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We analyse the motion of a flagellated bacterium in a two-fluid medium using slender
body theory. The two-fluid model is useful for describing a body moving through a
complex fluid with a microstructure whose length scale is comparable to the characteristic
scale of the body. This is true for bacterial motion in biological fluids (entangled polymer
solutions), where the entanglement results in a porous microstructure with typical pore
diameters comparable to or larger than the flagellar bundle diameter but smaller than the
diameter of the bacterial head. Thus the polymer and solvent satisfy different boundary
conditions on the flagellar bundle and move with different velocities close to it. This gives
rise to a screening length LB within which the fluids exchange momentum and the relative
velocity between the two fluids decays. In this work, both the solvent and polymer of
the two-fluid medium are modeled as Newtonian fluids with different viscosities µs and
µp (viscosity ratio λ = µp/µs), thereby capturing the effects solely introduced by the
microstructure of the complex fluid. From our calculations, we observe an increased drag
anisotropy for a rigid, slender flagellar bundle moving through this two-fluid medium,
resulting in an enhanced swimming velocity of the organism. The results are sensitive to
the interaction between the bundle and the polymer and we discuss two physical scenarios
corresponding to two types of interaction. Our model provides an explanation for the
experimentally observed enhancement of swimming velocity of bacteria in entangled
polymer solutions and motivates further experimental investigations.

Key words:

1. Introduction

Pathogenic bacteria are a persistent threat to human health incurring a heavy
cost on the healthcare system (Jean et al. 1996). The motility of bacteria is an
essential mechanism with which pathogens reach the membranes of susceptible cells or
form harmful biofilms on tissues and implants (Jarrel & McBride 2008; Kearns 2010;
Ottemann & Miller 1997). The majority of the cells and tissues prone to pathogenic
infections in the human body are lined with a multi-scale complex biological fluid. For
instance, the mucosal surfaces in the body including the epithelial cells in the respiratory
tract, the human intestines, the urinary tract, the eyes etc. are lined with a slimy
hydro-gel known as mucus (McShane et al. 2021). These are complex fluids, meaning
that they possess a microstructure and often exhibit non-Newtonian rheology, which is
a function of length scale. Therefore, a fundamental understanding of how the rheology
and microstructure of biological fluids affect the motion of a swimming bacterium has
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applications ranging from designing therapeutic techniques by changing the properties of
the biological fluids (Werlang et al. 2019) to designing synthetic swimmers for targeted
drug delivery (Xiea et al. 2020; Huang et al. 2019; Ghosh & Ghosh 2021), and developing
gene regulatory programs for bacteria to name a few. In this work, we develop a two-
fluid model, where the complex fluid is modeled as a coupled, interpenetrating medium
of two Newtonian fluids, and we analyse the motion of a flagellated bacterium (like
Eschericia Coli) in it. This Newtonian model captures the effect of the microstructure
present in these complex biological fluids by allowing for a relative motion between the
solvent and polymer. This relative motion results from the fact that, in a fluid with
microstructure having a length scale comparable to that of the flagellar bundle of the
bacterium, the bundle interacts differently with the solvent and the polymer exerting
different forces on the two fluids. The model can be directly extended to a complex fluid
with non-Newtonian rheology, using which, the combined effects of microstructure and
non-Newtonian rheology of the complex biological fluid on the swimming bacterium can
be analysed by numerical simulations.
The motion of swimming microorganisms in Newtonian fluids has been a well-studied

problem for decades (Purcell 1977; Berg & Anderson 1973; Subramanian & Nott 2011;
Lauga & Powers 2009). Microorganisms, owing to their small size, essentially swim
in a low Reynolds number (Re) environment, where viscous effects dominate inertial
effects. In this Stokesian regime, the fluid flow is quasi-steady and linear making the
flow time-reversal invariant. Therefore, the usual swimming strategies at the macro-
scopic scale, like periodic paddling motion, are ineffective and will result in no net
motion (Ludwig 1930). To overcome this, microorganisms have evolved several successful
propulsion strategies. There are many variations of these strategies among swimming
microorganisms and several types of organisms exist that swim in low Reynolds number
environments using different means (Subramanian & Nott 2011; Lauga & Powers 2009).
Specifically, there are two broad families of microorganisms namely prokaryotes (e.g.
bacteria) and eukaryotes (e.g. sperm cells), and in this work, we restrict our attention
to the motion of flagellated bacteria (prokaryotes). Berg & Anderson (1973) showed
that swimming bacteria, like Escherichia Coli and Salmonella Typhimurium, break the
Stokesian symmetry by means of a rotating appendage - the flagellar bundle, made up of
multiple individual flagellar filaments. The flagellum is a slender filament attached to the
head of the bacterium by a hook and rotated by a molecular motor (Berg 2003). E.Coli
have prolate spheroidal heads of typical length 2−3µm and width 1−2µm. The flagellar
filament of E.Coli has a diameter of ≈ 20nm and traces out a helix with contour length
≈ 10µm. In the absence of external forces and moments, the helix is typically left-handed
with a pitch ≈ 2.5µm and a helical diameter ≈ 0.5µm (Turner et al. 2000). There are
typically ∼ 5− 8 flagellar filaments per cell of E.Coli. When all the motors rotate in the
same direction, all the filaments wrap into a helical bundle of diameter ≈ 60 − 80nm
and rotate in unison. This generates thrust due to an anisotropy in the drag experienced
by the flagellar bundle (Lauga & Powers 2009), propelling the bacterium forward - the
motion being called a run. When one or more of the motors reverse, the corresponding
filaments leave the bundle and undergo ‘polymorphic’ transformations which change the
swimming direction of the cell - this process being called tumbling. Thus bacteria exhibit
run and tumble motion in a fluid medium. This motion of bacteria in Newtonian fluids
has been successfully modeled by resistive force theory (RFT) (Gray & Hancock 1955;
Chwang & Wu 1971) and slender body theory (SBT) (Batchelor 1970; Cox 1970; Johnson
1980), which treat the helical flagellar bundle as a slender fiber moving through a viscous
fluid. Recently, these theories for slender objects have been experimentally verified by
Rodenborn et al. (2013), by comparing experimentally measured values of thrust, drag
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and torque on a slender helical fiber, that was rotated and translated in a viscous fluid,
with those values predicted by the theories.
While the preceding discussion addressed bacterial motion in Newtonian fluids,

bacterial motility in complex fluids is still an open question in many ways. There
are several interesting characteristics exhibited by swimming bacteria in complex
fluids (Spagnolie & Underhill 2023). While the class of complex fluids is enormous, most
of the attention so far has been centered on one type of complex fluid, namely, polymer
solutions. The major motivation for this is that several biological fluids, which these
organisms typically encounter, are polymer solutions (Lauga & Powers 2009). In these
fluids, for instance, bacteria are known to swim in straighter trajectories (Patteson et al.
2015), exhibit less frequent tumbling (Qu & Breuer 2020), and form a flagellar bundle
more rapidly (Qu et al. 2018).
A fundamental understanding of the aforementioned phenomena necessitates a thor-

ough understanding of the swimming motion of bacteria in polymer solutions. Polymer
solutions are non-Newtonian fluids possessing three primary characteristics namely: (i)
viscoelasticity, (ii) shear-dependent viscosity, and (iii) a microstructure, and several
studies have tried to understand the relative importance of these factors on the swim-
ming motion of bacteria. Earlier theoretical studies on simple geometries like waving
sheets (Lauga 2007) and waving filaments (Fu et al. 2007; Fu et.al 2009) in viscoelas-
tic polymer solutions with shear-independent viscosities (Boger fluids) as the swim-
ming media, showed that the propulsive velocities of the sheets and fibers are smaller
in viscoelastic fluids than in Newtonian solvents since the polymer solutions always
have a larger viscosity than the Newtonian solvents (even with shear-thinning). How-
ever, later theoretical studies (Teran et al. 2010; Spagnolie et al. 2013; Thomases & Guy
2014; Riley & Lauga 2014) on undulating sheets and helices, and experimental stud-
ies (Liu et al. 2011; Espionsa-Garcia et al. 2013) on artificial swimmers, extended the
results of the earlier ones to show that swimming enhancement can result in a viscoelastic
(Boger) media due to several factors like large amplitude oscillations(Spagnolie et al.
2013; Liu et al. 2011), stress-singularities at filament/sheet ends(Teran et al. 2010), dy-
namic balance of stresses(Riley & Lauga 2014), flexibility(Espionsa-Garcia et al. 2013)
and (elastic) stress-asymmetry(Thomases & Guy 2014). These results suggested that in
viscoelastic media, the motion of microswimmers is highly dependent on the geometry
of the swimmer, the generated waveform and the relaxation time of the medium, owing
to its non-linearity.
Experiments with actual bacteria, such as E.Coli, in shear-thinning, viscoelastic poly-

mer solutions reported specifically that they swim at higher speeds than in Newtonian liq-
uids having the same shear viscosity (Berg & Turner 1979; Patteson et al. 2015; Qu et al.
2018). These studies proposed that shear-thinning of the polymer near the flagellar bun-
dle, owing to its fast rotation, contributes most to the observed swimming enhancement
of bacteria for polymers with small relaxation times (low De; De being the Deborah
number defined as the ratio of the polymer relaxation time to the flow time scale),
while viscoelastic effects like normal stress differences and elastic stresses contribute
significantly to enhancement with high relaxation time polymers (high De) (Qu & Breuer
2020). This has motivated theoretical models (Man & Lauga 2015), which use a two-layer
approximation of the polymer solutions at low De - with a layer of lower viscosity near
the flagellar bundle and a layer of larger viscosity on the scale of the cell, that explain
the observed experimental results. The experiments and the theoretical model mentioned
above correspond to viscoelastic polymer solutions, with small polymer concentrations
(c < c∗; c is polymer concentration and c∗ is overlap concentration) as the swimming
media, but biological fluids are usually concentrated polymer solutions (c > c∗)).
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There are not many experimental or theoretical studies that address the fluid me-
chanics of bacterial motion in concentrated polymer solutions. Berg & Turner (1979)
first showed that bacteria can swim with higher velocities in concentrated polymer
solutions, compared to polymer solutions with short chained polymers having same
viscosity, but they wrongly attributed this enhancement to the presence of bacteria sized
pores in the polymer network, which do not exist. Magariyama & Kudo (2002) used this
idea to develop a theory, which used different viscosities (resistances) for translation
and rotation of both the head and flagellar bundle in a fluid medium modeling the
entangled polymer solution. More recently, an experimental study by Martinez et al.
(2014) also showed that an enhancement in swimming speed is observed in a concentrated
polymer solution (c ∼ c∗), and the explanation offered was a combination of shear
thinning and depletion of polymers from the vicinity of flagellar bundle, essentially
making the flagellar bundle swim through a fluid of small viscosity. However, this
explanation is not consistent with the fact, that for the polymer solution used in the
experiment (Martinez et al. 2014), rheological measurements do not show significant
shear thinning at the shear rates assumed near the flagellar bundle, with the shear
rate directly proportional to the bundle rotation rate. Moreover, the authors do not
provide any explanation for there to be a depletion of polymers near the flagellar bundle.
A computational work by Zottl & Yeomans (2019) on a bacterium swimming through
a concentrated polymer solution showed an enhancement due to depletion of polymers
near the flagellar bundle. The authors used coarse-grained molecular dynamics (MD)
simulations, where the polymer was modeled as a chain of spherical (monomer) beads
which were large, resulting in few degrees of freedom for the chain, and the observed
depletion near the bundle may therefore be an overestimate that does not correspond to
the actual scenario.
Recently the work of Kamdar et al. (2022) has shown that, in the dilute and semi-

dilute regimes, c . c∗, the colloidal nature of the polymer solutions quantitatively
explain the observed swimming enhancement in the aforementioned experiments, where
the enhancement scales with the radius of gyration of the polymer chains, and polymer
dynamics may not be essential for capturing the phenomena. This suggests that the length
scale of the polymer chains (microstructure) may be more relevant in this regime. Notably,
the results of Kamdar et al. (2022) with colloidal suspensions also quantitatively explain
other features, namely, straighter trajectories of bacteria, reduced tumbling frequency
etc., which were observed in the earlier experiments with dilute polymer solutions. Their
findings seem to imply that the length scale of the polymer chains (microstructure),
could be the most relevant parameter affecting the swimming velocity directly in dilute
and semi-dilute polymer solutions, while viscoelasticity leads to other consequences like
straight trajectories, reduced tumbling etc., which affect velocity indirectly.
In concentrated polymer solutions, the question of relative importance of these charac-

teristics on swimming motion is yet to be answered satisfactorily. Concentrated polymer
solutions also exhibit shear-dependent viscosity and viscoelastic stresses, and crucially,
they are entangled and possess a porous microstructure, where in some cases, the pore
sizes may be comparable to the thickness of the flagellar bundle, but not the head of the
bacterium. For instance, it is known that mucus has a microstructure that resembles a
mesh, where the mucin filaments form a complicated network of entangled polymer fibers
with pores (∼ 100nm (in humans)− 400nm (in horses) Kirch et al. (2012)), which are
larger than the flagellar bundle diameter (∼ 60 − 80nm Turner et al. (2000)) and are
filled with the Newtonian solvent (Lai et al. 2011; Cone 2009). Notably, unlike dilute
solutions, their viscoelastic response and shear-dependent viscosity cannot be explained
by analogy to colloidal suspensions, and therefore the model of Kamdar et al. (2022)
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cannot be applied. Also, the theoretical models mentioned earlier (Magariyama & Kudo
2002; Man & Lauga 2015; Martinez et al. 2014; Zottl & Yeomans 2019) assume bacteria
sized pores, significant shear thinning or depletion near the flagellar bundle, and these
assumptions are inappropriate for an entangled polymer solution like mucus. In such a
medium, rather than a physical depletion of polymers or shear thinning, one has the
flagellar bundle interacting differently with the solvent and polymer, exerting different
forces on them, owing to the porous microstructure with pores having nearly the same
size as the bundle diameter. This results in a relative motion between the solvent and
polymer near the bundle, owing to the solvent and polymer being forced differently by it.
Some earlier studies of waving sheets in entangled networks (Fu et.al 2010; Wada 2010;
Du et.al 2012) have used this idea, with the polymer being treated as a purely elastic
medium. They have not however used the model with helical geometries, like the flagellar
bundle of a bacterium, which requires a slender body treatment and the polymer network
in biological fluids like mucus are not perfectly elastic.
In this work, we propose a two-fluid model to accurately capture the effect of mi-

