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Optical and magneto-optical properties of magnetic materials have been widely exploited to
characterize magnetic structures and phenomena, however, their temperature dependence is not
well understood. This study implements the supercell approach with thermal lattice and magnetic
disorders to obtain optical and magneto-optical spectra at finite temperatures based on Williams-Lax
theory. Our results show that large optical spectrum signals are generated at photon energies below
1 eV, originating from the phonon- and magnon-assisted intraband transitions as lattice and magnetic
temperatures increase. In addition, the prominent peak near 2.7 eV is redshifted proportionally to
magnetic temperature but depends much less on lattice temperature. By analyzing unfolded bands,
we show that the reduction of exchange splitting due to the thermal demagnetization causes this
redshift. Our unfolded electronic band structure with magnetic disorder shows band kinks, which
are characteristic evidence of the coupling between electrons and magnetic excitations. First-order
magneto-optical spectra at finite temperature are also predicted, but due to their small magnitude
suffer more from sampling errors. We discuss the effect of zero-point vibrations and the connection
of these simulations to the Drude model for intraband transitions.

I. INTRODUCTION

Optical and magneto-optical spectra play a crucial role
in revealing information about magnetic properties and
the electronic structure of materials. The temperature
dependence of such excited-state properties of magnetic
materials encodes and provides access to the intertwined
electron, lattice, and magnetic excitations.1,2 However,
acquiring detailed information about the individual ef-
fects remains challenging due to the overlapping energy
scale and the couplings among electrons, phonons, and
magnons. Therefore, there is a demand for a system-
atic investigation into how electron, lattice, and magnetic
temperatures are linked to optical and magneto-optical
spectra. Such an investigation can provide direct insight
into thermal effects in magnetic materials.

In experiments, (magneto-)optical spectra at finite tem-
peratures have been popularly measured to investigate
the magnetic properties of materials both in and out
of equilibrium. Static measurements of magneto-optical
signals at different temperatures provide insights into
equilibrium properties. This approach can be employed
to indirectly visualize how magnetic structure changes as
temperature increases, allowing for the determination of
the magnetic phase transition and its critical temperature
of magnetic materials.3–6 Furthermore, pump-probe time-
resolved (TR) magneto-optical Kerr effect (MOKE) mea-
surements have been used to uncover the physical origin
of magnetic properties out of equilibrium. This method
enables, for instance, the identification of temperature-
dependent magnon frequencies and magnon relaxation
rates, concluding the importance of the biquadratic ex-
change interaction for the temperature dependence in

antiferromagnetic NiO.7 In antiferromagnetic Fe2As, the
temperature gradient of magnetic birefringence from TR-
MOKE measurements shows a similar temperature trend
as the magnetic heat capacity.8 Since these quantities
are connected via exchange interactions, it is possible
to determine the Néel temperature through optical re-
sponse measurements.8 However, unveiling the underlying
physical origin of temperature-dependent optical spectra
via experiments remains challenging due to the intricate
manipulation of individual electron, lattice, and magnetic
temperatures being a sophisticated task. Achieving this
by using first-principles electronic-structure simulations
is the main goal of this paper.

Theories regarding the temperature-dependent elec-
tronic structures and optical properties of materials have
been developed since the 1950s, motivated by the need
to explain various experimental investigations.9–12 These
theories are applicable to non-magnetic materials by in-
corporating lattice temperatures described by nuclear
vibrational motions. Firstly, the Williams and Lax (WL)
theory is based on a semiclassical approximation, employ-
ing an ensemble average over atomic structures perturbed
by thermal atomic vibrations. This approach can eluci-
date changes in both the electronic eigenvalues and optical
transition matrix elements with varying temperature.9,10

The Hall, Bardeen, and Blatt (HBB) theory describes
temperature-dependent optical spectra by employing vary-
ing optical transition matrix elements but does not in-
corporate thermal changes in electronic eigenvalues.11

This theory is grounded in perturbation theory using
electron-phonon matrix elements and a ground-state elec-
tronic structure.11 Lastly, the Allen-Heine (AH) theory
explains temperature-dependent changes in the electronic
structures due to electron-phonon coupling.12 These the-
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ories serve as the fundamental theoretical background for
modern computational methods aiming to predict the elec-
tronic structure and optical properties of non-magnetic
materials at finite temperatures.13,14

Computational approaches to study electronic and
optical properties of magnetic materials at finite tem-
peratures are still in a nascent stage and most stud-
ies have focused on simple non-magnetic materials
with pure elements or simple semiconductors.14–27 Re-
cently developed methods for computing phonon-assisted
optical properties at finite temperature have been
applied to various non-magnetic materials, including
semiconductors,14,16,17,19,22,23,25 metals,15,20,21,26 trans-
parent conducting oxides,18,24 and 2D semiconductors.27

With the assistance of phonons, indirect interband transi-
tions can be addressed, which captures the onset of the
dielectric response correctly as a function of the photon
energy in semiconductors.16,17 This has been a critical
discrepancy between experiments and first-principles cal-
culations e.g. for bulk silicon,16 perovskite BaSnO3,22,23

and BAs.25 In addition, in doped systems, such as doped
SnO2,18 as well as metals, phonon-assisted intraband
transitions occur. In a first-principles study of frequency-
dependent thermoreflectance spectra of BCC Au it was
shown that the phonon temperature dominates the tem-
perature dependence of optical spectra.26 These studies
of the impact of finite lattice temperatures on optical
spectra indicate that such thermal effects might play a
role also in magnetic materials.

Historically, computational work has focused on sim-
ulating reliable optical spectra at 0 K and describing
the electronic structure at finite temperatures through
first-principles approaches. Optical and magneto-optical
spectra of magnetic materials without any thermal
effect28,29 have been well investigated using electronic
band structures from density functional theory (DFT).
The temperature-dependent electronic band structures of
magnetic semiconductors and metals are studied by com-
bining molecular dynamics and atomistic spin dynamics30

and the Green’s function (GW + T ) method, which in-
cludes electron-magnon scattering,31,32 respectively. How-
ever, temperature-dependent (magneto-)optical proper-
ties of magnetic materials have been scarcely investigated.

At low temperatures, the (magneto-)optical properties
of ferromagnetic BCC Fe have been investigated using var-
ious computational methods, because it is among the most
well-investigated materials regarding its optical properties
in experiments.33–42 Particularly, optical and magneto-
optical spectra of ferromagnetic BCC Fe at 0 K have been
studied using DFT.28,29,39,43–46 These investigations yield
good overall agreement when compared with measured
spectra,33–42 but struggle to capture intraband transitions.
Describing electron-electron interactions in ferromagnetic
BCC Fe at 0 K through the GW approximation47 resulted
in more accurate band structures with a correction of the
overestimated bandwidth of 3 d valence states by DFT-
LSDA, however, a discrepancy for exchange splitting and
magnetic moments remains.48,49

At finite temperatures, the electronic band structure
of ferromagnetic BCC Fe has been indirectly examined
employing advanced computational methods that include
scattering effects. Scattering effects are one of the main
contributors to the thermal change of (magneto-)optical
spectra, alongside electronic occupations and thermal
expansion.50 In magnetic materials, such effects encom-
pass contributions from impurities, electron-electron cou-
pling, electron-phonon coupling, and electron-magnon
coupling. Scattering effects from impurities were ad-
dressed by dynamical mean-field theory (DMFT) via
the Anderson impurity model, which can describe the
thermal scattering effects from impurities.51–54 DMFT
introduces the quantum many-body system to an im-
purity model with the correlation and scattering effects
and uses the Hubbard model with free parameters to
describe the electron-electron scattering.51 DFT+DMFT
successfully captures the quasiparticle damping of energy
states below the Fermi level on the electronic structure of
ferromagnetic BCC Fe.52–54 The overall renormalization
of the electronic structure shows good agreement with
photoemission measurements.52–54

Scattering effects from electron-magnon coupling are as-
sociated with magnetic temperature, and thus the consid-
eration of these effects can indirectly extract insight into
how the electronic structure changes at finite magnetic
temperatures. The effect of electron-magnon scattering
on the electronic band structure of ferromagnetic BCC Fe
has been recently studied via GT self-energy calculations
that are analogous to the GW approximation for electron-
electron scattering.31,32 Band structure renormalization
with electron-magnon scattering can describe the band
anomalies caused by spin-wave excitations and Stoner
excitations, which are observed in photoemission exper-
iments but not explained by DMFT studies.31,32 The
discrepancies between the measured spectrum and the
GT method, including the overestimated damping effect,
d bandwidth, and band anomalies, are recently solved by
the combination of the GW approximation with GT self
energies.55 These methods to reliably model the electronic
structure of magnetic materials are very recent, and thus
their expansion to describe optical spectra has not been
implemented yet.

