitable bases. Regardless of the spe-
cific choice of basis, we established that decoherence caps
the size of operators, consistent with earlier results in the
thermodynamic limit [33]. Our results demonstrate that a
basis other than the minimal one can still provide insight
into the spread complexity of operator dynamics, open-
ing the possibility to explore the effect of the backflow of
information on the competition between scrambling and
decoherence. A natural framework for these is using mas-
ter equations with time-dependent rates [66] or collision
models with non-zero Markov order.
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