crostructure in an entangled polymer solution like mucus, wherein the pore scale is
comparable to or larger than the diameter of the flagellar bundle. In our model, the
polymer and solvent are both treated as Newtonian fluids with different viscosities µp

and µs; λ = µp/µs being the viscosity ratio. This Newtonian approximation for the
polymer is valid if the polymer has small non-Newtonian effects, with De ≪ 1, an
assumption that is fairly representative of the polymer solutions used in the experiments
ofMartinez et al. (2014); Qu & Breuer (2020). In such a scenario, the flagellar bundle
directly forces the solvent present in the pores, which then transmits the stresses to
the polymer. These two fluids therefore move relative to each other leading to a Darcy
drag term in the governing equations and hence a screening length LB, within which the
relative velocity of the two fluids decays. The resulting equations for the relative velocity
of the solvent and polymer are similar to the Brinkman equations for flow through a
porous media (Brinkman 1947). Some earlier studies have developed resistive force theory
(RFT) for a slender body (Howells 1998; Leshansky 2009) and a bacterium swimming in
a Brinkman medium (Chen et.al. 2020). In these studies, the pores result from a sparse
random distribution of rigid bodies, whereas in this study, the porous structure results
from polymers, which are also subject to motion. We first analyse the motion of a slender
helical fiber in such a medium using slender body theory (SBT), and then use RFT
to analyse the motion of a bacterium with a helical flagellar bundle in this medium.
Our analysis indicates that bacterial motion is sensitive to the nature of the interaction
between the flagellar bundle and the polymer, and predicts an increased drag anisotropy.
This in turn leads to an enhancement in the swimming speed, compared to the case
where the polymer solution is treated as a continuum mixture - a Newtonian medium
with viscosity µs(1+λ). We model two physical scenarios, corresponding to two possible
polymer-flagellar bundle interactions: (i) a case where the polymer slips past the bundle
and (ii) a case where the polymer is not subject to any direct continuum forcing by the
bundle (no interaction).

2. The two-fluid model of the polymer solution

In this section we develop a two-fluid model of a polymer solution and analyse the
motion of a sphere through it in order to explain it’s features. Two-fluid models for
polymer solutions were first introduced by Doi (1990). While typical mixture models
of polymer solutions assume that the polymers and solvent move with a common
velocity, Doi’s two-fluid model allowed for relative motion between the polymer and
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the solvent, owing to the fact that under certain conditions inhomogeneous fluid flow
can create polymer concentration gradients and lead to diffusion of polymers relative
to the solvent flow. The model describes a polymer solution composed of a Newtonian
solvent phase with viscosity µs and a polymer phase with the two phases coexisting as
interpenetrating continua. In general, the model permits a non-uniform concentration
for the polymer, while treating the polymer as a non-Newtonian medium. In this work,
the polymer is modeled as a Newtonian fluid with uniform concentration (as this fairly
represents the conditions found in earlier experiments (Martinez et al. 2014; Qu & Breuer
2020)), having a different viscosity µp, where the viscosity is equivalent to the polymer’s
contribution to the zero-shear viscosity of the polymer solution. The polymer and the
solvent are allowed to move relative to each other and the inertial effects in both fluids
are considered to be negligible, with the Reynolds numbers (Re) based on both µs and
µp being small; Re ≪ 1. Here the non-equilibrium condition between the polymer and
solvent is created by the different forces they experience at the boundary of the rotating
flagellar bundle, because of the microstructure ‘seen’ by the flagellar bundle. Unlike in Doi
(1990), we consider the polymer to have a constant concentration and an incompressible
mass conservation equation. This condition can be approximated in the model of Doi
(1990) if the osmotic susceptibility of the polymer is small, so that the osmotic pressure
(termed pp here) takes on whatever values are needed to impose the incompressibility of
the polymer phase. The governing equations of our two-fluid model are given by:

∇ · us = 0, ∇ · up = 0 = 0 (2.1)

µs∇2us −∇ps − ξ(us − up) = 0 (2.2)

µp∇2up −∇pp + ξ(us − up) = 0 (2.3)

where, us,up, ps, and pp correspond to the solvent and polymer phase velocities and
pressures respectively and ξ is the Darcy resistance coefficient defined as ξ = µs/L

2
B,

where LB is the screening length of the two-fluid medium. As noted earlier, the form of
the equations is similar to Brinkman’s equations in a porous medium (Brinkman 1947),
except that here the polymers forming the porous network are capable of flowing. Thus,
LB can be considered to be the length scale of hydrodynamic coupling in the polymer
solution, which is O(φ−1/2 logφ1/2), φ being the polymer volume fraction, if the polymers
are assumed to be fibers of finite length randomly oriented in space (Howells 1998). The
above equations can be written in dimensionless form as:

∇ · us = 0, ∇ · up = 0 (2.4)

∇2us −∇ps −
1

L2
B

(us − up) = 0 (2.5)

λ∇2up − λ∇pp +
1

L2
B

(us − up) = 0 (2.6)

where we have non-dimensionalised the lengths with a characteristic length scale l, the
velocity with characteristic velocity scale U and the solvent and polymer pressures with
µsU/l and µpU/l.

2.1. A translating and rotating sphere in the two-fluid medium

Before embarking on the more challenging problems of studying the motion of a helix
and then a bacterium in the two-fluid medium, we study simple flows that provide insight
into the response of the medium. Consider a sphere of radius ‘a’ moving with a velocity
U and rotating with an angular velocity ω through the quiescent two-fluid medium. As
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mentioned in the introduction, our calculations consider two sets of boundary conditions
corresponding to two physical scenarios - i) the polymer slipping past the solid body and
ii) the polymer not interacting with the solid body. The first case is relevant when the
body moves through an entangled polymer solution with pore sizes comparable to the
characteristic length scale of the body (in this example, this is the sphere diameter 2a)
and the second case is relevant when the pore size is much larger than the characteristic
length scale of the body, so that the polymer is not directly forced by the moving body,
but is forced indirectly by the solvent which is affected by the motion. The solvent satisfies
no-slip in both cases. Thus, the boundary conditions for the first case are:

us,up → 0 as r → ∞ (2.7)

us = U + ω × r at r = a (2.8)

up · n = U · n at r = a (2.9)

(I − nn) · (σp · n) = 0 at r = a (2.10)

which are respectively, the far-field conditions, no slip condition for the solvent, no
penetration condition for the polymer and zero tangential polymer stress on the sphere
surface (a completely slipping polymer). Here, r = |r| is the radial distance and n = r/r
is the unit normal. Therefore, the polymer will not resist tangential motion (shearing) but
will resist normal motion (pressure). The solution procedure and the exact expressions for
the velocities and pressures for both fluids are given in Appendix A and it involves solving
the above set of coupled PDEs by defining two new fields um = us+λup and ud = up−us

(similarly for pm, pd and other varables). These two fields define a mixture field satisfying
Stokes equations and a difference field satisfying Brinkman equations, for which solutions
are easily derived. Fig.1 shows the normalised drag force on a translating sphere and
the torque on a rotating sphere as functions of the screening length LB/a for different
values of λ, where the normalisation is with respect to drag and torque in the solvent
(of viscosity µs). From the figure, we see that as the screening length approaches zero,
the dimensional drag on the sphere approaches 6πµs|U |(1 + λ)a for translation and the
torque approaches 8πµsa

3(1+λ)|ω| for the case of rotation. These are the corresponding
values for drag and torque, in a medium that is a mixture of the two fluids with viscosity
µs(1+λ). This suggests that for LB/a→ 0, the medium behaves like a mixture implying
that there is no relative motion between the two fluids, even if one of them is allowed
to slip past the solid boundary. The other limit of LB/a→ ∞ corresponds to decoupled
solvent and polymer acting independently of each other, which results in a dimensional
drag and torque of 6πµs|U |(1+ 2λ

3 )a and 8πµsa
3(1+ 2λ

3 )|ω| respectively. The factor 2/3
arises because, in this limit, the sphere acts like a bubble moving through the polymer
on account of the zero tangential stress condition on the polymer. This calculation shows
that one can go from a mixture-like behavior to a completely decoupled behavior of the
two fluids using the two-fluid model.

A similar calculation can be done for the second case, where there is no polymer-sphere
interaction with the boundary conditions now given by:

us,up → 0 as r → ∞ (2.11)

us = U + ω × r at r = a (2.12)

σp · n = 0 at r = a (2.13)

For this case, the plots of normalised drag and torque are given in Fig.2, which are
similar to the ones in Fig.1 (the torque on the sphere being exactly the same). The
primary difference between this scenario and the previous one arises in the drag force



8

0 0.5 1 1.5 2 2.5
1

2

3

4

5

6

0 0.5 1 1.5 2 2.5
1

2

3

4

5

6

Figure 1. Plot of the (a) drag force normalised by FN = 6πUµsa on a sphere of radius a
translating with velocity U and (b) torque normalised by TN = 8πµsa

3ω on a sphere rotating
with angular velocity ω in a two-fluid medium with a slipping polymer, as a function of LB/a.
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Figure 2. Plot of the (a) drag force normalised by FN = 6πUµsa on a sphere of radius a
translating with velocity U and (b) torque normalised by TN = 8πµsa

3ω on a sphere rotating
with angular velocity ω in a two fluid medium with no polymer-sphere interaction, as a function
of LB/a.

acting on the sphere in the limit of LB/a → ∞, for which the drag on the sphere is
6πµs|U |a. This is consistent with the fact that the polymer is not forced by the sphere
and in the limit of large screening length, where the fluids act independently, only the
solvent contributes to the drag.

The takeaway from this sample calculation is that, using the two-fluid model, one
can go from mixture-like behavior (a single fluid with viscosity µs + µp - similar to the
canonical treatment of polymer solutions) to completely decoupled behavior of the two-
fluids by varying LB. Thus, the screening length LB is equivalent to the characteristic
length scale of the microstructure in the polymer solution. In the next section, we derive
solutions for a slender helical fiber moving through the two-fluid medium, satisfying
the same two sets of boundary conditions as the sphere, and analyse the effect of
microstructure on it’s motion.

2.2. Fundamental solutions of the two-fluid equations

In order to derive the SBT in the two-fluid medium, we need the fundamental solu-
tions for the two-fluid equations, which are derived here. The dimensionless governing



9

equations are now given by:

∇2us −∇ps −
1

L2
B

(us − up) = Fsδ(r) (2.14)

λ∇2up − λ∇pp +
1

L2
B

(us − up) = λFpδ(r) (2.15)

with arbitrary forcing on both the solvent (Fs) and the polymer (Fp). The solution can
be found by writing the above equation in terms of a mixture flow and difference flow,
given by:

∇2um −∇pm = Fmδ(r) (2.16)

∇2ud −∇pp −
1 + λ

λL2
B

(ud) = Fdδ(r) (2.17)

where um = us + λup and likewise for pm and Fm and ud = up − us and similar
definitions follow for pd and Fd. Since the mixture flow and difference flow equations are
the well known Stokes and Brinkman equations, one can find the Green’s function for the
two-fluid medium using the Green’s functions of the Stokes (GSt) and Brinkman media
(GBr). Thus, this Green’s function is a tensor G consisting of four elements namely GSS,
GSP , GPS and GPP , i.e.

G =

[

GSS GSP

GPS GPP

]

(2.18)

where Gij gives the velocity of fluid i due to a force acting on fluid j. In order to find
these functions, one can write the equation for um and ud in terms of these functions and
equate it to the known Stokesian (GSt) and Brinkman (GBr) Green’s functions. This is
given by:

um = Fm ·GSt = Fs · (GSS + λGSP ) + λFp · (GPS + λGPP ) (2.19)

ud = Fd ·GBr = λFp · (GPP −GPS)− Fs · (GSS −GSP ). (2.20)

Solving Eq.2.19-2.20 for the four elements of G, we get,

GSS =
1

1 + λ
(GSt + λGBr) (2.21)

GSP =
1

1 + λ
(GSt −GBr) (2.22)

GPS =
1

1 + λ
(GSt −GBr) (2.23)

GPP =
1

λ(1 + λ)
(λGSt +GBr). (2.24)

Here, the Stokes and Brinkman Green’s functions (Howells 1974) are given by:

GSt =
1

8π

(

I

r
+

nn

r

)

(2.25)

GBr = (∇∇− I∇2)













2λL2
B

(

1− e
−
√

λ+1
λ

r

LB

)

(λ+ 1)r













(2.26)

where n = r/r.
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3. Slender body theory for the two-fluid medium