Despite earlier mentioned efforts, the implementation
of first-principles studies on temperature-dependent op-
tical spectra for magnetic materials has been limited,
primarily due to the challenge of simultaneously modeling
electron, lattice, and magnetic temperatures. While the
methods mentioned earlier for non-magnetic materials
can be employed for lattice temperatures, it is crucial
to find an appropriate way to incorporate the magnetic
temperature into the approach. For example, electron-
phonon scattering in q-space can be obtained from the
electronic band structure, phonon dispersion, and electron-
phonon coupling calculations.56 The phonon-assisted in-
traband contributions in materials can be described in
HBB theory using perturbative methods,18,20,57 focus-
ing on electron-phonon coupling matrix elements with
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momentum transfer through calculated electron-phonon
coupling coefficients. Alternatively, an ensemble average
of the results obtained from explicit supercell calcula-
tions based on WL theory can be computed to encompass
the full anharmonicity.58,59 For the inclusion of magnetic
temperature, the latter approach is more intuitive, as the
magnetic temperature can be incorporated by introducing
magnetic fluctuation atop atomic vibration.30 In addition,
it is imperative to appropriately consider scattering effects
from electron-electron couplings. Frequency-dependent
electron-electron scattering can be computed using the
GW approach.47,60,61 In the infrared photon energy range,
intraband contributions are commonly described using
the Drude model and an electron scattering rate that
originates from the summation of electron-electron and
electron-phonon scattering in non-magnetic materials.21

In this study, we apply a method based on Williams-
Lax theory9,10,14 to investigate temperature-dependent
optical and magneto-optical properties of ferromagnetic
BCC Fe. This approach can simultaneously describe elec-
tron, lattice, and magnetic temperatures, as explained
below, which has not been achieved using perturbative
methods. Finite electronic temperature is described us-
ing thermal, Fermi-Dirac distributed occupation numbers
within Mermin DFT.62 Lattice and magnetic tempera-
tures are described on the same footing within WL theory.
While this theory was developed for nuclear vibrational
motion, we are applying it also to magnons, as another
bosonic excitation. Explicit supercell calculations are
used to model the corresponding atomic displacements
using harmonic sampling from the phonon eigenvectors
and magnetic fluctuations from classical atomistic spin dy-
namics simulations using magnetic interaction parameters
obtained from DFT. In principle, our approach can fully
address electron-phonon and electron-magnon couplings.
Optical and first-order magneto-optical spectra are then
calculated within the independent particle approximation
and thoroughly compared with measured spectra. In the
low photon energy range, the evidence of phonon and
magnon-assisted intraband transitions is captured by our
simulations and we explain the physical origin of this phe-
nomenon using optical matrix elements and joint density
of states. In addition, we explain a characteristic red-shift
of a peak in the optical spectra near 3 eV by invoking
finite magnetic temperature.

The remainder of this paper is organized as follows: In
Sec. II we discuss the detailed methodology for computing
temperature-dependent optical spectra. Computational
details are provided in Sec. III. In Sec. IV, we present the
calculated optical spectra and first-order magneto-optical
spectra of ferromagnetic BCC Fe with electronic, lattice,
and magnetic temperatures of 300 K. Section V presents
our analysis of the physical origin of the temperature
dependence and Sec. VI summarizes and concludes our
work.

II. THEORETICAL METHODS

Thermal excitations in magnetic materials comprise of
electron, phonon, and magnon contributions, all of which
can be modeled in first-principles simulations. We account
for finite electronic temperature using Mermin DFT,62 by
means of occupation numbers ni,k of Kohn-Sham states
that follow a Fermi-Dirac distribution,

ni,k = 1
eβ(ϵi,k−EF) + 1

, (1)

where β = 1/kBT , kB is the Boltzmann constant, ϵi,k is
the Kohn-Sham eigenvalue at band index i and k-point
k, and EF is the Fermi energy. In this work, we study
electronic temperatures between 5 K and 300 K.

Lattice and magnetic temperatures are modeled within
Williams-Lax (WL) theory9,10 using explicit supercells to
describe thermal disorder. Within WL theory, the imagi-
nary part of the temperature- and frequency-dependent di-
electric function follows from the statistical average,9,10,14

ϵ2(ω; T ) = Z−1
∑

n

exp(−∆Enβ) ⟨ϵ2(ω; x)⟩n , (2)

where Z=
∑

n exp(−∆Enβ) represents the canonical par-
tition function over n energy states and ∆En is the dif-
ference in total energy of the disordered structure and
the ground state. ⟨ϵ2(ω; x)⟩n is the quantum mechanical
expectation value of the n-th snapshot and we represent
this by the imaginary part of the dielectric function com-
puted within DFT for that snapshot, see Eq. (5). In
this expression, x indicates a set of collective atomic or
magnetic disorders, sampled by n different snapshots of
the ensemble and ϵ2(ω; x) is the dielectric function.

To model atomic displacements x due to finite tempera-
ture, two different approaches are used in this work. First,
we adopt the one-shot method by Zacharias and Giustino
(ZG), which describes the structural change at finite tem-
perature using a single optimal set of displacements to
approximate temperature-induced lattice disorder and
also incorporates the zero-point energy motion defined by
zero-point vibrational amplitude from the quantum har-
monic oscillator solution.17,19 The theoretical details are
discussed in Ref. 19, while the practical implementation
of the VASP code is derived from the method elucidated
in Ref. 63. To explore the influence of zero-point vibra-
tions, we compare to a technique that relies on snapshots
of displaced atomic geometries which are constructed by
superimposing harmonic phonon modes with randomly
sampled amplitudes and phases based on classical statis-
tics (CS).64,65 In this method, the mean-square amplitude
of mode i is defined as

〈
|Qj |2

〉
= kBT

ω2
j

, (3)

and the phase is modeled by a cosine function. The unit
of |Qj |2 is kg · m2. Since in Eq. (3) the amplitude is
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proportional to lattice temperature, vibrational motions
of the zero-point energy are not captured in this approach.

To address thermal fluctuations of the magnetic order at
finite temperatures we sample collective angular disorder
θ applied to the magnetic moments of the material. This
magnetic thermal disorder is described using atomistic
spin dynamics based on the stochastic Landau-Lifshitz-
Gilbert equation, employing parameters of magnetic in-
teractions derived from DFT,

dmi

dt
= − γLmi × (Bi + Bfl

i )

− γL
α

mi
mi ×

[
mi × (Bi + Bfl

i )
]

.
(4)

Here γL=γ/(1 + α2) denotes the renormalized gyromag-
netic ratio, γ is the gyromagnetic ratio of the electron, α
is a damping parameter, and mi denotes the magnetic
moment at atomic site i. Bi is the effective magnetic
field derived from exchange interactions, magnetocrys-
talline anisotropy, and magnetic dipolar interaction. The
fluctuating magnetic field Bfl

i introduces the effect of tem-
perature via random fluctuations generated by a Gaussian
distribution with an average of zero and variance propor-
tional to the temperature.66 For these simulations, we
use the existing implementation in the UppASD66 code.
This classical approach to atomistic spin dynamics does
not allow for including the quantum mechanical zero-
point magnon energy67 in our description of the magnetic
disorder.