Herein, the velocity disturbance created by a slender fiber with a circular cross-section,
when placed in the two-fluid medium, is described using slender body theory (SBT). SBT
allows for an approximate solution of the flow produced by bodies which are long and
thin in the Stokesian regime (Batchelor 1970; Cox 1970; Keller & Rubinow 1976; Johnson
1980; Borker & Koch 2019). The basic idea in SBT is to obtain the strength of a line
of singularities placed along the centerline of the slender filament that approximates the
field of interest around the filament far away from the cross-sectional surface, termed
as the outer region, i.e. a ≪ ρ. Here ρ is the radial distance from the centerline of the
slender filament, and ‘a’ is a measure of the cross-sectional size of the particle at a certain
location along the centerline of the slender body as shown in Fig.3. The singularity for
a Stokes flow problem is a point force. The strength of the singularities is found by
matching the field approximated in the outer region, termed as the outer solution, to a
field obtained from the inner region (ρ ≪ l, where l is the length of the slender filament).
In the inner region, any curved slender body with O(1) curvature appears locally as a
straight infinite cylinder to a first approximation. The velocity field in the inner region is
therefore obtained by assuming flow over an infinite cylinder, which is two-dimensional.
Thus, the flow along and transverse to the cylinder is solved separately. Any coupling
between these flows arises due to curvature and finite aspect ratio of the particle and
leads to algebraic O(γ−2) corrections (γ = l/(2a) being the aspect ratio of the fiber)
to the velocity disturbance (Cox 1970; Johnson 1980) which are not considered here.
Placing higher-order singularities along the centerline of the slender filament gives a
better estimate of the field of interest. In Stokes flow, these singularities would include
doublets, rotlets, sources, stresslets and quadrupoles (Cox 1970; Keller & Rubinow 1976;
Johnson 1980). These higher order singularities are also not considered in this work.
In this work, we consider a slender body with circular cross-section having a charac-

teristic radius a and length l, with aspect ratio γ = l/(2a) ≫ 1. The body is assumed to
have a curved centerline, with the curvature (κ) assumed to be much smaller than the
slenderness parameter, i.e κ≪ γ. The radius of cross-section is allowed to vary along the
longitudinal direction of the slender body, i.e. a(s) = a× a(s), where s is the arc length
along the centerline, with a being chosen as the cross-section radius at the mid-point of
the curved centerline. The position vector is denoted by r and rc denotes the position of
the centerline of the slender body. A local coordinate system (ex, ey, ez) is chosen based
on the tangent (ez ), normal (ex) and binormal (ey) to the centerline of the slender
body, as shown in Fig.3 and is mathematically given by:

ez =
∂rc
∂s

, ex =
1

κ

∂2rc
∂s2

, ey = ez × ex (3.1)

where κ is the local curvature of the body centerline (κ =
∣

∣

∣

∂2
rc

∂s2

∣

∣

∣). The velocity on the

particle surface (r = rs) is given by

u(r = rs) = U + ω × rs = U + ω × rc + ω × (rs − rc) (3.2)

In canonical SBT for Stokes flow, the only relevant length scale in the inner region is a and
all other length scales are assumed to be in the outer region. For the case of a two-fluid
medium, we have one other length scale, the screening length LB, which can either be
considered part of the inner or outer region, resulting in two different formulations of SBT
for a slender fiber. However, these two formulations overlap when LB is of the same order
as the length scale of the matching region. Additionally, one can have different versions
of SBT corresponding to different polymer-fiber interactions, which affect the solutions
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Figure 3. Local coordinate system in the particle reference frame for a general curved body;
ez is along the tangent to the filament axis, ex is along the normal and ey is pointed along the
binormal to the centerline of the slender body (rc).

in the inner region. In our study, we consider two types of polymer-fiber interactions:
(i) polymer slipping over the fiber and (ii) polymer not interacting with the fiber. For
the first case, we consider LB to be in the inner, outer and matching region and for
the second case, LB is in the outer region, owing to the fact that the no-interaction
boundary condition is only applicable if the microstructure length scale is larger than
the characteristic length scale of the moving body (here, the fiber cross-sectional diameter
2a).

3.1. Slender body theory for polymer slip condition with LB in the inner region

For a slipping polymer, when the screening length is in the inner region (LB/a ∼ O(1)),
the inner solution corresponds to the disturbance field due to the motion of a circular
cylinder in the two-fluid medium. In the outer region, the screening length satisfies the
limit LB/l ≪ 1. From Section 2.2, we recall that this limit corresponds to the mixture-like
behavior of the two-fluid medium, which is essentially a single fluid medium with viscosity
µs(1 + λ). Thus, the outer solution is the velocity disturbance due to the distribution
of Stokeslets along the centerline (rc) of the fiber in a medium of viscosity µs(1 + λ).
The inner and outer solutions given below for this case are then matched to obtain
a governing equation for the singularity strength. Note that in all the cases presented
hereafter, the velocities in the inner and outer region are presented in dimensionless
form. The inner solution is made dimensionless by choosing a, U , µsU/a and µpU/a as
the length, velocity, and solvent and polymer stress scales. For the outer solution, we
choose l, U , µsU/l and µpU/l as the length, velocity, solvent and polymer stress scales.
Also, all the equations are derived for a translating fiber for simplicity, and the rotation
of the fiber can be included by simply adding the surface velocity due to rotation to the
translation velocity.

3.1.1. Inner solution (ρ≪ l)

The velocity field around a cylinder of radius a in the two-fluid medium, can be derived
by solving the governing equations Eq.2.1-2.3 following a procedure similar to that given
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for a sphere in Appendix A, subject to the boundary conditions,

us = U at r = rs (3.3)

up · n = U · n at r = rs (3.4)

(I − nn) · (σp · n) = 0 at r = rs (3.5)
∫

(σs + σp) · n dA = f at r = rs (3.6)

where the last boundary condition is the (unknown) drag force per unit length acting
on the cylinder surface, and is the same as the Stokeslet strength of the outer solution.
Here r = sez + ρ written in terms of a polar coordinate system, where ρ = ex + ey,
with |ρ| = ρ, which are defined in Eq.3.1), is normal to the axis of the cylinder and ez
is along the axis of the cylinder with n = ρ

ρ and rs = an. In the matching region, the
velocity fields are subject to the limit ρ≫ a. Since the outer solution for this case is the
velocity field in the mixture of two fluids, having viscosity µs(1 + λ), the inner velocity
field is also written for the mixture of solvent and polymer (us +λup), so as to match it
to the outer solution. Therefore, the outer limit (ρ/a≫ 1) of the inner mixture velocity
field (dimensionless) for transverse and longitudinal motions of the cylinder is written
as:

uin = U(1 + λ)−
[

f · (I + ezez)

4π
log (ρ)− (f · n)n

4π
+

f

4π
(
1

2
+ g(λ, LB))

+
(f · ez)ez

4π

[

h(λ, LB)− g(λ, LB)−
1

2

]

+O(
1

ρ2
)

] (3.7)

Note, that the ρ and LB that appear inside the logarithm and g, h are dimensionless.
The functions g(λ, LB) and h(λ, LB) are given by:

g =
λ

(

1
LB

√
1+λ
λ K1

(√

1+λ
λ

1
LB

)

K0

(√

1+λ
λ

1
LB

) + 2λ+ 2

) (3.8)

h =
2λK0

(√

1+λ
λ

1
LB

)

1
LB

√

λ+1
λ K1

(√

1+λ
λ

1
LB

) (3.9)

where K0, K1 are modified Bessel functions. Note, that g → 0 and h → 0 for LB → 0
and Eq.3.7 reduces to the solution in a single fluid medium (Keller & Rubinow 1976).

3.1.2. Outer solution (ρ≫ a)

The outer solution for this case is the velocity disturbance produced by a distribution
of Stokeslets along the centerline of the fiber in a fluid with viscosity µs(1+λ), since LB

is in the inner region. Thus, one has:

uout(r) = U∞(r) +
1

8π

∫

rc

f(r′) ·
[

I

|r − r′| +
(r − r′)(r − r′)

|r − r′|3
]

ds′ (3.10)

where r is the point at which the velocity is evaluated, r′ takes all values along the
centerline and ds′ is the elemental length along the centerline of the slender body. As
r′ → r, the integral diverges as log ρ. One can add and subtract an analytically integrable
term that captures the diverging part of the integral as shown by Keller & Rubinow
(1976). Using |r − r′| =

√

(s− s′)2 + ρ2 in terms of the local polar coordinate system,
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the resulting expression for the inner limit (ρ ≪ l) of the outer solution is given by:

u(r) ≈U∞(r) +
f · (I + ezez)

4π

(

log

(

2(
√

s(1− s))

ρ

))

− f · ezez
4π

+
f · nn
4π

+

1

8π

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· f(rc(s′))

−
(

(I + ezez)

|s− s′|

)

· f(rc(s))
]

ds′

(3.11)

where n is the radial unit vector in the ex−ey plane. The integral on the right-hand side
of Eq.3.11 is shown to have a finite limit by Keller & Rubinow (1976). The log ρ term
in Eq.3.11, matches the log ρ term from the inner solution in Eq.3.7 and is a portion
of the velocity disturbance produced by an infinite cylinder with the same force per
unit length at each point. Here again, the velocity field is dimensionless with lengths
non-dimensionalised by l, the length of the fiber.

3.1.3. Matching region (a≪ ρ≪ l)

The velocity produced from the inner solution for ρ≫ a, should asymptotically match
the velocity field from the outer solution for ρ ≪ l as the velocity field cannot abruptly
change in this matching region (i.e. a ≪ ρ ≪ l). Matching the velocity fields from the
inner and outer solutions, using Eq.3.7,3.11, leads to an integral equation for the force
per unit length given by:

U =
f(r) · (I + ezez)

4π(1 + λ)

[

log 2γ + log

(

2
√

s(1− s)

a(s)

)]

+
f(r)

4π(1 + λ)
(
1

2
+ g(λ, LB))+

(f · ez)ez
4π(1 + λ)

[

h(λ, LB)− g(λ, LB)−
3

2

]

+

1

8π(1 + λ)

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· f(rc(s′))

−
(

(I + ezez)

|s− s′|

)

· f(rc(s))
]

ds′

(3.12)

where a(s) denotes the changing cross-section of the fiber along it’s centerline (note,
a(s) = a×a(s), a being the radius at the mid-point of the centerline). Note that the term
log(2γ) = log(l/a) arises because the inner and outer solutions are non-dimensionalised
by different length scales a and l respectively. The error in the above integral equation is
O(γ−2) and so this gives the force per unit length with errors of O(γ−2). Solution of this
integral equation gives the unknown force strength in terms of the known surface velocity
and it can be obtained numerically or by an asymptotic expansion in ǫ = 1/ log 2γ.

3.1.4. Resistive force theory (RFT)

The leading order force per unit length from Eq. 3.12 is given by:

U(1 + λ) =
f · (I + ezez)

4π
log 2γ (3.13)

which suggests that a slender filament of any arbitrary cross-section experiences an
O(1/ log 2γ) viscous drag equal to the viscous drag per unit length experienced by a long
cylinder due to its motion relative to the local fluid velocity, in a medium of viscosity
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µs(1 + λ) (mixture). The higher-order terms in Eq.3.12 include the additional drag due
to relative motion between the two fluids as well as a contribution that comes from the
velocity disturbance created by the particle itself. This leading order relation constitutes
what is termed the resistive force theory (RFT) (Gray & Hancock 1955; Chwang & Wu
1971; Lauga & Powers 2009) for the two-fluid medium for LB/a ∼ O(1). Using, Eq.3.13
above, one can determine the drag per unit length experienced by a locally straight fiber
of circular cross-section for motions parallel and perpendicular to the fiber axis with a
unit velocity. For the two-fluid medium with the polymer slipping past the fiber, and
with LB/a ∼ O(1), these are given by:

f⊥ =
4π(1 + λ)

log 2γ
(3.14)

f|| =
2π(1 + λ)

log 2γ
(3.15)

The ratio of the expressions above give the drag anisotropy:

f⊥
f||

= 2 (3.16)

which is the same as the anisotropy obtained from RFT for a single fluid medium
(Gray & Hancock 1955; Chwang & Wu 1971; Lauga & Powers 2009). This is consistent
with the fact that LB is in the inner region and of the same length scale as the diameter
of the fiber. In the outer region, this corresponds to the limit LB/l ≪ 1. Therefore, to
the leading order in ǫ = 1/ log 2γ, the slender fiber essentially swims in a mixture with
viscosity µs(1 + λ), and hence results in the same anisotropy as the single-fluid case.

3.2. SBT for polymer slip condition with LB in the outer region

In this scenario, we consider the screening length as part of the outer region (LB/a≫
O(1)), such that in the inner region, one has the fiber moving in two decoupled fluids, the
solvent and polymer, and in the outer region, the two-fluid behavior persists. Accordingly,
the inner solution is the disturbance field due to an infinite cylinder moving in solvent
and polymer, satisfying independent boundary conditions and the outer solution is
approximated by a distribution of the fundamental singularities of the two-fluid medium,
along the fiber length.

3.2.1. Inner solution

In the inner region, the solvent satisfies a no-slip condition while the polymer exerts
zero tangential stress on the cylinder. These are given by:

uin
s = U at r = rs (3.17)

(I − nn) · (σin
p · n) = 0 at r = rs (3.18)

uin
p · n = U · n at r = rs (3.19)

Using these conditions and the fact that the solvent and polymer exert a drag per unit
length of fs and fp, the outer limit (ρ/a ≫ 1) of the inner solution (dimensionless) is
given by:

uin
s = U − fs · (I + ezez)

4π
log ρ+

fs

4π
·
[

nn− I − ezez

2

]

+O(
1

ρ2
) (3.20)

uin
p = U ·(I−(1−c)ezez)−

fp · (I − ezez)

4π
log ρ+

fp

4π
·[nn− (I − ezez)]+O(

1

ρ2
) (3.21)
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The difference in the polymer and solvent fields arise from the difference in the boundary
conditions satisfied by the two fluids at the cylinder surface. Importantly, since the
polymer is assumed to exert no tangential stress, it follows that fp ·ez = 0, which renders
the surface velocity in the tangential direction arbitrary, denoted here by uin

p · ez =
c U · ez , where c is an arbitrary constant. This velocity field will be matched to the
(inner limit of the) outer solution as before in order to get a governing equation for the
force strengths fs and fp.

3.2.2. Outer solution

In the outer region, the fiber is approximated by a uniform distribution of the funda-
mental singularities of the two-fluid model - ‘two-fluidlets’ (see Section 2.2), which are
combinations of Stokeslets (associated with the mixture flow satisfying Stokes equations)
and ‘shielded’ Stokeslets (associated with the difference flow satisfying Brinkman equa-
tions). Accordingly, the dimensionless velocity field in the outer region for the two fluids
are given by:

uout
s = U∞ +

1

8π

∫

rc

[fs ·GSS + λfp ·GPS] ds
′ (3.22)

uout
p = U∞ +

1

8π

∫

rc

[λfp ·GPP + fs ·GSP ] ds
′ (3.23)

Substituting for the Green’s functions GSS, GPP , GPS and GSP from Section 2.2, we
have:

uout
s =U∞ +

1

8π

∫

rc

fs(r
′) ·GSt(r − r′) ds′+

1

8π

∫

rc

λ

1 + λ
[fs(r

′)− fp(r
′)] · [GBr −GSt] (r − r′) ds′

(3.24)

uout
p =U∞ +

1

8π

∫

rc

fp(r
′) ·GSt(r − r′) ds′+

1

8π

∫

rc

1

1 + λ
[fp(r

′)− fs(r
′)] · [GBr −GSt] (r − r′) ds′

(3.25)

where we have added and subtracted λ(fs(r
′)−fp(r

′)) ·GSt from Eq.3.24 and (fp(r
′)−

fs(r
′) ·GSt from Eq.3.25, with GBr(r

′′) and GSt(r
′′) given by:

GBr(r
′′) = (∇∇− I∇2)

(

2

α2r′′2
(1− e−αr′′)

)

(3.26)

GSt(r
′′) =

I

r′′
− r′′r′′

r′′3
(3.27)

where, r′′ = r − r′ and α = 1
LB

√

1+λ
λ . The terms involving the difference GBr − GSt

do not diverge for r → r′. However the term with GSt does and needs to be treated the
same way as before by adding and subtracting a singularity, that asymptotically cancels
the divergence in these terms for r → r′. The inner limits of the outer velocity fields
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(ρ ≪ l) after this simplification are given by:

uout
s = U∞ +

fs · (I + ezez)

4π

(

log

(

2(
√

s(1− s))

ρ

))

− fs · ezez
4π

+
fs · n
4π

+

1

8π(1 + λ)

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· fs(rc(s
′))

−
(

(I + ezez)

|s− s′|

)

· fs(rc(s))

]

ds′+

1

8π

∫

λ

1 + λ
[fs(rc(s

′))− fp(rc(s
′))] · [GBr −GSt] ds

′

(3.28)

uout
p = U∞ +

fp · (I + ezez)

4π

(

log

(

2(
√

s(1− s))

ρ

))

− fp · ezez
4π

+
fp · nn

4π
+

1

8π(1 + λ)

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· fp(rc(s
′))

−
(

(I + ezez)

|s− s′|

)

· fp(rc(s))

]

ds′+

1

8π

∫

1

1 + λ
[fp(rc(s

′))− fs(rc(s
′))] · [GBr −GSt] ds

′

(3.29)

3.2.3. Matching Region

After matching the inner and outer solutions, we get:

U =
fs · (I + ezez)

4π

(

log 2γ + log

(

2
√

s(1− s)

a(s)

))

+
fs · (I − 3ezez)

8π
+

1

8π

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· fs(rc(s
′))

−
(

(I + ezez)

|s− s′|

)

· fs(rc(s))

]

ds′ +
1

8π

∫

λ [fs(rc(s
′))− fp(rc(s

′))]

1 + λ
· [GBr −GSt] ds

′

(3.30)

U · (I − (1− c)ezez) =
fp

4π

(

log 2γ + log

(

2
√

s(1− s)

a(s)

))

+
fp · (I − 2ezez)

4π

+
1

8π

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· fp(rc(s
′))

−
(

(I + ezez)

|s− s′|

)

· fp(rc(s))

]

ds′ +
(fp · ez)ez

4π

(

log
2l
√

s(1− s)

ρ
− log

ρ

a

)

+

1

8π

∫

1

1 + λ
[fp(rc(s

′))− fs(rc(s
′))] · [GBr −GSt] ds

′

(3.31)
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where the equation for fp is accompanied by an additional condition given by fp ·ez = 0.
Here, the tensor GBr −GSt is given by:

GBr −GSt =I

(

2

α2r′′3

(

e−αr′′
(

1 + αr′′ + α2r′′2
)

− 1
)

− 1

r′′

)

+

(rc(s)− rc(s
′))

(

6

α2r′′5

(

1− e−αr′′
(

1 + αr′′ +
α2r′′2

3

))

− 1

r′′3

) (3.32)

GBr −GSt = F1(α, r
′′) I + F2(α, r

′′) (rc(s)− rc(s
′)) (3.33)

where r′′ = |(rc(s) − rc(s
′))|. Contracting Eq.3.31 with ez to get the equation for the

arbitrary constant c, we have:

c U · ez =
fp · ez
4π

(

log 2γ + log

(

2
√

s(1− s)

a(s)

))

− fp · ez
4π

+
(fp.ez)

4π

(

log
2l
√

s(1− s)

ρ
− log

ρ

a

)

+
1

8π

∫ [

fp(rc(s
′)) ·

(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· ez

−2fp(rc(s)) · ez
|s− s′|

]

ds′ +
1

8π

∫

(fp(rc(s
′))− fs(rc(s

′)))

1 + λ
· [GBr −GSt] · ez ds′

(3.34)

Substituting Eq.3.34 in Eq.3.31, we get for fp:

U · (I − ezez) =
fp · (I − ezez)

4π

(

log 2γ + log

(

2
√

s(1 − s)

a(s)

))

+
fp · (I − ezez)

4π

+
1

8π

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· fp(rc(s
′))

−
(

(I + ezez)

|s− s′|

)

· fp(rc(s))

]

ds′ +
1

8π

∫

[fp(rc(s
′))− fs(rc(s

′))]

1 + λ
· [GBr −GSt] ds

′

− 1

8π

∫ {[

fp(rc(s
′)) ·

(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· ez

−2fp(rc(s)) · ez
|s− s′|

]}

ez − 1

8π

∫ {

(fp(rc(s
′))− fs(rc(s

′)))

1 + λ
· [GBr −GSt] · ez

}

ez ds
′

(3.35)

with the condition fp ·ez = 0. The force strengths are obtained by simultaneously solving
Eq.3.30 and Eq.3.35, with the definitions of GBr and GSt given in Eq.3.32,3.33.

3.2.4. Resistive force theory

The leading order solution to the force strengths fs and fp for this scenario (LB/a≫
O(1)) are given by:

U =
fs · (I + ezez)

4π
log 2γ (3.36)

U · (I − ezez) =
fp · (I − ezez)

4π
log 2γ (3.37)

The total force defined as f = fs + λfp, is therefore:

f = 4πU ·
[

(I − ezez

2
) + λ(I − ezez)

] 1

log 2γ
(3.38)
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to the leading order in ǫ = 1/ log(2γ). The components of the force for translation parallel
and perpendicular to the local filament axis (with unit velocity) are:

f⊥ =
4π(1 + λ)

log 2γ
(3.39)

f|| =
2π

log 2γ
(3.40)

and the anisotropy for this case is given by:

f⊥
f||

= 2(1 + λ) (3.41)

which is a factor of 1 + λ larger than the case with LB/a ∼ O(1). Thus, in a scenario
where the polymer slips past a fiber, with the screening length larger than the fiber
diameter, the drag anisotropy increases, and is proportional to the viscosity ratio λ.

3.3. Slender body theory for polymer slip condition with LB in the matching region

When LB is in the matching region (a ≪ LB ≪ l), the outer solution remains a
3D mixture flow, where the fiber can be approximated as a smooth distribution of
Stokeslets along the centerline. The inner solution corresponds to the flow disturbance
in decoupled solvent and polymer fluids produced by the moving cylinder. However, for
a≪ LB ≪ l, there exists a Brinkman region in between the two, where the flow remains
two-dimensional, but has coupled two-fluid behavior. This is sketched in Fig.4. In order
to obtain a governing integral equation for the force strengths, fs and fp, one needs to
perform two matching procedures as opposed to just one employed in the previous cases.
The first matching is done in matching region 1, where a ≪ ρ ≪ LB and the second
matching is done in matching region 2, where LB ≪ ρ≪ l.

A detailed derivation for this case is given in Appendix C, and below, we directly give
the governing integral equation for the force strengths fs and fp for a≪ LB ≪ l.

U = U∞ +
(fs + λfp) · (I + ezez)

4π(1 + λ)

[

log(2γ) + log

(

2
√

s(1− s)

a(s)

)]

+

1

8π(1 + λ)

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· (fs + λfp)(rc(s
′))

−
(

(I + ezez)

|s− s′|

)

· (fs + λfp)(rc(s))

]

ds′ +
(fs + λfp) · (I − 3ezez)

8π(1 + λ)

+
λ(fs − fp) · (I + ezez)

4π(1 + λ)

[

(log 2− Γ ) + log

(

LB

a

)]

(3.42)
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U · (I − (1− c)ezez) = U∞ +
(fs + λfp) · (I + ezez)

4π(1 + λ)

[

log(2γ) + log

(

2
√

s(1− s)

a(s)

)]

+

1

8π(1 + λ)

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· (fs + λfp)(rc(s
′))

−
(

(I + ezez)

|s− s′|

)

· (fs + λfp)(rc(s))

]

ds′ +
(fs + λfp) · (I − ezez)

8π(1 + λ)
+

(fs + λfp) · ezez
4π(1 + λ)

+
fp · (I − ezez)

8π
+

(

fp

4π(1 + λ)
− fs · (I + ezez)

4π(1 + λ)

)[

(log 2− Γ ) + log

(

LB

a

)]

(3.43)

where Γ is the Euler-Mascheroni constant. Note, that the factor log(LB/a) does not lead
to a divergence as LB/a → 0, since it is multiplied by fs − fp, which tends to zero as
LB/a→ 0. Eq.3.43 can again be contracted with ez to obtain c as:

c(U · ez) =
(fs + λfp) · ez

2π(1 + λ)

[

log(2γ) + log

(

2
√

s(1 − s)

a(s)

)]

+
(fs + λfp) · ez

4π(1 + λ)

+
1

8π(1 + λ)

∫ [

(fs + λfp)(rc(s
′)) ·

(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· ez

−
(

(fs + λfp)(rc(s)) · ez
|s− s′|

)]

ds′ +

(

fp · ez
4π(1 + λ)

− fs · ez
2π(1 + λ)

)[

(log 2− Γ ) + log

(

LB

a

)]

(3.44)

which can be substituted into Eq.3.43 to obtain:

U · (I − ezez) = U∞ +
(fs + λfp) · (I − ezez)

4π(1 + λ)

[

log(2γ) + log

(

√

s(1− s)

a(s)

)]

+

1

8π(1 + λ)

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· (fs + λfp)(rc(s
′))

−
(

(I + ezez)

|s− s′|

)

· (fs + λfp)(rc(s))

]

ds′ +
fp · (I − ezez)

8π
+

(fs + λfp) · (I − ezez)

8π(1 + λ)
+

(fp − fs) · (I − ezez)

4π(1 + λ)

[

(log 2− Γ ) + log

(

LB

a

)]

−

1

8π(1 + λ)

∫ {[

(fs + λfp)(rc(s
′)) ·

(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· ez

−
(

(fs + λfp)(rc(s) · ez
|s− s′|

)]}

· ez ds′

(3.45)

with the condition fp · ez = 0. The equations Eq.3.12, Eq.3.30,3.35 and Eq.3.42-3.45
correspond to the three formulations of slender body theory when one has a polymer
that slips past the fiber. Each version has its own domain of validity depending on the
screening length LB. The three versions, however, can be combined into a single equation
by using the formula:

SBTUniformly Valid = SBTLB∼O(a) + SBTLB≫O(a) − SBTa≪LB≪l (3.46)

which is uniformly valid for all LB.
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Figure 4. A schematic showing the inner, outer and Brinkman regions for the two-fluid model
with a≪ LB ≪ l.

3.3.1. Resistive Force Theory

For the case with a≪ LB ≪ l, the leading order solutions to the force strengths from
Eq.3.42,3.45 are given by:

U =
(fs + λfp) · (I + ezez)

4π(1 + λ)
log(2γ) +

λ(fs − fp) · (I + ezez)

4π(1 + λ)
log

(

LB

a

)

(3.47)

U · (I − ezez) =
(fs + λfp) · (I − ezez)

4π(1 + λ)
log(2γ) +

(fp − fs) · (I − ezez)

4π(1 + λ)
log

(

LB

a

)

(3.48)

where the leading order equation contains the term with coefficient log(LB/a) as LB ≫ a,
when the screening length is in the matching region. Simplifying Eq.3.47, we get:

U ·
(

I − ezez

2

)

=
(fs + λfp)

4π(1 + λ)
log(2γ) +

λ(fs − fp)

4π(1 + λ)
log

(

LB

a

)

. (3.49)

Eq.3.48 directly gives the perpendicular component of the force strengths and Eq.3.49
can be used to obtain the parallel component of the force strength. Using f = fs + λfp

and fp ·ez = 0, the parallel and perpendicular components of the total force on the fiber
(for unit velocity of motion) are:

f⊥ =
4π(1 + λ)

log 2γ
(3.50)

f|| =
2π(1 + λ)

log 2γ + λ log
(

LB

a

) (3.51)

and the anisotropy for this case is given by:

f⊥
f||

=
2(log 2γ + λ log

(

LB

a

)

)

log(2γ)
= 2

(

1 + λ
log
(

LB

a

)

log(2γ)

)

(3.52)

which reduces to the drag anisotropy for the case with screening length in the inner
region for LB = a and to the drag anisotropy for the case with screening length in the
outer region for LB = 2l. Thus, one can combine the leading order solutions to f⊥ and
f|| for the case of slipping polymer with LB in the inner, matching and outer region into
the following piecewise-continuous form given by:

f⊥ =
4π(1 + λ)

log(2γ)
; forLB ∈ [0,∞], (3.53)
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and

f|| =















2π(1+λ)
log(2γ) ; forLB ∈ [0, a]

2π(1+λ)

log(2γ)+λ log
(

LB
a

) ; forLB ∈ [a, 2l]

2π
log(2γ) ; forLB ∈ [2l,∞)

. (3.54)

which provides the leading order solution to force strengths for the fiber in a two-fluid
medium with polymer slip valid for all LB.