To implement WL theory9,10 to compute optical and
magneto-optical properties at finite lattice or magnetic
temperature, we employ explicit supercell calculations.
For each supercell with temperature-dependent atomic
displacements or fluctuating magnetic moments, we com-
pute the complex, frequency-dependent dielectric tensor
following Ref. 68,

ε
(2)
αβ(ω; x, θ) = 4π2e2

Ω lim
q→0

1
q2

∑

c,v,k
2ωkδ(ϵx,θ

ck − ϵx,θ
vk − ω)×

×
〈

ux,θ
ck+eαq|ux,θ

vk

〉 〈
ux,θ

ck+eαq|ux,θ
vk

〉∗
.

(5)

Here ω is the photon frequency, α and β are Cartesian
axes, k samples the first Brillouin zone, and c and v are
conduction and valence band indices, respectively. ux,θ

ck
and ux,θ

vk denote the periodic Kohn-Sham orbitals and ϵx,θ
ck

and ϵx,θ
vk represent eigenvalues of these for supercells with

atomic (x) or magnetic disorder (θ). To enforce mag-
netic disorder from atomistic spin dynamics simulations,
a constraint of magnetic moments is used that includes a
penalty energy term in the total energy, as implemented
in VASP.69 Finite electronic temperature is simulated us-
ing occupation number constraints following Eq. (1) when
evaluating Eq. (5).

Therefore, with this approach, it is possible to simulta-
neously incorporate thermal contributions from electrons,

phonons, and magnons by simulating a set of supercell
models. We note that we assume negligible magnon-
phonon coupling by imposing magnetic disorder com-
puted at zero lattice temperature also for atomic dis-
order at finite lattice temperature in the ZG approach.
Furthermore, we adopted frequency-dependent electron
lifetimes, quadratically fitted to earlier GW results for
Fe70 (see Fig. S4), to describe electron-electron scatter-
ing effects when broadening the optical spectra. Due to
k-point convergence, we apply a lower bound of 0.1 eV
for broadening, see details in section III of the SI. This
frequency-dependent electron lifetime provides a more
accurate description of electron-electron scattering life-
times up to about 6 eV, but it results in the loss of the
characteristic peak around 6.7 eV in the measured optical
spectra as shown in Fig. S5.

From the complex, frequency-dependent dielectric ten-
sor within WL theory, we evaluate optical as well as the
first-order magneto-optical coefficient K71

K = 1
2(ε[001]

xy − ε[001]
yx ), (6)

which we compute using the xy off-diagonal elements of
the dielectric tensor since we put the magnetization along
the z-axis, i.e. the [001] direction of the conventional cell.

The optical conductivity spectra can be derived from
the dielectric function using72

ε(ω) = 1 + iσ(ω)
ε0ω

, (7)

where ε0 represents the vaccum permittivity. In this
paper, we plot all the spectra using ε(ω) · E, where E
is the photon energy, to compare both experimental and
computational results with those in Silber’s work.39

III. COMPUTATIONAL DETAILS

First-principles density functional theory calculations
are carried out for structural relaxation of the two-atom
ground-state conventional cell and for calculating the
electronic and optical properties for all snapshots of dis-
ordered supercells at finite temperatures, using the Vi-
enna Ab-Initio Simulation Package (VASP).68,73–75 A ki-
netic energy cutoff of 500 eV is applied to the plane-wave
expansion of the Kohn-Sham states, and the projector-
augmented wave method76 is used to describe the electron-
ion interaction. The exchange-correlation energy term in
the DFT Hamiltonian is described using the generalized-
gradient approximation parametrized by Perdew, Burke,
and Ernzerhof (PBE).77 For structural relaxation, we
used a collinear magnetism framework and a 24 × 24 × 24
Monkhorst-Pack (MP) k-point grid.78

Subsequently, we compute the phonon dispersion (see
Fig. S1(b) in the supplementary materials) using the fi-
nite displacement method implemented in the phonopy
package.79 For phonon dispersion and for the computation
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of the dielectric tensor in the presence of atomic or mag-
netic disorder, we use a 3×3×3 supercell with 64 Fe atoms,
the noncollinear magnetism framework with spin-orbit
coupling,75 and a randomly shifted Γ-centered 6 × 6 × 6
k-point grid. The convergence of (magneto-)optical spec-
tra has been checked with respect to supercell size, shown
in Fig. S13 and k-point sampling, see Fig. S14, and we
find that the imaginary part of the optical and first-order
magneto-optical spectra are converged to within about
10 % and 25 %, respectively, for photon energies above
0.5 eV. Due to the small signal of second-order magneto-
optical spectra, achieving converged results is much more
challenging (see details in SI).

Exchange interaction coefficients of BCC Fe are cal-
culated using multiple scattering theory through the
Korringa-Kohn-Rostoker (KKR) method.80,81 A practical
implementation in this work is achieved using the spin-
polarized relativistic SPR-KKR code82 to compute isotropic
exchange coefficients using the approach developed by
Lichtenstein et al.83 The spin Hamiltonian is

Hex = −
∑

i ̸=j

Jijeiej , (8)

where i and j are atomic site indices, Jij represents the
isotropic exchange coefficients, and ei denotes a normal-
ized magnetic moment vector. In these simulations, the
first Brillouin zone is sampled with 2000 random k-points.
We extract all exchange coefficients within the relative
distance of d/a = 4, where d is a spin-spin distance and
a is a lattice parameter, see Fig. S1(a). Based on the
exchange coefficients from SPR-KKR, atomistic spin dy-
namics simulations are carried out at finite temperature
for a single 9×9×9 supercell using the stochastic Landau-
Lifshitz-Gilbert equation implemented in UppASD.66 This
cell size resulted from convergence tests of sublattice mag-
netization and heat capacity, see Fig. S2.

For the computation of the dielectric tensor within
DFT, we divided the magnetic disorder in the 9 × 9 × 9
supercell used for atomistic spin dynamics simulations
into a total of 27 different 3 × 3 × 3 supercells. For atomic
displacements, we used a single snapshot of a 3 × 3 × 3
supercell from the ZG method and employed 27 different
3 × 3 × 3 supercells generated by the CS method. To
verify the reproduction of atomic and magnetic disorder
distributions using 3 × 3 × 3 supercells, we compare the
pair (angle) distribution functions with 6 × 6 × 6 and
9 × 9 × 9 supercells, as illustrated in Fig. S11 of the SI.
We note that converging long-wavelength lattice or spin
waves requires large supercell sizes that are not achievable
in our calculations. This limits the accuracy of our results
at low photon energies (see details in Fig. S13 of the
SI). We average the supercell optical spectra based on
WL theory9,10 and also extract standard errors over the
snapshots84 to estimate the error bar as shown in Fig. S12.