3.4. SBT with no polymer-fiber interaction

We now consider the second type of polymer-fiber interaction, where the polymer in the
two-fluid medium does not exert any direct force on the fiber, i.e. the polymer satisfies,

σin
p · n = 0 at r = rs (3.55)

while the solvent still satisfies no-slip and no-penetration condition on the fiber surface,
given by:

uin
s = U at r = rs (3.56)

This essentially implies, that the polymer can now move with an arbitrary velocity
even in the plane perpendicular to the filament axis when a 6 ρ 6 LB. This model
nevertheless captures the physical scenario when the fiber is much smaller than the pores
of the underlying microstructure in the complex fluid, because the polymers do not
experience any direct forcing from the fiber motion. For this case, the screening length
LB is considered part of the outer region, since LB is equivalent to the length scale of
the microstructure and for these boundary conditions to hold, LB ≫ a.

3.4.1. Inner solution

The inner solution for this scenario only involves the solvent velocity field, satisfying
no-slip and no-penetration conditions, which is given by:

uin
s = U − fs · (I + ezez)

4π
log

ρ

a
+

fs

4π
·
[

nn− I − ezez

2

]

+O(
1

ρ2
) (3.57)

for ρ ≫ a. As already noted the polymer can have an arbitrary velocity in the inner
region given by uin

p = cU .

3.4.2. Outer solution

The outer solution is obtained by approximating the fiber as a uniform distribution of
two-fluidlets with the constraint fp = 0. Thus, we have for the outer solution,

uout
s = U∞ +

1

8π

∫

rc

[fs ·GSS] ds
′ (3.58)

uout
p = U∞ +

1

8π

∫

rc

[fs ·GSP ] ds
′ (3.59)

where we have applied the constraint fp = 0. The above equations can again be simplified
using the expressions for the two-fluid Green’s functions. Taking the inner limit of the
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resulting outer solution (ρ ≪ l) yields:

uout
s = U∞ +

fs · (I + ezez)

4π

(

log

(

2(
√

s(1− s))

ρ

))

− fs · ezez
4π

+
fs · nn

4π
+

1

8π

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· fs(rc(s
′))

−
(

(I + ezez)

|s− s′|

)

· fs(rc(s))

]

ds′ +
λ

8π(1 + λ)

∫

rc

[fs(rc(s
′))] · [GBr −GSt] ds

′

(3.60)

uout
p = U∞ +

1

8π(1 + λ)

∫

rc

fs · [GSt −GBr] ds
′. (3.61)

3.4.3. Matching region

Matching the inner and outer solution, one gets,

U =
fs · (I + ezez)

4π

(

log 2γ + log

(

2
√

s(1− s)

a(s)

))

+
fs · (I − 3ezez)

8π
+

1

8π

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· fs(rc(s
′))

−
(

(I + ezez)

|s− s′|

)

· fs(rc(s))

]

ds′+

λ

8π(1 + λ)

∫

rc

[fs(rc(s
′))] · [GBr −GSt] ds

′

(3.62)

and

c U =
1

8π(1 + λ)

∫

rc

fs · [GSt −GBr] ds
′ (3.63)

which gives the arbitrary constant c.

3.4.4. Resistive Force Theory

To the leading order, the force on the fiber is given by:

fs = f =
4πU · (I − ezez

2 )

log 2γ
(3.64)

which results in an anisotropy of

f⊥
f||

= 2 (3.65)

which is the same as in a single fluid medium. Thus the leading order anisotropy in this
case is smaller than in the case where polymer slips past the fiber (with LB > a).

4. Results of two-fluid SBT for a helical fiber

The different versions of SBT mentioned above are solved numerically for a helical
fiber moving in a two-fluid medium, by adopting a simple numerical procedure described
in Rodenborn et al. (2013). The numerical technique involves discretizing the helix into
N segments per pitch and using the trapezium rule of numerical integration for the
integrals. This results in a linear system of equations for the singularity strength fi on
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Figure 5. Geometry of the helix used in the numerical calculation

the ith segment, which is then solved to obtain the strengths in terms of the known
surface velocity of the segment Ui. While the numerical procedure is the same as in
Rodenborn et al. (2013), it’s adoption for the two-fluid model requires small changes
which are described in detail and validated with exemplary SBT results in Appendix B.

4.1. Outline of results

In the discussion that follows, we first present the results for a slender helical fiber
with prolate spheroidal cross-section (a(s) = 2a

√

s(1− s); a is the radius of the fiber at
the mid point along it’s centerline), that rotates and translates in a single Newtonian
fluid with slip on it’s surface. This calculation is done to elucidate the effect of slip on the
fiber motion, since in the two-fluid model, one of the cases involves a slipping polymer
medium. This is followed by a discussion of results for a slender helical fiber with the
same cross-section in the two-fluid medium satisfying both polymer slip and no polymer-
fiber interaction conditions. Here we discuss how the presence of microstructure affects
the motion of the fiber. The results are presented in the form of thrust, torque and drag
on a fiber that is rotating and translating, as a function of LB and viscosity ratio λ. The
thrust is the force along the axis of a helical fiber when it rotates on its axis, while we
report the component of torque along the axis. The drag is the force opposing translation
of the helical fiber along its axis. The dimensions of the helical fiber are chosen to be the
dimensions of the helical flagellar bundle of E.Coli (Berg & Turner 1979) listed in Fig.5
and we vary LB and λ. All our calculations use these dimensions for the fiber unless
otherwise mentioned, and have N = 30 segments per pitch (with N = 110 segments for
the whole length). The assumed spheroidal cross-section of the fiber has been shown to
be an accurate description of the flagellar bundle of the bacterium (Das & Lauga 2018),
and also avoids ill-conditioned matrices that arise from discretizing a fiber of constant
cross-sectional radius (Mackaplow et al. 1994).

4.2. A slender helical fiber in a fluid medium with slip

When a slender fiber moves through a single-fluid medium with slip on its surface, the
integral equation for the force strength (f) along the fiber centerline using SBT is given



24

0 5 10 15 20
0

5

10

15

20

25

30

0 5 10 15 20
0

10

20

30

40

0 5 10 15 20
0

20

40

60

80

Figure 6. Plots of normalised (a) thrust, (b) drag, and (c) torque for a slender helical fiber
with spheroidal cross-section translating with U and rotating with Ω in a single fluid medium,
as a function of L/RHelix from the numerical solutions of single-fluid SBT with no-slip and slip
(f.ez = 0).

by:

U · (I − (1− c)ezez) =
f

4π

(

log 2γ + log

(

2
√

s(1− s)

a(s)

))

+
f · (I − 2ezez)

4π

+
1

8π

∫

rc

[(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· f(r′)

−
(

(I + ezez)

|s− s′|

)

· f(r)
]

ds′

(4.1)

This case is equivalent to a slender bubble moving through a fluid (Hinch & Acrivos
1980). In Fig.6(a)-(c), we have plotted the drag, thrust and torque on a helical fiber
moving with axial velocity U and rotating with an angular velocity Ω calculated using
Eq.4.1 and compared it with the results of the case when the fluid satisfies no-slip on the
helix surface. In these calculations, the helix has the same dimensions as shown in Fig.5
except that the length was varied from 1µm to the dimension in Fig.5 (while keeping
γ fixed at the value shown in Fig.5). From the plot, we note, that while the drag and
torque on the helix are smaller for the case with slip, slip leads to an increased thrust.
This implies that the helix with slip can move at a higher velocity for a given rotation
rate when the motion is force-free.
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Figure 7. A schematic of a segment of helix showing the forces acting on the segment due to
rotation and translation. The thrust and torque correspond to fz and fx in the former case and
drag corresponds to fz in the latter. Note for simplicity we choose ψ = π/4 as the pitch angle
of the helix, denoting the orientation of the segment with respect to the motion.

This increased thrust can be understood in terms of the increased drag anisotropy for
this case, as is shown in Fig.7. Here, a segment of the helix (with pitch angle ψ = π/4)
that rotates with Ω (along −z) and translates with U (along z) are shown. In the case
of no-slip boundary condition, the segment is subject to resistance in both parallel and
perpendicular direction (f|| and f⊥, where we assume f⊥/f|| = 2), while for the case
where the fluid can slip f|| = 0, with f⊥ being the same as that for the no-slip case. This
is because with perfect slip, the rigid slender body behaves like a bubble, and to leading
order in ǫ = 1/ log(2γ), the transverse force strength is the same as that for a body with
no-slip (Hinch & Acrivos 1980). This implies that the thrust and torque on the segment
during rotation of the helix, where each segment locally moves with velocity Ω/RHelix

along x, are proportional to,

Thrust (fz) =
1

2
f⊥ (4.2)

Torque (fx) = −3

2
f⊥ (4.3)

for no-slip condition and

Thrust (fz) = f⊥ (4.4)

Torque (fx) = −f⊥ (4.5)

for the slip condition. Here, the angular velocity vector for the helix is directed along −z
leading to thrust along z. Similarly, the drag on the segment (locally) translating with
velocity U along z is,

Drag (fz) = −3

2
f⊥ (4.6)

for no slip and

Drag (fz) = −f⊥ (4.7)

for the slip condition, where the negative sign indicates the force is opposite to the
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direction of motion (z). Taking the ratio between the slip and no-slip case, we get,

Thrust (slip)

Thrust (no-slip)
≈ 2 (4.8)

Torque (slip)

Torque (no-slip)
≈ 2

3
(4.9)

Drag (slip)

Drag (no-slip)
≈ 2

3
(4.10)

Thus, we see that the slip condition results in a higher thrust and smaller drag and
torque on the helix compared to the no-slip condition. Note that the actual values of
these ratios from the numerical calculations (Fig.6) are different owing to the facts that
the pitch angle for the helix in our numerical calculation is greater than π/4 and the
ratio f⊥/f|| < 2 and not exactly two, which makes the ratios for thrust and torque larger
and drag smaller. The decreased value of f⊥/f|| arises primarily because the spheroidal
shape of the flagellar bundle cross-section allows the unit normal to the surface to have
a component parallel to the local filament axis. On the other hand, the effect of slip on
f⊥ (the increase compared to f⊥ on a no-slip boundary, that occurs at O(1/ log(2γ)2))
is only modest numerically.

4.3. A slender helical fiber in a two-fluid medium

In this section we calculate the drag, thrust and torque acting on a slender helical
fiber translating and rotating in a two-fluid medium. First, we plot the results for the
scenario where the polymer slips on the helix using the uniformly valid SBT (Eq.3.46)
and then move on to the case where the polymer does not directly interact with the helix
(Eq.3.62).

4.3.1. A slender helical fiber in a two-fluid medium with polymer slip

Fig.8 shows the thrust, drag and torque on a helical fiber in a two-fluid medium and the
results are compared to cases where the helix moves in a mixture with viscosity µs(1+λ),
and in two independent fluids, with one of the fluids slipping past the helix. From the plot
we see that the thrust on the helix increases and the drag decreases with increasing LB/L,
compared to the helix moving in a mixture, with this behavior being more pronounced at
large λ. The behavior of drag and thrust in this case can be understood by considering
a segment of the fiber as shown in Fig.7 and repeating a similar exercise for the two
fluid case, where now the polymer has slip, while the solvent satisfies no-slip. The drag
anisotropy (f⊥/f||) for this case is now directly proportional to λ (Eq.3.41), while for the
mixture, it still remains ≈ 2. Proceeding with this exercise, one can show that the ratio
ThrustTwo-fluid/ThrustMixture, will be a function of the viscosity ratio λ and will always be
greater than unity. Similarly, it can be shown that the ratios DragTwo-fluid/DragMixture

and TorqueTwo-fluid/TorqueMixture will always be less than unity. This increased drag
anisotropy in the two-fluid medium implies that the helix can move with an enhanced
velocity if the motion is force-free. This is clearly seen in Fig.9, where we plot the ratio
of the dimensionless thrust and drag for a helix that translates and rotates in a two-fluid
medium. Here the drag is normalised with µsUL and the thrust with µsΩRHelixL as was
done in Fig.8. This ratio is, therefore, equal to the ratio U/(ΩRHelix) of the force-free
translation velocity of a helix to the rotation velocity that induces this motion.
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Figure 8. Plots of normalised (a) thrust, (b) drag, and (c) torque for a slender helical fiber with
spheroidal cross-section, as a function of λ, from the numerical solutions for axial translation
(U) and rotation (Ω) of the helix in a two-fluid medium with polymer slip, where the curves
correspond to different LB/L. Here, RHelix/L ≈ 0.052 and a/L ≈ 0.0043.
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Figure 9. Plot of the ratio of thrust and drag on a helix rotating and translating in a two-fluid
medium with polymer slip (λ = 1). Green, dashed line is the ratio for the same helix rotating in
a mixture (LB/L→ 0) and brown, dashed line is the ratio in two decoupled fluids (LB/L→ ∞).
Here, as in Fig.8 RHelix/L ≈ 0.052 and a/L ≈ 0.0043.
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4.3.2. A slender helical fiber in a two-fluid medium with no polymer-fiber interaction