FIG. 1. (Color online.) (a) Real and (b) imaginary parts
of the averaged diagonal components of the optical spectra,
(εd − 1) · E, of ferromagnetic BCC Fe. DFT results for 0 K
(without zero-point displacement, black solid line), and 300 K
(electron, lattice, and magnetic temperature, red solid line).
Markers display measured values at room temperature by
Yolken et al.,33 Blotin et al.,34 Johnson et al.,35 Siddiqui et
al.,36 Ordal et al.,37,38 Silber et al.,39 and 4.2 K by Weaver et
al.40

IV. RESULTS

Optical spectra of ferromagnetic BCC Fe computed
at T=0 K and at T=300 K of electron, lattice, and mag-
netic temperatures are plotted together with experimental
results33–40 in Fig. 1. For comparison with polycrystalline
experimental results,33–40 the diagonal components of the
dielectric tensor are averaged when computing the dielec-
tric functions. The T=0 K result is computed without
zero-point displacements, corresponding to the standard
approach for computing optical spectra used in the liter-
ature. The real part of the optical spectra is connected
to the imaginary part via the Kramers-Kronig transform
and, hence, exhibits similar temperature dependence (see
also Fig. S6). The maximum standard deviation of the
imaginary part over the snapshots at T=300 K is about
0.7 %, as shown in Fig. S12(a) and (b). We note that
the magnitude of the different measured imaginary parts
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differ while the real parts show good agreement with each
other, which might originate from different surface prepa-
ration techniques, as elucidated by Yolken et al.33 Overall,
our results for the optical spectra at T =300 K show good
agreement with measured spectra.

More specifically, from Fig. 1 we identify three charac-
teristic changes in optical spectra caused by finite temper-
ature. First, the positive real part of the optical spectra
that we compute for T=0 K at energies less than 3 eV
becomes negative after introducing the finite temperature
in the simulations. This causes a broad peak to form
between 0.5 and 2.5 eV bringing the real part in good
agreement with experiment both in terms of peak position
and magnitude. Second, the simulation result for T=300
K shows a very large peak of the imaginary part of the
optical spectra below 1 eV that is absent in the T=0 K
simulation. We attribute this to phonon and magnon-
assisted intraband transitions that can be captured by
the changes of optical matrix elements in supercell sim-
ulations with thermal disorder, as analyzed in detail in
Sec. V. Such intraband response is also reported for mea-
sured spectra,34,36–38,40 however, in a smaller range of
low energies. The diverging signal of the real part below
0.5 eV and the exaggerated width of the intraband signal
in the imaginary part may in part be due to remaining
finite-size effects in our simulations, rendering a descrip-
tion of long-wavelength lattice vibrations and magnetic
fluctuations challenging. Third, we identify a redshift of
about 0.2 eV of the peak near 2.7 eV in the imaginary part
of the optical spectra at 0 K, caused by the shifting of the
electronic band structure with thermal demagnetization.
The physical origin of all three effects is discussed in detail
in Sec. V.

To analyze these individual contributions due to elec-
tron, lattice, and magnetic temperature, we implement
them separately when computing optical spectra. First,
Fig. S3 in the supplementary material demonstrates the
subtle relationship between electronic temperature and
optical spectra, highlighting a very weak effect. The
maximum change is less than 0.2 % because an electron
temperature of 300 K only slightly modifies electronic oc-
cupations near the Fermi level. However, the averaged
diagonal components of the temperature-dependent opti-
cal spectra in Fig. 2 show that the impact of lattice and
magnetic temperature on the optical spectra is significant.

Comparing the two different approaches to model lat-
tice temperature shown in Fig. 2(a) and (b) delineates
the effect of zero-point vibrational motions. Without
zero-point motion, there is no signal from intraband tran-
sitions at 0 K in Fig. 2(a), but these contributions become
significant as soon as the lattice temperature is non-zero.
Including zero-point motion via the ZG method, shows a
large peak at low energies independent of temperature in
Fig. 2(b) due to intraband transitions. As the tempera-
ture approaches 300 K, this quantum mechanical feature
becomes less important and the data in Fig. 2(b) looks
very similar to the harmonic sampling results based on
classical statistics in Fig. 2(a).

Figure 2(c) illustrates the effect purely contributed by
magnetic temperature. Again, at 0 K no signal from in-
traband transitions is observed due to the absence of
zero-point energy motion in spin waves in this work. Our
results how a large contribution of magnon-assisted intra-
band transitions immediately as the magnetic tempera-
ture increases above 0 K, similar to the lattice tempera-
ture from classical statistics in Fig. 2(a). Furthermore,
we show that a red shift of the peak near 2.7 eV occurs
only when introducing magnetic temperature. Such a
feature does not occur in Fig. 2(a) which shows that it
is independent of lattice temperature. Our analysis thus
shows that the large optical spectra below 1.0 eV orig-
inates from quantum-mechanical zero-point vibrations,
while the redshift of the peak near 2.7 eV is dominated
by magnetic temperature. In this work, we only capture
zero-point lattice vibrations, but the magnetic system
can have a similar zero-point effect and both together
dominate the temperature dependence below 1.0 eV. Since
Fig. 2 shows a small difference between the CS and ZG
results at energies above 2 eV and because the magnetic
peak redshift is much higher than the lattice peak shift
(see explicit discussion of Fig. 4 below) we conclude that
if zero-point magnon effects were included, that redshift
persists. We also expect a smaller spread of the curves
between 0.5 eV and 2 eV from the comparison of CS and
ZG results in that energy range.

Next, we computed real and imaginary parts of the
first-order magneto-optical spectra of ferromagnetic BCC
Fe (see Fig. 3). Our spectra display typical demagneti-
zation behavior of reduced magneto-optical signals over
the photon energy range as the temperature increases,
corresponding to a 10 % reduction of the net magnetiza-
tion in DFT (see temperature dependent magnetization
data in Fig. S2 of the SI ). Comparison with experimen-
tal results shows good agreement. For the real part in
Fig. 3(a), the overall spectral shape matches well, with a
slight difference in the peak position around 1.5 eV. This
difference between DFT data at 0 K and experiments has
also been reported in the literature.28,39,44–46 The sharp
positive peak of the real part at photon energies below
0.2 eV might be artificial due to remaining finite size ef-
fects for the supercells used in this work. These arise
because the Drude model relies on intraband transitions,
that are only captured by band folding in this work. Thus,
the minimum interband transition energy captured in our
approach depends on the supercell size and we do not
attempt to converge spectra at energies less than about
0.5 eV, corresponding to the intraband-induced increase
of the imaginary part of the dielectric function at low
energies (see Fig. S12 in the SI).

The imaginary part of the first-order magneto-optical
spectra in Fig. 3(b) also shows good agreement with mea-
sured spectra, including the sign change near 2.5 eV. The
magnitude of our computed spectrum for T=300 K is
smaller than for T=0 K because of thermal demagnetiza-
tion. Since the Curie temperature of BCC Fe is around
1043 K,85 thermal demagnetization at 300 K is not drastic.
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FIG. 2. (Color online.) The imaginary part of the averaged diagonal components of the temperature-dependent optical spectra,
(εd −1) ·E, of ferromagnetic BCC Fe from DFT with (a) lattice temperature from classical statistics (CS), (b) lattice temperature
from the one-shot Zacharias and Giustino (ZG) method, (c) magnetic temperature with the ground-state atomic structure, and
(d) electron, lattice, and magnetic temperature from 0 K to 300 K. Yellow arrows in (c) and (d) indicate a redshift of the peak
near 2.7 eV.

However, our simulations describe a gradual reduction of
first-order magneto-optical spectra over the whole photon
energy range as temperature increases (see Fig. S7 of the
SI), roughly corresponding to the theoretical expectation
of proportionality of the linear magneto-optical signal and
net magnetization. The standard deviation of first-order
magneto-optical spectra due to averaging of magnetic
disorder is more discernible at photon energies below 1 eV
than what we found for optical spectra (see Figs. S12(c)
and (d)), since the first-order magneto-optical spectra
signal is about 10 times smaller. While this error does
not affect our discussed conclusions, it requires careful
convergence with respect to the number of snapshots used.

We also attempted to calculate second-order magneto-
optical spectra, Gs · E, see Fig. S8, but they suffer from
a large standard deviation over the entire photon energy
range, as plotted in Fig. S12(e) and (f). The reason for this
is that second-order magneto-optical signals are about 100
times smaller than optical spectra, (εd − 1) · E, requiring
much higher accuracy when averaging magnetic disorder.
In addition, these calculations need to be implemented
using very dense k-point grids as shown in Fig. S14(e)

and (f). This is also discussed in Ref. 45 and the authors
show that sufficiently dense k-point grid can provide
appropriately converged optical spectra at 0 K.

V. DISCUSSION

In the following, we analyze the lattice and magnetic
contribution to the temperature dependence of the optical-
conductivity peak near 2.7 eV in more detail. The elec-
tronic temperature is not discussed due to its negligible
effect on the spectrum (see Fig. S3 in the supplementary
materials). Figure 4(a) shows that the zero-point lattice
vibrations (included in blue and black solid lines) induce a
redshift of this peak by about 0.04 eV. The data also shows
that the effect of zero-point vibrations vanishes around
240 K, which means that the quantum mechanical nuclear
motion becomes analogous to classical atomic motion,
evident from the converging yellow and blue solid lines.
An analogous behavior was reported for the temperature-
dependent band gap of silicon, where the difference also
vanishes at high temperatures.59 In the classical approach
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FIG. 3. (Color online.) (a) Real and (b) imaginary parts of
the first-order magneto-optical spectra, K ·E, of ferromagnetic
BCC Fe from DFT results with 0 K (black solid line, including
zero-point motion via the ZG approach) and electron, lattice
(ZG), and magnetic temperature of 300 K (red solid line).
Markers display measured values at room temperature by
Ferguson et al.,41 Krinchik et al.,42 and Silber et al.39

that neglects zero-point vibrations (yellow solid line), the
red shift is about 0.07 eV. Hence, we conclude that the
effect due to lattice temperature is very weak. Neverthe-
less, the curve that includes all temperature effects (black
circles) differs from that for the magnetic temperature
(red stars) by about 0.04 eV across the entire tempera-
ture range. Figure 4(a) strikingly shows that while the
absolute peak position depends on the zero-point lattice
vibrations, its near-linear temperature dependence is dom-
inated by the magnetic temperature. This dependence
of the peak position on magnetic temperature can serve
as an experimental measure of the degree of magnetic
disorder in ferromagnetic BCC Fe.

Importantly, the discrepancy in position between the
calculated peak at 0 K, excluding zero-point vibrational
motions, and the measured peak at 300 K is solved by the
introduction of temperature. In Fig. 4 (a), the calculated
peak position at 300 K (black solid line) is now placed in
the range of measured values at 300 K.33,35,39 However,
these measured peak positions at 300 K33,35,39 vary from

FIG. 4. (Color online.) (a) Position of the peak in the imagi-
nary part of the optical spectrum, (εd − 1) · E, near 2.7 eV as a
function of temperature. Electron temperatures (purple solid
line, Te), classical-statistics lattice temperatures (orange solid
line, T CS

L ), lattice temperatures with zero-point vibrations
(blue solid line, T ZG

L ), magnetic temperatures (red solid line,
TM ), and all temperatures combined (black solid line, Te &
T ZG

L & TM ) are plotted separately. Measured values at room
temperature by Yolken et al.,33 Johnson et al.,35 Weaver et
al.,40 and Silber et al.39 are plotted with different markers. (b)
Change of the optical spectra, (εd − 1) · E, due to excursions
of lattice and magnetic temperatures from 120 K to 150 K.
Weaver measured the spectral change of the optical spectrum
at 140 K with an arbitrary temperature excursion.40 Its mag-
nitude is in arbitrary units and is rescaled for comparison.

2.45 eV to 2.56 eV and the peak position at 4.2 K mea-
sured by Weaver et al.40 is also around 2.5 eV, making it
difficult to diretly conclude the redshifting behavior from
experiment.

However, comparison with the measured change of
the optical spectrum40 supports the existence of this
redshift: Weaver et al. performed measurements using
a temperature excursion at 140 K caused by a thin film
heater as shown in Fig. 4(b). Their data provides evidence
of a peak redshift via a sign flip near 2.4 eV,40 implying
that the signal at the original peak position decreases
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while the signal at the new peak position increases as the
peak moves left. Our calculated change of the optical
spectrum for magnetic temperatures of 120 K and 150 K,
similar to the temperature of 140 K used in experiment,40

shows a similar sign change near 2.6 eV, in qualitatively
good agreement with Weaver’s result, including the height
ratio of the peaks observed at about 0.9 eV and 2.8,eV,
see Fig. 4(b). Notably, the result with varying lattice
temperature alone does not exhibit such a feature. We
attribute differences between theory and experiment in
Fig. 4(b) at energies below 1 eV to finite-size effects in our
simulations. The slight disagreement of the position of
the negative peak near 2.8 eV might be explained by the
use of a local density approximation in our simulations
and better descriptions of the electron-electron interaction
might improve the agreement, based on the reduction of
bandwidth in the previous GW studies.31,55

The temperature-dependent electronic band structure
of ferromagnetic BCC Fe can elucidate the exact physical
origin of the peak red shift. We analyze characteristic
band anomalies, such as kinks, caused by electron-phonon
and electron-magnon scattering. Additionally, we can
identify the reduction of exchange splitting as the main
cause. Due to band folding, electronic band structures of
supercells are too complicated to interpret as temperature
changes. Thus, we adopted the effective band structure
method developed by Popescu et al.86 to extract the un-
folded band structure in terms of the reciprocal space of
the primitive unit cell. Our data in Fig. 5(a) plots the
spin-polarized band structure at 0 K, indicating a clear ex-
change splitting due to the ferromagnetic ordering. This
agrees well with the unfolded band structure at an elec-
tronic temperature of 300 K displayed in Fig. S9(a), due
to the small effect of electronic temperature. Both lattice
and magnetic temperature of T =300 K introduce a renor-
malization of the electronic band structure due to thermal
disorder, as can be seen from renormalized bandwidths
in Fig. 5(b)-(d). This introduces the broadening of opti-
cal spectra due to electron-phonon and electron-magnon
scattering.

Figure 5(b) shows that the renormalization due to the
lattice temperatures is not significant and the unfolded
band structure generally maintains its shape and gaps
between energy states. As a result, lattice temperature
leads to no drastic change besides the appearance of in-
traband transitions in the optical spectra, consistent with
our discussion above. Conversely, Fig. 5(c) shows that
magnetic temperature induces two unique temperature-
dependent behaviors. First, both spins shift oppositely, in
that the majority spin states corresponding to blue solid
lines in 5(a) increase their energy while minority spin
states corresponding to red solid lines in 5(a) decrease
it. This trend can be clearly seen in the animation that
is part of the supplementary materials. This behavior of
the spin-polarized electronic band structure indicates a
reduction of the exchange splitting due to thermal demag-
netization, which is comparable to a red shift of the peak
position in the imaginary part of the optical spectrum.

Therefore, we conclude that the red shift of the peak
near 2.7 eV originates from the reduction of exchange
splitting in the electronic band structure due to thermal
demagnetization.