In Fig.10, we plot the results of SBT with no polymer-fiber interaction, where we
have restricted LB to the outer region. The plots show the normalised thrust, drag and
torque on the helix as a function of λ compared with the results for a helix moving in
a single fluid medium of viscosity µs + µp (mixture) and in two independent fluids. For
the latter case, the polymer fluid is not interacting with the helix and so the helix only
sees a single-fluid solvent medium with viscosity µs. Here, we see that the quantities
vary non-monotonically with λ for a given LB/L and importantly, the thrust also varies
non-monotonically with LB/L at a given λ. This is clearly seen in Fig.11, where we plot
the thrust and drag for λ = 1 as a function of LB/L. While the trends in the thrust could
be easily understood from the leading order solution to the force strengths in the case of
a slipping polymer, here we see that such an approach would not work. This is because,
the slip boundary condition affects the solution at leading order in ǫ (= 1/ log(2γ)), but
the no polymer-fiber interaction condition only affects the solution at O(ǫ2). Thus, the
change in thrust compared to the thrust on a helix in a single-fluid medium is small and
is O(ǫ). This suggests the motion of the fiber in the two-fluid medium is very sensitive to
the nature of the interaction between the fiber and the polymer. Fig.12 is a plot of the
ratio of thrust and drag as a function of LB/L for different λ compared with the same
for helix in a mixture of two fluids (LB/L → 0) and in the solvent (LB/L → ∞). Since
both these limits correspond to a single-fluid medium, this ratio is the same for both
limits (as it does not depend on the viscosity). From these plots we see that the ratio of
thrust to drag varies non-monotonically, first increasing and then decreasing with LB/L,
and approaches the value in a single-fluid medium for both LB/L→ 0 and LB/L→ ∞.
Note that for very small values of LB/L (Fig.12(b)), the ratio becomes smaller than
the ratio for a mixture, because the SBT was derived assuming LB in the outer region.
This non-monotonic variation in the thrust to drag ratio results from the non-monotonic
variation of the drag anisotropy for a rotating helix in the two-fluid medium. While the
leading order solution resulted in the same drag anisotropy as in a single-fluid medium
(Eq.3.65), the two-fluid effects present at higher orders in ǫ result in a slightly increased
drag anisotropy relative to the single fluid case. This anisotropy reaches a maximum at
LB ∼ RHelix (since the flow disturbance due to rotation decays over a distance RHelix),
before decreasing again to the single fluid value as less polymers are disturbed by the
rotating helix when LB is increased beyond RHelix.
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Figure 10. Plots of normalised (a) thrust, (b) drag, and (c) torque for a slender helical fiber with
spheroidal cross-section, as a function of λ, from the numerical solutions for axial translation
(U) and rotation (Ω) of the helix in a two-fluid medium with no polymer-fiber interaction, where
the curves correspond to different LB/L. Here, RHelix/L ≈ 0.052 and a/L ≈ 0.0043.
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Figure 11. Plots of the normalised (a) thrust and (b) drag on a helix rotating and translating in
a two-fluid medium with no polymer-fiber interaction (λ = 1). The green, dashed line indicates
the thrust for the same helix rotating in a mixture (LB/L → 0) and the brown, dashed line
indicates the thrust in the solvent (LB/L→ ∞). Here, RHelix/L ≈ 0.052 and a/L ≈ 0.0043.
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Figure 12. Plots of (a) the ratio of the thrust and drag on a helix rotating and translating
in a two-fluid medium with no polymer-fiber interaction. Single-fluid (green, dashed line)
indicates the thrust to drag ratio for the same helix in both mixture (LB/L → 0) and
solvent (LB/L → ∞). Note that this ratio is the same for mixture and solvent, as the ratio
is independent of viscosity. In (b), the ratio is plotted for small LB/L. Here, RHelix/L ≈ 0.052
and a/L ≈ 0.0043.

5. A swimming bacterium in a two-fluid medium

We have shown from our SBT calculations that a force-free helical fiber moves with
a larger velocity because of the presence of microstructure, regardless of the type of
interaction with the polymer. This effect of microstructure, modeled by our two-fluid
equations, is therefore crucial to understand motility of bacteria in entangled polymer
solutions. In this section, we calculate the swimming parameters of force- and torque-
free bacterial motion in a two-fluid medium using Resistive Force Theory (RFT) and
compare it against the experimentally observed trends for a bacterium swimming in
a concentrated polymer solution. The basic idea in RFT is to calculate the resistance
coefficients for motion of the flagellar bundle and the cell (head) and use them to calculate
the velocity and other swimming parameters, while ensuring that the motion as a whole
is force- and torque-free. In this calculation, the hydrodynamic interactions between the
cell and the flagellar bundle and also between the different segments of the bundle are
neglected. While this is not an accurate description, we shall see that this calculation
can still capture the qualitative trends observed in experiments, where the entangled
polymer solutions have a macro-rheology that is almost Newtonian(Martinez et al. 2014;
Qu & Breuer 2020). With hydrodynamic interactions neglected, the motion of a segment
of a bundle can be split into motion tangential and normal to the local centerline
orientation, giving us two coefficients of resistance (CN , CT ) proportional to the local
velocity, in these two directions. And for the cell, we again have two coefficients αC and
βC for translation and rotation. Using these coefficients, one can describe the motion
of a bacterium swimming with speed, v, cell angular speed, ωCell, and flagellar angular
speed, ωf as:

(

FC

TC

)

=

(

αC 0
0 βC

)(

v

ωCell

)

(5.1)

for the head of the bacterium, and
(

Ff

Tf

)

=

(

A B
B D

)(

v

ωf

)

(5.2)
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for the flagellar bundle, where v = [v, 0, 0], ωf = [ωf , 0, 0] and ωCell = [ωCell, 0, 0]. The
coefficients A,B,D for the flagellar bundle are given by:

A = −CNL sinψ tanψ(1 + ζ cot2 ψ) (5.3)

B = −CNL
p

2π
sinψ tanψ(1− ζ) (5.4)

D = −CNL(
p

2π
)2 sinψ tanψ(1 + ζ cot2 ψ) (5.5)

with L, p, ψ being the length, pitch and pitch angle of the flagellar bundle and ζ =
CN/CT . The expressions for the resistance coefficients can be obtained from the lead-
ing order solutions to our SBT equations (Eq.3.14-3.15,3.39-3.40,3.64) and depend on
whether LB is in the inner or outer region. For the flagellar bundle with characteristic
radius a these are given by,

CN =

{

4π(λ+1)µs

log(2γ) for LB/a≫ O(1)
4π(λ+1)µs

log(2γ) for LB/a ∼ O(1)
(5.6)

CT =

{

2πµs

log(2γ) for LB/a≫ O(1)
2π(λ+1)µs

log(2γ) for LB/a ∼ O(1)
(5.7)

for the case with a slipping polymer (γ is the aspect ratio for the bundle), where the
coefficients correspond to the cases with screening length in the inner (LB/a ∼ O(1))
and outer (LB/a ≫ O(1)) regions. For the case where the polymer has no interaction
with the bundle the coefficients are,

CN =
4πµs

log(2γ)
(5.8)

CT =
2πµs

log(2γ)
. (5.9)

For the cell, assumed to be spherical in shape for now, good approximations to the
resistance coefficients are those corresponding to a sphere translating and rotating in a
mixture of solvent and polymer fluids with viscosity µs(1 + λ), given by:

αC = −6πµs(1 + λ)RCell (5.10)

βC = −8πµs(1 + λ)R3
Cell, (5.11)

since in the physical picture presented earlier, the two-fluid behavior only applies to the
flagellar bundle whose radius is comparable to the length scale of the microstructure of
polymer solution. However, one can also find the effect of microstructure at the scale
of the head, as was done by Magariyama & Kudo (2002), and calculate the swimming
parameters for the case of a head translating and rotating in a two-fluid medium (with
a slipping polymer), for which the resistance coefficients are given by:

αC = −
6π(λ+ 1)RCellµs

(

RCell

√

λ+1
λL2

B
+ 2λ+ 3

)

RCell

√

λ+1
λL2

B
+ 3λ+ 3

(5.12)

βC = −8

8πR3
Cellµs

(

3λL2
B

R2
Cell

+ (λ+ 1)

(

3
√

λ
λ+1

LB

RCell
+ 1

))

3λL2
B

R2
Cell

+
3
√

λ
λ+1

(λ+1)LB

RCell
+ 1

. (5.13)
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These coefficients were calculated by solving for flow due to a translating and rotating
sphere in two-fluid medium as described in Section 1. A motivation for this calculation
is the fact that entangled polymer solutions are known to slip at solid bodies with
length scales much larger than the entanglement length scale, as was reported by
Mhetar & Archer (1998). It is not known whether polymers slip at the surface of bacterial
cells, since no experiments have addressed this question, but future experiments with
bacteria in entangled polymer solutions can shed light on this aspect. The force-free and
torque-free conditions are given by:

Fc + Ff = 0 (5.14)

2Tc = Tm (5.15)

2Tf = −Tm (5.16)

where Tm is the torque supplied by the motor. It has been known that the torque
generated by the motor has two regimes depending on the angular velocity of the motor
ωm = ωf − ωCell (Berg 2003). The motor torque behavior is given by:

Tm =

{

T0 for |ωm| 6 ω0

T0

(

1 + ω0−ωm

ωmax−ω0

)

for |ωm| > ω0
(5.17)

Here, |T0| is the knee-torque, ω0 is the knee-rotation rate and ωmax is the maximum
rotation rate of the flagellar motor, which are constants for a particular bacterial species
swimming in a motility buffer (a Newtonian medium with negligible nutrient content,
which optimally supports bacterial motility and chemotaxis but does not support bacte-
rial growth) at a particular temperature. Note that these constants are not sensitive to
the viscosity of the buffer. In our RFT calculations, we assume the motor torque to be the
input, having the form given in Eq.5.17. The above equations were solved simultaneously
and the resulting values of the swimming speed, cell rotation rate and flagellar rotation
rate are calculated for different scenarios. In calculating these parameters, the dimensions
of the bacterium that appear in the expressions (RCell, L, p, ψ, γ, a) correspond to the
measured values of wild-type E. Coli (Berg 2003; Martinez et al. 2014) and are the same
as given in Fig.5 (also tabulated in Table.1) and the input torque profile (with |T0|, ω0

and ωmax) are obtained from the experimentally measured values reported in (Berg 2003;
Martinez et al. 2014; Sowa & Berry 2008), corresponding to E.Coli swimming in motility
buffer at room temperature (T = 298K) that results in a constant driving potential for
the motor (proton-motive force) (Xing et al. 2006).

5.1. Mixture behavior at the bacterial cell

First, the swimming parameters are presented for the case where the cell moves in
a mixture, but the bundle sees two-fluid behavior. The swimming velocity and angular
velocities of the cell and bundle are given in Fig.13 for this case, where the three curves in
each plot corresponds to the three physical scenarios considered for the flagellar bundle
namely: (i) a slipping polymer with LB/a ∼ O(1), (ii) a slipping polymer with LB/a≫ 1
and (iii) a non-interacting polymer. For cases (i) and (iii), the resistance coefficients (of
the flagellar bundle) to the leading order correspond to the resistance coefficients for
a fiber moving in a single fluid medium, with viscosities µs(1 + λ) (mixture) and µs

(solvent) respectively, while for case (ii), the resistance coefficients involve the effect of
slipping polymer at leading order. This is evident in the plots of swimming velocity and
angular velocities as functions of λ in Fig.13, where we see that scenario (ii) results in an
enhancement in swimming velocity compared to scenarios (i) and (iii), with (i) being the
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Parameter Value

a 0.03µm
L 7µm
p 2µm
ψ 41◦

γ 240
RCell 1.5µm
µs 1mPas
|T0| 1250pN nm
ω0 350π rad/s
ωmax 600π rad/s

Table 1. Values of the various parameters corresponding to E.Coli used in RFT calculation.
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Figure 13. Plots of (a) the swimming velocity, (b) the angular velocity of the cell, and (c) the
angular velocity of the flagellar bundle of a bacterium in a two-fluid medium with a slipping
polymer fluid (LB/a ∼ 1 - cyan, LB/a≫ 1 - red), and with no polymer-bundle interaction (blue),
where the cell sees the mixture of the two fluids. The scenario with polymer slip (LB/a ≫ 1)
leads to a two-fold increase in swimming velocity for λ > 1.
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Figure 14. Plots of (a) the swimming velocity, (b) the angular velocity of the cell, and (c) the
angular velocity of the flagellar bundle of a bacterium in a two-fluid medium with a slipping
polymer, where the cell sees the mixture of the two fluids. Here LB/a ≫ 1 and LB/a ∼ 1
correspond to the screening length being in the outer and inner region respectively, while the
other curves correspond to screening length in matching region.

same as the bacterium (both head and bundle) swimming in a mixture. The observed
trends can be explained in terms of the drag anisotropy on the slender fiber, which is
directly proportional to λ for scenario (ii) and is independent of λ for scenario (i) and (iii).
Even though the flagellar bundle has the same drag anisotropy in cases (i) and (iii), the
fact that it moves entirely in the solvent for case (iii) results in the slight enhancement (at



34

0 2 4 6 8 10
0

5

10

15

0 2 4 6 8 10
0

2

4

6

8

0 2 4 6 8 10
0

100

200

300

400

Figure 15. Plots of (a) the swimming velocity and the angular velocities of (b) the bacterial
head and (c) the flagellar bundle for different values of LB/RCell, for a bacterium in a two-fluid
medium with slipping polymer (LB/a ∼ 1) compared with the case where the bacterium swims
in a mixture of two fluids (cyan, dashed curve).
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Figure 16. Plots of (a) the swimming velocity and the angular velocities of (b) the bacterial
head and (c) the flagellar bundle for different values of LB/RCell, for a bacterium in a two-fluid
medium with slipping polymer (LB/a≫ 1) compared with the case where the bacterium swims
in a mixture of two fluids (cyan, dashed curve).

a given λ) compared to (i), where the bundle moves in a mixture of two fluids. The nearly
constant angular velocity of flagellar bundle with λ for scenario (iii) is a consequence of
this fact. Also, in Fig.14, we have plotted the swimming parameters for the case where the
cell moves through a mixture but the flagellar bundle moves through a two-fluid medium
with slipping polymer, with the resistance coefficients CN , CT , now given by Eq.3.53, 3.54
respectively. These coefficients correspond to the coefficients valid for LB ∈ [0,∞], and
thus lead to swimming parameters that extend between the two limiting cases (case (i)
and (ii)) considered in Fig.13. These intermediate swimming parameters result from the
evolution of the anisotropic drag as LB passes through the matching region. Thus, we see
that for the case with polymer slip, one can go from the swimming velocity corresponding
to a mixture to an enhanced swimming velocity at a given λ, depending on the screening
length LB.

5.2. Two-fluid behavior at the bacterial cell

We now look at the effect of two-fluid behavior (microstructure) at the scale of the
head on the swimming parameters. For this calculation, we still have the following three
cases for the flagellar bundle: (i) Polymer slip at the bundle with LB/a ∼ 1, (ii) Polymer
slip at the bundle with LB/a ≫ 1, and (iii) no polymer-bundle interaction. Now, for
each of these three cases, the resistance coefficients for the head correspond to those
given in Eq.5.12-5.13 (slipping polymer on the head). The results of the calculations are
shown for case (i) in Fig.15 and for case (ii) in Fig.16 as functions of λ for different
values LB/RCell. We see from the plots that the two-fluid behavior at the scale of head
does not qualitatively change the trends for either scenario, showing that the effect of
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Figure 17. Plots of (a) the swimming velocity and the angular velocities of (b) the bacterial
head and (c) the flagellar bundle for different values of LB/RCell, for a bacterium in a two-fluid
medium, with non-interacting polymer (on bundle) and slipping polymer on head, compared
with the case where the bacterium swims in a mixture of two fluids (cyan, dashed curve).

slipping polymer is more dominant at the scale of flagellar bundle. Similar trends are
obtained for case (iii) shown in Fig.17 for which the polymer does not interact directly
with the flagella and slips on the cell. Note that in all these figures (Fig.15-17), the
cyan, dashed curve corresponds to the case where both cell and flagellar bundle swim
through the mixture of viscosity µs(1 + λ). Therefore, we see that the two-fluid model
of an entangled polymer solution predicts an enhancement in the swimming velocity of
a force-free and torque-free bacterium, when the polymer solution has a microstructure
with a length scale comparable to or larger than the flagellar bundle diameter. These
results are consistent with the observed trends for the force-free motion of a helix in the
two-fluid medium described in the previous sections.

5.3. Comparison with earlier studies

Finally, we compare these calculations with experimentally observed trends and
with previous RFT calculations, which have sought to explain the motion of a
bacterium swimming in a concentrated polymer solution. These include the works
of Magariyama & Kudo (2002); Martinez et al. (2014); Zottl & Yeomans (2019) dealing
with E.Coli motion in concentrated polymer solutions, where the authors have performed
RFT calculations assuming bacterium sized pores, shear-thinning and physical depletion
of polymers near the flagellar bundle respectively. With the exception of the calculation
by Zottl & Yeomans (2019), these studies predict a nonphysical trend, where one of
the swimming parameters (the cell angular velocity (ωCell) in Magariyama & Kudo
(2002) and the flagellar angular velocity (ωf ) in Martinez et al. (2014)) increases
with medium viscosity. In the calculation of Martinez et al. (2014), RFT relations
were used to fit experimentally observed values for the swimming velocity by using
experimentally observed cell angular velocities and the authors show that the fit is
satisfactory when one uses µs as the viscosity seen by the flagellar bundle. However,
they do not measure flagellar bundle rotation rates in the experiment. Using the RFT
equations of Martinez et al. (2014) to obtain the bundle angular velocities from the
measured cell angular velocities results in an increasing ωf with viscosity. This is a
non-physical trend because it implies that the motor angular velocity ωM = ωf − ωCell

increases with viscosity. This is shown in Fig.18(a), where the normalised angular-
velocities calculated by the three versions of RFT are shown as a function of normalised
viscosity. The resistance coefficients and the input parameters used in the two-fluid RFT
calculations for this comparison are the same as those used by Martinez et al. (2014) and
Zottl & Yeomans (2019) and are shown in Table 2. In these calculations, the bacterium
has a prolate spheroidal head, with semi-major and semi-minor radii ACell and BCell
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Figure 18. Plots of the (a) angular velocity of the flagellar bundle and (b) the velocity of
the bacterium, normalised by the respective values in a solvent of viscosity µs, as a function
of normalised viscosity µ/µs, calculated using the three versions of RFT. Our two-fluid RFT
(labelled TF) pertains to the case with polymer slip at the bundle (LB/a≫ 1), while the head
‘sees’ a mixture. The velocity is compared with experimental measurements of Martinez et al.
(2014).

Parameter Value

a 0.03µm
L 7µm
p 2µm
ψ 41◦

γ 240
ACell 1.2µm
BCell 0.43µm
µs 1mPas
|T0| 1450pN nm
ω0 350π rad/s
ωmax 600π rad/s

Table 2. Values of the parameters used by Martinez et al. (2014) in RFT calculations.

whose resistance coefficients are given by:

αC = −4πµs(1 + λ)UACell

log(2ACell

BCell
)− 1

2

(5.18)

βC = −16π

3
µs(1 + λ)UB2

CellACell. (5.19)

While the RFT of Zottl & Yeomans (2019) predicts a similar trend as ours, their
calculation is based on an assumption of physical depletion of polymers which, given
the coarse-grained model used for the polymers in their simulations, might overestimate
the actual depletion near the flagellar bundle (if any). The depletion distance calculated
by Zottl & Yeomans (2019) from their simulation is ∼ 0.35RHelix, which is extracted
from a coarse grain MD simulation where polymers are modeled as chains having
12 monomer beads. In Fig.18(b), we compare the plot of normalised V against µ/µs

measured experimentally by Martinez et al. (2014) against our two-fluid RFT and the
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calculations of Martinez et al. (2014); Zottl & Yeomans (2019). From the plot, we see
that our model also qualitatively follows the experimentally observed trend. Thus the
presence of porous microstructure at the length scale of the flagellar bundle, due to
entanglement in polymer, also predicts a similar enhancement in swimming velocity as
observed in the experiments.

6. Conclusions

In this report, we have developed a two-fluid model to capture the effect of the
microstructure of an entangled polymer solution and analysed the motion of a swim-
ming E.Coli using slender-body theory. The model predicts an enhancement in swim-
ming velocity, which results directly as a consequence of the microstructure. The two-
fluid model does not suffer from the inconsistencies in earlier theoretical models based
on shear thinning and depletion near the flagellar bundle (Magariyama & Kudo 2002;
Zottl & Yeomans 2019; Man & Lauga 2015; Martinez et al. 2014). In our model, the
flagellar bundle ‘sees’ a different viscosity as a consequence of the microstructure of the
polymer solution and exerts different continuum stresses on the polymer and solvent,
which are hydrodynamically coupled. Therefore, this model better represents the under-
lying physical conditions in a complex fluid with a microstructure.

A key assumption in our model lies in the nature of interaction of the polymer
with the flagellar bundle. The choices made in our calculations, those of slip or no
direct interaction, require validation from experiments, which will also shed light on
the nature of interaction between flagellar filaments and the polymers during swimming.
The choice of slip between the polymer and the bundle used in this work corresponds to
a limiting case, while in reality, the polymer might satisfy a Maxwell-like slip boundary
condition (Mhetar & Archer 1998). This can also be easily incorporated into our model,
provided the slip length at the flagellar bundle and the head (if slip is present) are
known. Regardless, it is easily seen that even with a partial slip of the polymer, the
results will remain qualitatively similar to the calculations shown here, with slip resulting
in an enhancement of swimming velocity. A stricter no polymer-bundle interaction
condition also predicts a slight enhancement in swimming speed, from a leading order
RFT calculation, but this does not follow the experimentally observed trends. Thus
slip of polymer near the flagellar bundle might be a more plausible condition in those
experiments, apart from other non-Newtonian effects. These results, thus shed light on
a possible mechanism of swimming speed enhancement observed in experiments, due to
the microstructure of an entangled polymer solution.

In the future, it would be valuable to study the motion of a bacterium swimming
in an entangled polymer solution, with both non-Newtonian and microstructure effects
incorporated in a two-fluid model. This might be accomplished by incorporating the
slender-body theory presented in this work into a numerical solver for a rigid body
(cell) moving through a two-fluid polymer solution. The parallel, finite-difference solver
for spheroidal-particle-resolved simulations in an inertia-less, unbounded non-Newtonian
fluid medium developed by (Sharma & Koch 2023) might provide the basis for such a
calculation.
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Appendix A. A translating and rotating sphere in the two-fluid

medium

For a sphere translating with a velocity U in a two-fluid medium, the dimensionless
governing equations for the solvent and polymer phases are given by:

∇2us −∇ps −
1

L2
B

(us − up) = 0 (A 1)

λ∇2up − λ∇pp +
1

L2
B

(us − up) = 0 (A 2)

where, us,up, ps, pp correspond to the solvent and polymer velocities and pressures
respectively. Assuming solutions of the form

us = f · (∇∇− I∇2)fs(r) (A 3)

ps = f · ∇hs(r) (A 4)

up = f · (∇∇− I∇2)fp(r) (A 5)

pp = f · ∇hp(r) (A 6)

where f = U for this case (but it can be an arbitrary vector that depends on the
boundary condition in general), the governing equations reduce to,

∇2fs − hs −
1

L2
B

(fs − fp) = 0 (A 7)

λ∇2fp − λhp +
1

L2
B

(fs − fp) = 0 (A 8)

∇2hs = λ∇2hp = 0 (A 9)

These equations can be solved by defining a mixture flow fm = fs+λfp, hm = hs+λhp,
and a difference flow fd = fp − fs and hd = hp − hs for which the equations reduce to,

1

r2
d

dr

(

r2
dfm
dr

)

− hm = 0 (A10)

1

r2
d

dr

(

r2
dfd
dr

)

−
(

1 + λ

λL2
B

)

fd − hd = 0 (A11)

which are the well-known Stokes’ equation and the Brinkman equation respectively. Note
that here and in Eq.A 7 and Eq.A8, the Laplacian only involves the radial derivative
owing to spherical symmetry in the problem. The boundary conditions used are:

us,up → 0 as r → ∞ (A 12)

up · n = U · n at r = a (A 13)

us = U at r = a (A 14)

(I − nn) · (σp · n) = 0 at r = a (A 15)

where the last boundary condition corresponds to zero polymeric tangential stress at the
sphere’s surface. Solving Eq.A9 and Eq.A10 subject to these BCs gives,

us = k1 f + k2(f · n)n (A 16)

up = k3 f + k4(f · n)n (A 17)
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where,

k1 =
e−

√
kr

(

e
√

kr(k(a
√
k+3)(a2+3r2)−6λ(a

√
k−kr2+1))+6λea

√
k(kr2+

√
kr+1)

)

4kr3(a
√
k+3λ+3)

(A 18)

k2 =
e−

√
kr

(

3e
√

kr(−k(a
√
k+3)(a2−r2)+2λ(3a

√
k+kr2+3))−6λea

√
k(kr2+3

√
kr+3)

)

4kr3(a
√
k+3λ+3)

(A 19)

k3 =
e−

√
kr

(

e
√

kr(a3k3/2+3a2k+3a
√
k(kr2+2)+3k(2λ+3)r2+6)−6ea

√
k(kr2+

√
kr+1)

)

4kr3(a
√
k+3λ+3)

(A 20)

k4 =
3e−

√
kr

(

e
√

kr(a3(−k3/2)−3a2k+a
√
k(kr2−6)+k(2λ+3)r2−6)+2ea

√
k(kr2+3

√
kr+3)

)

4kr3(a
√
k+3λ+3)

(A 21)

with k = 1+λ
λL2

B
. Using this velocity field, the drag on the sphere Fdrag =

∫∫

(σp +

σs).n a2 sin θdθdφ is given as

Fdrag

FN
=

(λ+ 1)

(

a
√

λ+1

λ

LB
+ 2λ+ 3

)

a
√

λ+1

λ

LB
+ 3λ+ 3

(A22)

where FN = (6πµsaU) is the Stokes drag force on a sphere in the solvent.
The limiting forms of this expression are:

lim
λ→0

Fdrag

FN
= 1 (A23)

lim
λ→∞

Fdrag

FN
=

2λ

3
. (A 24)

The first limit corresponds to the value of drag on a sphere through a pure solvent and
the second limit to the drag on a spherical bubble translating through a polymer fluid
(owing to Eq.A15). Also,

lim
LB→0

Fdrag

FN
= (1 + λ) (A 25)

lim
LB→∞

Fdrag

FN
= 1 +

2λ

3
(A 26)

which correspond, respectively, to the mixture-like behavior of the two fluids and to a
sphere moving through two independent fluids exerting additive drag forces.
For the rotating sphere, the governing equations Eq.A1-A2 are solved using the same

procedure as before with the boundary conditions now being,

us(r) = (ω × n) at r = a (A 27)

us,up → 0 as r → ∞ (A 28)

(I − nn) · (σp · n) = 0 at r = a (A 29)

Here, solutions of the form

us = ω × nfs(r) (A 30)

up = ω × nfp(r) (A 31)

pp = ps = 0 (A32)

are assumed using spherical symmetry. Using these boundary conditions, the solution is
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obtained as:

us = ω × n
a3e

− r√
k

((

a2 + 3a
√
k + 3k

)(

−e
r√
k

)

− 3
√
kλe

a√
k

(√
k + r

))

r3
(

a2 + 3a
√
k(λ+ 1) + 3k(λ+ 1)

) (A 33)

up = ω × n
a3e

− r√
k

(

3
√
ke

a√
k

(√
k + r

)

−
(

a2 + 3a
√
k + 3k

)

e
r√
k

)

r3
(

a2 + 3a
√
k(λ+ 1) + 3k(λ+ 1)

) (A 34)

where k =
(

1+λ
λL2

B

)−1

. Using this velocity field, the torque on the sphere Tsph =
∫∫

r ×

(σp + σs) a
2 sin θdθdφ is given as:

Tsph

TN
=

(λ+ 1)

(

a2

L2
B
+

3a
√

λ
λ+1

LB
+ 3λ

λ+1

)

a2

L2
B
+

3a
√

λ
λ+1

(λ+1)

LB
+ 3λ

(A 35)

where TN = 8πµsa
3ω is the torque on a sphere in the solvent. From the expression for

torque, we see that:

lim
LB→0

Tsph

TN
= 1 + λ (A 36)

lim
LB→∞

Tsph

TN
= 1 (A37)

consistent with the expected behavior. From Fig.1(a)-(b), we see that the drag force on
a translating sphere and torque on a rotating sphere of given radius a decreases with
increasing in LB. Also note that the decrease in torque is more significant than the drop
in drag for a given viscosity ratio λ.