Next, we analyze the band structure between Γ and
H in more detail in Fig. 6. First, we observe strong
renormalization due to lattice temperature and magnetic
temperature in the energy range from −0.5 eV to −2.0 eV,
see Fig. 6 as can be seen from the smeared out bands. We
also analyze the appearance of characteristic kinks within
2.0 eV of the Fermi level as pointed by arrows (1), (2), and
(3) in Fig. 6. These kinks are absent at 0 K in Fig. 5 (a) or
at finite electronic temperature (see Fig. S9(a)), but occur
as unique features associated with both lattice and mag-
netic temperature. There is a weak feature, labeled (1) in
Fig. 6, that can be attributed to finite lattice temperature,
and stronger ones, labeled (2) and (3), that appears for
finite magnetic temperature. The size of these second
features near −1.0 eV between Γ and H proportionally
increases as magnetic temperature rises, see the animated
figure file in the supplementary materials. The magnitude
of the band kink in our work might be overestimated
because the predicted Curie temperature of 880 K from
atomistic spin dynamics (see Fig. S2) is underestimated
compared to the measured value of 1043 K,85 inducing a
somewhat larger impact of electron-magnon scattering at
room temperature in our simulations.

Previous investigations31,32,55 reported some band
anomalies of BCC Fe that we also observed. Studies
using the GW+T matrix many-body Green’s function
method31,55 presented the band renormalization and band
anomalies after introducing electron-magnon coupling.
For example, band kinks, labeled (3) in Fig. 6, were also
observed in their simulations, while they didn’t encounter
feature (1) since their study didn’t introduce any lat-
tice temperature effects.31,55 This comparison demon-
strates that our method can capture the electron-magnon
coupling effects by introducing magnetic disorder. The
band kinks shown in our result but not in the GW+T
methods imply that our method also can capture the
electron-phonon coupling effects after introducing atomic
disorder. Furthermore, the GW+T method encompasses
electron-electron coupling effects that reduce the overall
bandwidth,31,55 a consideration not accounted for in our
method. For feature (2), there is no band kink but a
waterfall structure in their study,31,55 which is also mea-
sured in photoemission experiments32 as shown as white
circle markers in Fig. 6. This waterfall structure shows
a qualitatively good agreement with the lower part of
the magenta dashed line of feature (2) in Fig. 6 from our
result. Finally, our method includes spin-orbit coupling
effects, that are neglected in the GW+T study. However
the lack of band kink (2) in the GW+T results does not
originate from the lack of spin-orbit coupling since it still
appears when we exclude the spin-orbit coupling effect,
which requires further investigation.

We also analyze the origin of phonon and magnon-
assisted intraband transitions at energies below 2 eV in
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FIG. 5. (Color online.) (a) Spin-polarized electronic band structure of a primitive cell of ferromagnetic BCC Fe, without
spin-orbit coupling. Majority and minority spin states are plotted with blue and red solid lines, respectively. Unfolded electronic
band structure of ferromagnetic BCC Fe averaged over supercell configurations at (b) lattice (ZG) temperature, (c) magnetic
temperature, and (d) electron, lattice (ZG), and magnetic temperature of 300 K. The Fermi level is set to zero.

more detail. Unlike the perturbative AH12 and HBB
theories11 discussed in the introduction, the supercell ap-
proach to including thermal disorder accounts for both
temperature-induced modifications of electronic energies
and Kohn-Sham states beyond the perturbative regime.
Hence, it also accounts for changes in the optical transi-
tion matrix elements in the computation of the optical
spectrum through Eq. (5). Temperature-induced changes
of the electronic energies and optical matrix elements are
disentangled using the joint density of states (JDOS) and
the population distribution illustrated in Fig. 7, respec-
tively.

The JDOS in Fig. 7(a) shows only a minute change as
a function of magnetic temperature and a similarly sub-
tle change is also observed for finite lattice temperature.
This implies that the change of the optical spectrum is
mediated by large modifications of optical dipole matrix
elements. When we plot the entire population distribu-
tion of the optical transition matrix elements as shown
in Fig. S10, there is no apparent difference between 0 K
and magnetic temperature of 30 K, showing that their
total number and energy distribution does not change.

Conversely, Fig. 7(b) illustrates that large optical dipole
matrix elements (e.g. p2

x > 0.05) occur much more often
below transition energies of up to 2 eV for non-zero mag-
netic temperature. This shows that the corresponding
intraband transitions at zero temperature are dipole for-
bidden, but become dipole allowed due to magnetic or
lattice excitations in the presence of disorder. Because this
signal does not appear without any disorder, we interpret
them as intraband transitions. Such optical transitions
with momentum transfer due to band folding, require
a sufficiently large supercell to sample long-wavelength
phonon and magnon modes related to the transitions with
small photon energy near the Fermi level to prevent the
finite size effect.

Finally, we return to the question of modeling indirect
transitions that are expected to be particularly important
in indirect semiconductors,14,19 direct forbidden semi-
conductors, and metals. As discussed in the previous
paragraph, a disorder due to temperature or zero-point
vibrations causes symmetry breaking that enables oth-
erwise dipole-forbidden optical transitions that are not
accounted for in simulations using primitive cells. It was
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FIG. 6. (Color online.) Unfolded electronic band structure
between Γ and H of ferromagnetic BCC Fe at (a) lattice
(ZG) temperature of 300 K and (b) electron, lattice (ZG), and
magnetic temperature of 300 K. Orange solid lines represent
the electronic band structure of a primitive cell without the
spin-orbit coupling effect. Anomalous band kinks are labeled
with (1), (2), and (3). The magenta dashed line highlights kink
(2) in the unfolded electronic band structure. White circles
show the results from the photoemission experiment in Ref. 32,
which matches with the lower part of the magenta dashed line.
This figure magnifies the data in Fig. 5 and enhances the color
scale.

discussed before that this approach is capable of captur-
ing optical transitions in indirect semiconductors.14,19 To
explore whether it also captures Drude-like intraband
transitions in a metallic system, we compare it to the
Drude model37

Im(εd) =
ωτ ω2

p
ω(ω2 + ω2

τ ) , (9)

where ω, ωp, and ωτ stand for the photon frequency, the
plasma frequency, and the damping frequency, respec-
tively. Previously, Drude parameters ωp and ωτ have
been extracted by fitting this equation to the low pho-
ton frequency range of the imaginary part of the dielec-
tric function in experiments37,87 and simulations.88,89 To
analyze our data for a Drude-type contribution in the
imaginary part of the dielectric function, we first compute
the pure intraband term by subtracting the dielectric
function at 0 K lattice temperature without any disorder
from that for an electron, lattice (ZG), and magnetic
temperature of 300 K. This difference (orange solid line
in Fig. 8) corresponds to phonon-assisted and magnon-
assisted optical transitions. Clearly, Fig. 8 shows Drude-
like behavior of our data between 0.2 and 0.9 eV. Fitting
to Eq. (9), results in ωp = 6.52 eV and ωτ = 0.38 eV,
compared to ωp = 4.09 eV and ωτ = 0.02 eV from the fit
to experiment.37 The plasma frequencies agree reason-
ably well and the difference in relaxation frequency may
be attributed to sample impurities that would lead to a
smaller relaxation frequency obtained from the experi-
ment. We note that the low-energy range of our results
suffers from finite-size effects and does not diverge like
the Drude term, which can be corrected by employing
larger supercells. Also, the low photon energy range of

FIG. 7. (Color online.) (a) Joint density of states for different
magnetic temperatures. (b) Population distribution of tran-
sitions with dipole matrix elements p2

x > 0.05 vs. transition
energy between conduction and valence bands at 0 K (without
zero-point displacement, cyan bars) and a magnetic tempera-
ture of 30 K (orange bars).

the dielectric function requires dense k-point sampling
and appropriate choice of broadening parameters.90–92

Given these convergence limitations, our data indicates
that the ZG approach captures Drude behavior in met-
als even for our supercell sizes, and more quantitative
studies, in particular of the predicted lifetimes (relaxation
frequencies), are left for future investigations.

VI. CONCLUSIONS

Temperature-dependent optical spectra and first-order
magneto-optical spectra of ferromagnetic BCC Fe are pre-
dicted based on the supercell approach and Williams-Lax
theory for lattice and magnetic disorders. These effects
cannot be described by simulations using the ground state
primitive cell and we show that temperature-dependent
spectra agree better with experimental spectra. The cal-
culated optical spectra capture the phonon- and magnon-
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FIG. 8. (Color online.) The intraband transition term (orange
solid line) of the imaginary part of the calculated dielectric
function is extracted by subtracting the dielectric function at
lattice (CS) temperature of 0 K from that at electron, lattice
(ZG), and magnetic temperatures of 300 K. The Drude fitting
result is shown as a red dashed line. The fitting is implemented
using the extracted intraband transition term from 0.2 eV to
0.9 eV.

assisted intraband transitions and show a red shift of
the dominant peak near 2.7 eV that was reported be-
fore from the experiment. Our results for temperature-
dependent spectra indicate that this redshift originates
predominantly from the magnetic temperature which
causes thermal demagnetization and a resulting reduc-
tion of exchange splitting. The supercell approach used
here to simulate thermal disorder also describes phonon
and magnon-assisted intraband transitions that affect the
spectrum at photon energies below 2 eV. We show that

these significant contributions to the spectra are due to in-
creased optical matrix elements in the presence of disorder
and discuss the connection to the Drude model. Lastly,
our data shows band anomalies at finite temperatures as
kinks that are caused by electron-phonon and electron-
magnon coupling. Our study demonstrates the possibility
of investigating temperature-dependent optical properties
of magnetic materials through first-principles simulations.
In the future, this method might be expanded to explain
the magneto-optical behavior near the critical temper-
ature and advance the optical application of magnetic
materials, including further research on different spin tex-
tures such as antiferromagnets and non-collinear magnetic
structures at finite temperatures.
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I. DESCRIPTION OF LATTICE AND MAGNETIC INTERACTIONS

To demonstrate our appropriate description of lattice and magnetic interactions in this

work, we compare calculated exchange coefficients from the magnetic structure and phonon

dispersion of ferromagnetic BCC Fe with other references? ? . Calculated exchange coeffi-

cient in Fig. S1 (a) are plotted up to the relative distance (d/a) of 4. Compared to Wang’s

DFT-GGA study? , it shows good agreement in general but the coefficients of first and sec-

ond neighbors are somewhat underestimated, leading to the slightly lower Curie temperature

in Fig. S2. Calculated phonon dispersion also matches well with the signals from the neutron

scattering measurement implemented in Ref. ? as shown in Fig S1 (b).

FIG. S1. (Color online.) (a) Exchange coefficients (Jij) as a function of relative distance in terms

of the lattice parameter a and red square markers are taken from other DFT-GGA study? , (b) The

phonon dispersion curve and density of states of ferromagnetic BCC Fe. Orange triangle markers

are signals from the neutron scattering measurement of Ref. ? .
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Fig. S2 exhibits the convergence behavior of temperature-dependent net magnetization

per each Fe atom along [001] direction of the conventional cell and magnetic heat capacity

from atomistic spin dynamics in terms of the simulation cell size, concluding the selection

of the 9× 9× 9 supercell.

FIG. S2. (Color online.) Thermodynamic observables for the determination of the magnetic phase

transition temperature from atomistic spin dynamics simulation with different supercell sizes. (a)

Msub is a net magnetization per each Fe atom along [001] direction of the conventional cell, and

(b) Cv is a magnetic heat capacity. The measured Curie temperature (gray dashed line) is from

Ref. ?
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II. THE THERMAL EFFECT OF THE ELECTRON TEMPERATURES ON OP-

TICAL SPECTRA

The thermal effect of the electron temperatures on the optical spectra is negligible since

the occupation number of electron band structure only changes a few meV near the Fermi

level below 300K.

FIG. S3. (Color online.) The diagonal components of the temperature-dependent imaginary optical

spectra, (εd − 1) ·E, of ferromagnetic BCC Fe from DFT results with electron temperatures from

0K to 300K.
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III. THE IMPACT OF THE ELECTRON LIFETIME

As described in the main text, all plots use the frequency-dependent lifetime. The

quadratic frequency dependence of electron lifetime plotted in Fig. S4 is fitted using electron-

electron scattering predicted from the GW approach? . Here, we use the averaged lifetime

over the spin majority and minority results in Zhukov’s work? . The averaged electron-

phonon scattering below 1 eV from the study of Carva et al.? is about 0.02 eV, which is a

too small value to provide enough smearing on the optical spectra and to prevent the spiky

peaks caused by the sparse k-point sampling near Fermi surface. Thus, here we select the

lifetime of 0.1 eV at a low energy range plotted as a dashed red line in Fig. S4.

Fig S5 exhibits the impact of the selection of electron lifetime. Constant lifetime (black

solid line) applies excessive smearing in the low energy range below 1.0 eV, leading to a

reduction in the intensity of the intraband transition peak and contradicting with the mea-

sured spectra? ? ? ? ? . In addition, a peak near 2.7 eV suffers a somewhat weak smearing

effect, leading to a bit wide peak width. Such weak smearing in the high energy range can

be beneficial since a peak near 6.7 eV appears and matches well with the peak shown in

FIG. S4. (Color online.) The averaged electron lifetime of spin majority and minority states from

the GW approach implemented by Zhukov et al.? (Black circle markers). The blue solid line

represents the quadratic fit (quadratic coefficient: 0.0485) of GW results? , while the red dashed

line displays the actual lifetime exploited in all figures in the manuscript.
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measured spectra? ? . Although varying lifetime (red solid line) misses this peak due to the

strong smearing effect at high energy, we choose the frequency-dependent lifetime because

of the better description near visible light ranges popularly investigated in experiments thus

far.

FIG. S5. (Color online.) The imaginary parts with a constant electron lifetime of Γ = 0.3 eV (black

solid line) and a frequency-dependent lifetime (red solid line) of the averaged diagonal components

of the optical spectra, (εd−1) ·E, of ferromagnetic BCC Fe from DFT results with the all-included

electron, lattice (ZG), and magnetic temperatures of 300K. Markers display measured values at

room temperature? ? ? ? ? ? ? and 4.2K? .
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IV. THE TEMPERATURE DEPENDENCE OF REAL PART OF OPTICAL SPEC-

TRA AND FIRST-ORDER MAGNETO-OPTICAL SPECTRA

FIG. S6. (Color online.) The real part of the averaged diagonal components of the temperature-

dependent optical spectra, (εd − 1) · E, of ferromagnetic BCC Fe from DFT results with (a)

electron temperatures, (b) lattice temperatures (CS), (c) lattice temperatures (ZG), (d) magnetic

temperatures, and (e) electron, lattice (ZG), and magnetic temperatures from 0K to 300K.
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The temperature dependence of real optical spectra plotted in Fig. S6 behaves similarly

to that of imaginary optical spectra. Electron temperature shown in Fig. S6 (a) barely

affects the real optical spectra same as in Fig. S3 (a). The inclusion of lattice and magnetic

temperatures corrects the positive signal below the photon energy of 3.0 eV at 0K. The lattice

temperature dependence of real optical spectra is weakened by the zero-point vibrational

motion, as illustrated by the distinction between Fig. S6(b) and (c). Fig. S6 (e) indicates

that the magnetic temperature dominantly contributes to the temperature dependence of

the spectra after the inclusion of the zero-point vibrational motion.