A.1. Solutions for the case with a non-interacting polymer

To obtain solutions for the case with a non-interacting polymer fluid, we assume that
the polymer fluid exists everywhere in the domain, including within the sphere. Thus,
one has velocity field uin

p and pressure field pinp within the sphere, which satisfy Stokes
equations. We have a two-fluid medium outside the sphere which satisfy Eq.A1-A2. The
boundary conditions for this case are given by:

us,up → 0 as r → ∞ (A 38)

up = uin
p at r = a (A 39)

us = U at r = a (A 40)

σp · n = 0 at r = a (A 41)

Assuming a growing velocity and pressure field for the polymer inside the sphere, given
by:

pin
p = c1U · r (A 42)

uin
p =

(

c2 −
c3
3
r2
)

U +
(c1
2

+ c3

)

(U · r)r (A 43)
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subject to ∇ · uin
p = 0, and assuming the same form for us, up, ps and pp as in Eq.A3 -

A 6, we can solve the above system of equations to obtain the drag force as:

Fdrag

FN
=

(λ+ 1)

(

a3
√

λ+1

λ

L3
B

+ a2(2λ+3)
L2

B
+

18aλ
√

λ+1

λ

LB
+ 18λ

)

a3
√

λ+1

λ

L3
B

+ 3a2(λ+1)
L2

B
+

18aλ
√

λ+1

λ

LB
+ 18λ(λ+ 1)

(A 44)

A similar procedure can be used to calculate the torque on a rotating sphere for this
case, and it can be shown to result in the same expression as Eq.A 35.

Appendix B. Numerical scheme for SBT with validation

The numerical approach to solve the integral equations for force strength (Eq.3.12,
3.30, 3.31, 3.62) uses the helical phase ψ = ks cos θ, where k = 2π/p (p is the pitch) to
parameterize spatial locations as,

r(ψ) = R [cosψ, sinψ, ψ cot θ] (B 1)

so an integral equation for force strength, such as Eq.3.12, becomes:

Un =
fn

4π(1 + λ)
.

[

(I + tntn) log 2γ +
(I − 3tntn)

2

]

+
R∆ψ csc θ

8π(1 + λ)

∑

m 6=n

I + r̂nmr̂nm

rnm
.fm

−
∑

m 6=n

(I + tntn)

rnm
.fn +O(∆ψ)

(B 2)

where n,m = 1, 2, 3....pN , rnm = r(ψn) − r(ψm) is the position vector between spatial
locations, tn = [−sinθ sinψn, sin θ cosψn, cos θ] is the tangential unit vector at rn, and
∆ψ is the mesh size of the helical phase. Note that the equation above assumes that the
slender fiber has a spheroidal cross-section a(s) = 2

√

s(1− s). For convenience, we now
move to a coordinate system which is rotated with the helical phase, such that the surface
velocity Un is invariant along the helix. We use these invariant velocity components to
create a linear mapping between the velocity and force per unit length, which can be
evaluated for a specified helical geometry, helical axial velocity U , and rotation rate Ω to
give the thrust, torque, and drag. The transformation to this rotated coordinate system
is achieved by means of the rotation operator R(ψ) defined as:

R(ψ) =





cosψ − sinψ 0
sinψ cosψ 0
0 0 1



 (B 3)

The transformed velocity and force vectors are now denoted by

U ′
n = R(−ψn).Un, f ′

n = R(−ψn).fn (B 4)

such that U ′
n is invariant along the helical filament. For a rigid helix that rotates at rate

Ω and translates at speed U along its axial direction, we have

U ′
n = [0, Ω R,U ]T (B 5)

and
pN
∑

n=1

f ′
nR∆ψ csc θ =

[

0,
T

R
, Fz

]T

(B 6)
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The integral equation (Eq.3.12) now becomes,

U ′
n =

f ′
n

4π(1 + λ)
·
[

(I + t′t′) log 2γ +
(I − 3t′t′)

2

]

−
∑

m 6=n

(I + t′t′)

rnm
· f ′

n

+
R∆ψ csc θ

8π(1 + λ)

∑

m 6=n

R(ψm − ψn) +R(−ψn).r̂nmr̂nm.R(ψm)

rnm
· f ′

m +O(∆ψ)

(B 7)

where t′ = [0, sin θ, cos θ] is the tangent vector invariant along the helical fiber. This
results in a linear mapping between U ′ and f ′ given by
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(B 8)

For a known motion of helix U ′
n = U0 = [0, Ω R,U ]

T
, we have:

















f ′
1

f ′
2

.

.

.
f ′
pN

















= G−1.

















U0

U0

.

.

.
U0

















. (B 9)

or in simple terms,

F = G−1 · U (B 10)

where F is the unknown vector of force strengths having dimension 3pN and U is the
given velocity vector of dimension 3pN at each grid point on the fiber surface. The total
axial hydrodynamic force Fz , and net torque T are therefore given by Eq.B6, which
includes the thrust and torque due to rotation and the drag due to translation of the
helix.

The procedure highlighted above can be generalised to the two-fluid case, for both
polymer slip and no polymer-fiber interaction scenarios. For the first case, the uniformly
valid SBT equation (Eq.3.46) is used, while for the latter scenario, the SBT equation with
LB restricted to the outer region (Eq.3.62) is used for numerical calculation. In the first
case, one can calculate the force strengths given by the three versions of SBT (LB ∼ O(a)
(Eq.3.12), LB ≫ O(a) (Eq.3.30,3.35) and a ≪ LB ≪ l (Eq.3.42,3.45)) individually and
combine the total force strengths according to Eq.3.46.

For the SBT with LB ∼ O(a), the equation for (total) force strength (fs + λfp) is
similar to the SBT equation in a single fluid case and so the equation can be discretised
into the form given by Eq.B 10, with G now being a function of h(λ, LB) and g(λ, LB)
given in Eq.3.12. But for the other two versions of SBT (Eq.3.30,3.35 and Eq.3.42,3.45)
one has two force strengths fs and fp at each point on the fiber, so that the unknown
vector of force strengths in Eq.B 9 is now of dimension 6pN (twice as much as the
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dimension of unknown vector F for the single fluid case) with:

F =
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= U (B 11)

where G now is given by Eq.3.30,3.35 for SBT with LB/a ≫ O(1) and by Eq.3.42,3.45
for SBT with a≪ LB ≪ l.

B.1. Validation of the numerical scheme

We first validate the numerical scheme for a straight slender spheroid with a cross-
section given by a(s) = 2

√

s(1− s) in a single Newtonian fluid medium. From the SBT
of Batchelor (1970); Cox (1970) it is known that for uniform flow past a slender, smooth
spheroid, the non-dimensional force per unit length from SBT (accurate to all orders in
O(1/ log 2γ)) is given by:

U =
1

4π
f · (I + ezez) log 2γ +

1

8π
f · (I − 3ezez) (B 12)

where ez now denotes the unit vector along the axis of the spheroid. This is compared
with the result from the numerical calculation of total force on a straight spheroid
in Fig.19. The plot suggests that the numerical result agrees extremely well with the
theoretical prediction for N > 10, which we also find to hold true for helical fibers
(shown later in Fig.20, where the numerical calculation is compared with the theoretical
prediction of Johnson (1980)). Thus, in our subsequent calculations, we use N = 30 grid
points per pitch for the helical fiber. Note that for a fiber with a cylindrical cross-section,
the numerical implementation is more involved due to end effects, which introduce errors
of O(γ−1 log(1/γ)), owing to a force singularity at the end (Mackaplow et al. 1994).
Fibers with spheroidal cross-section remain numerically well behaved for large γ. Note
that for the case of straight fibers, the numerical scheme was implemented in a local
cylindrical coordinate system instead of the helical one described earlier.
Next, we validate the numerical scheme by calculating the total forces and torque

on a helical fiber held in a uniform flow of a single Newtonian fluid and compare the
results with those given by Johnson (1980). In his work, the author considers a helical
fiber (with spheroidal cross-section) of length l = 5p, (where p is the pitch of the helix),
radius RHelix = 0.25p and cross-section radius at the mid-point a = 0.01p, that rotates
due to an external torque and translates with a velocity such that the helix is force-
free. We have considered the same case and have calculated the force strength along
the fiber centerline. Johnson (1980) calculates the force strength in a local coordinate
system along the centerline, where the coordinate directions are tangent, normal and
binormal to the centerline. We can calculate the same by using a simple coordinate
transformation from our local helical coordinate system. The results from our calculation
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Figure 19. Comparison of the (a) normal and (b) tangential components (to the spheroid
axis) of the force on a straight, slender spheroid evaluated using the numerical scheme with
N = 10, 15, 20 grid points per pitch and the exact theoretical expression given in Eq.B 12.
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Figure 20. Comparison of the components of the force strength along the centerline of a helical
fiber in a local coordinate system from our numerical implementation with the results of Johnson
(1980). The helix has a prolate spheroidal cross-section with l/p = 5, RHelix/p = 0.25 and
a/p = 0.01 and undergoes force-free motion.

are plotted against the predictions of Johnson (1980) in Fig.20, and we see that our
numerical implementation works well for fibers with curved centerlines as well.

Appendix C. Slender-body theory for slipping polymer with LB in

the matching region

To derive the slender-body equation with screening length in the matching region,
we divide the domain into inner, outer and Brinkman regions as shown in Fig.4. In
the inner region, two independent fluids undergo two-dimensional flow relative to an
infinite cylinder. In the outer region, the solvent and polymer move with the same three-
dimensional mixture velocity due to the distribution of singularities along the centerline.
In the Brinkman region, the flow is the two-dimensional flow driven by a point singularity
in the two-fluid medium. The dimensionless inner, outer and Brinkman solutions are
given below for the solvent and polymer fluids, where the same scales used for the inner
and outer region in Section 3 are used here and for the Brinkman region the length is
non-dimensionalised by LB, while the other scales are kept the same.
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C.1. Inner region

For the solvent, the inner solution in the limit of ρ/a≫ 1 is given by:

uin
s = U − fs · (I + ezez)

4π
log ρ+

fs

4π
·
[

nn− I − ezez

2

]

+O(
1

ρ2
) (C 1)

and for the polymer, one has

uin
p = U ·(I−(1−c)ezez)−

fp · (I − ezez)

4π
log ρ+

fp

4π
·[nn− (I − ezez)]+O(

1

ρ2
) (C 2)

C.2. Outer region

In the outer region, the solvent and polymer flow with the same velocity (the velocity
of mixture) due to the distribution of singularities along the fiber centerline. The inner
limit of the outer solution (ρ/l ≪ 1) for the solvent and polymer are therefore:

uout
s (r) = uout

p (r) = U∞(r) +
f · (I + ezez)

4π(1 + λ)

(

log

(

2(
√

s(1− s))

ρ

))

− f · ezez
4π(1 + λ)

+

f.nn

4π(1 + λ)
+

1

8π(1 + λ)

∫ [(

I

|rc(s)− rc(s′)|
+

(rc(s)− rc(s
′))(rc(s)− rc(s

′))

|rc(s)− rc(s′)|3
)

· f(rc(s′))

−
(

(I + ezez)

|s− s′|

)

· f(rc(s))
]

ds′

(C 3)

where f = fs + λfp.

C.3. Brinkman region

In the Brinkman region (a ≪ LB ≪ l), the solvent and polymer are coupled by the
two-fluid equations, and the flow is the two-dimensional flow driven by a point singularity.
Thus, the dimensionless solvent and polymer velocity fields are:

uBr
s = fs ·GSS + λfp ·GPS + c1

= fs ·GSt +
λ

1 + λ
(fs − fp) · [GBr −GSt] + c1

(C 4)

uBr
p = fs ·GSP + λfp ·GPP + c2

= fp ·GSt +
1

1 + λ
(fp − fs) · [GBr −GSt] + c2

(C 5)

where c1 and c2 are arbitrary constants which will be determined by matching, and

GSt =
1

4π
((I + ezez) log (1/ρ) + nn) (C 6)

and

GBr =
1

4π
((I − ezez)A1 (ρ/LB) + nnA2 (ρ/LB) + 2K0(ρ/LB)ezez) (C 7)

where,

A1(χ) = 2

(

K0(χ) +
K1(χ)

χ
− 1

χ2

)

(C 8)

A2(χ) = 2

(

−K0(χ)−
2K1(χ)

χ
+

2

χ2

)

(C 9)
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with Kν being the modified Bessel function of order ν. Here, the length (ρ) is non-
dimensionalised with LB. The solution in the Brinkman region should be matched to
both the inner and outer solution in order to obtain the SBT equation for fs and fp.
Thus in this procedure, one has two matching conditions, instead of one. In the first
matching, the Brinkman solution in the limit of ρ/LB ≪ 1 is matched with the outer
limit (ρ/a≫ 1) of the inner solution. This yields,

U = c1 +
fs · (I + ezez)

4π
log

(

LB

a

)

+
fs · (I − ezez)

8π

+
λ

4π(1 + λ)
(fs − fp) ·

[

(I + ezez) [−Γ + log 2]− (I − ezez)

2

]

,

(C 10)

and

U · (I − (1 − c)ezez) = c2 +
fp

4π
log

(

LB

a

)

+
fp

4π
· (I − ezez)+

+
(fp − fs)

4π(1 + λ)
·
[

(I + ezez) [−Γ + log 2]− (I − ezez)

2

]

.

(C 11)

Here the term with log(LB/a) arises because the lengths are non-dimensionalised with
a and LB in the inner and Brinkman region respectively. For the second matching, the
Brinkman solution in the limit of ρ/LB ≫ 1 should be matched with the inner limit
(ρ/l ≪ 1) of the outer solution. The resulting equations in this case are:

c1 = U∞ +
fs + λfp
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[
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)
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1
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−
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(I + ezez)

|s− s′|

)

· (fs + λfp)(rc(s))
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(C 12)

and

c2 = U∞ +
fs + λfp

4π(1 + λ)

[

log(2γ) + log
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]
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(C 13)

Substituting Eq.C12,C 13 in Eq.C10 and C11 gives us Eq.3.42,3.43 respectively.
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