FIG. S7. (Color online.) (a) Real and (b) imaginary parts of the first-order magneto-optical

spectra, K ·E, of ferromagnetic BCC Fe from DFT results with electron, lattice (ZG), and magnetic

temperature from 0K to 300K.
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The temperature dependence of first-order magneto-optical spectra reflects thermal de-

magnetization which is proportional to magnetic temperature. As temperature increases,

magnetic moments of ferromagnetic BCC Fe start precessing, reducing the net magneti-

zation. Since the Curie temperature of ferromagnetic BCC Fe is about 1043K? , spectral

change up to 300K is subtle but the results can describe such a slight reduction of first-order

magneto-optical spectrum signal.
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V. SECOND-ORDER MAGNETO-OPTICAL SPECTRA

We studied one of the second-order magneto-optical effects, Gs, which can be calculated

by following the equation for magnetization oriented toward [001]? .

Gs = ε[001]zz − ε
[001]
xx + ε

[001]
yy

2
(1)

Here, we emphasize that the magnitude of second-order magneto-optical spectra, Gs · E, is

about ten times smaller than that of first-order magneto-optical spectra, K · E (See Fig. 3

in the manuscript).

FIG. S8. (Color online.) (a) Real and (b) imaginary parts of the second-order magneto-optical

spectra, Gs·E, of ferromagnetic BCC Fe from DFT results with 0K without zero-point displacement

(solid gray line) and electron, lattice (ZG), and magnetic temperature of 300K (brown solid line).

Markers display measured values at room temperature.? ? ? ? .
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Therefore, the mean absolute error is considerable compared to the absolute magnitude

of second-order spectra as shown in Fig. S12. It might require more disorder snapshots,

sufficiently large supercells (Fig. S13), or very dense k-point grids (Fig. S14) to get accurate

spectra. Thus, here we only discuss the qualitative analysis of second-order magneto-optical

spectra, which requires a careful interpretation. For the real part, a peak near 2.5 eV shown

in the measured spectrum from Silber et al.? is captured in the calculated spectrum at an all-

included temperature of 300K. The imaginary part of second-order magneto-optical spectra

presents a valley shape near 1.6 eV and a peak near 2.8 eV plotted in Silber’s spectrum? and

calculated second-order signal also contains these features. Both real and imaginary spectra

of second-order magneto-optical effect at the magnetic temperature of 300K are redshifted

from 0K spectra, and this redshifting goes beyond the measurement results.
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VI. UNFOLDED ELECTRONIC BAND STRUCTURE AT ELECTRON TEM-

PERATURE AND LATTICE (CS) TEMPERATURE

At an electron temperature of 300K, it only changes the occupation number of the elec-

tronic band structure and thus the unfolded band structure is almost identical to the spin-

polarized band structure of the primitive cell shown in Fig. 5 (a) on the main text. Their

small difference might originate from the spin-orbit coupling effect which is weak in BCC

Fe. The difference in band structures between two lattice temperatures (CS) in Fig. S9 (b)?

and (ZG) in Fig. 5 (b) is negligible and the characteristic band kinks exhibit nearly the same

features because the impact of zero-point vibrational motion at 300K, becomes comparable

as discussed in the peak redshifting. Unfolded band structure at a lattice (CS) temperature

shows only slightly stronger renormalization over k-space compared to that at a lattice (ZG)

temperature shown in Fig. 5 (b) on the main text.

FIG. S9. (Color online.) Unfolded electronic band structure of ferromagnetic BCC Fe averaged

over supercell configurations at (a) electron temperature and (b) lattice (CS) temperature of 300K.
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VII. THE POPULATION DISTRIBUTION OF OPTICAL MATRIX TRANSI-

TIONS

When we count the optical transition matrix elements with all p2x, their populations show

an almost identical distribution in terms of the energy difference between conduction and

valence bands regardless of temperature. However, when we consider the matrix elements

which can sufficiently contribute to the optical spectra (p2x > 0.05) in Fig. 7 (b) on the main

text, the population difference between different temperatures in the low photon energy

range clearly elucidates that the change of matrix elements dominantly contributes to the

magnon-assisted intraband transitions.

FIG. S10. (Color online.) The population distribution of the optical transition matrix elements

with all p2x in terms of the energy difference between conduction and valence bands at 0K without

zero-point displacement (cyan bars) and magnetic temperature of 30K (orange bars).
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VIII. CONVERGENCE CHECK OF LATTICE AND MAGNETIC DISORDERS

WITH DIFFERENT SUPERCELL SIZES

For a reliable description of lattice and magnetic disorders, it is crucial to converge

the distribution of atomic displacements and magnetic fluctuations in terms of supercell

sizes. We examined various supercells to assess their convergence, as illustrated in Fig. S11.

In Fig. S11 (a), the averaged pair distribution function densities of the atomic structure

were compared between 27 snapshots of 3 × 3 × 3 supercells and 8 snapshots of 6 × 6 × 6

supercells, yielding a mean absolute error of 0.004. Similarly, in Fig. S11 (b), the averaged

pair angle distribution function densities of the magnetic structure were compared between

27 snapshots of 3 × 3 × 3 supercells and 1 snapshot of a 9 × 9 × 9 supercell, resulting in

a mean absolute error of 0.0005. The pair angle distribution function illustrates the angle

difference distribution between two distinct magnetic sites within the magnetic structure.

FIG. S11. (Color online.) (a) The averaged pair distribution function densities of the atomic

structure from 27 snapshots of 3 × 3 × 3 supercells and 8 snapshots of 6 × 6 × 6 supercells. (b)

The averaged pair angle distribution function densities of the atomic structure from 27 snapshots

of 3× 3× 3 supercells and 1 snapshots of 9× 9× 9 supercells.
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IX. STANDARD DEVIATION OF (MAGNETO)-OPTICAL SPECTRA OVER

THE SNAPSHOTS

The optical signal is about ten times greater than the first-order magneto-optical spectra,

which, in turn, is roughly ten times larger than the second-order magneto-optical spectra.

Since their standard deviations are comparable, their relative errors are significantly different

as shown in Fig. S12. Thus, the errors of optical conductivity and first-order magneto-optical

spectra are reliably small, while that of second-order magneto-optical spectra overwhelms

the averaged value.

FIG. S12. (Color online.) Average and average with the standard deviation (STD) of optical

spectra ((εd − 1) · E), first-order magneto-optical spectra (K · E), and second-order magneto-

optical spectra (Gs ·E) from the ensemble at electron, lattice (ZG), and magnetic temperature of

300K.
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X. CONVERGENCE CHECK OF (MAGNETO-)OPTICAL SPECTRA WITH

DIFFERENT SUPERCELL SIZES

The larger supercell size corresponds to the denser q-point sampling in terms of phonon

dispersion. In addition, it implies the lattice waves with longer wavelengths including low-

energy acoustic waves which are significant to describe the thermal properties at low temper-

atures. Optical and first-order magneto-optical spectra exhibit reasonably good convergence

with some corrections happening at low phonon energy ranges below 3 eV, while second-order

magneto-optical spectra only display qualitative agreement.

FIG. S13. (Color online.) Spectra at electron, lattice (ZG), and magnetic temperature of 300K

with 2 × 2 × 2 supercells averaged over 217 snapshots (Red solid line) and 3 × 3 × 3 supercells

averaged over 27 snapshots (Black solid line) of (a), (b) optical spectra ((εd− 1) ·E), (c), (d) first-

order magneto-optical spectra (K ·E), and (e), (f) second-order magneto-optical spectra (Gs ·E).
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XI. COVERGENCE CHECK OF (MAGNETO-)OPTICAL SPECTRA WITH DIF-

FERENT k-POINT GRIDS

Optical conductivity and first-order magneto-optical spectra exhibit the convergence with

respect to k-point grid, while second-order magneto-optical spectra might require denser k-

point grid than 6× 6× 6, the densest grid that we tested.

FIG. S14. (Color online.) Spectra at all-included electron, lattice (ZG), and magnetic temperature

of 300K with randomly shifted Γ-centered 3 × 3 × 3, 4 × 4 × 4, 5 × 5 × 5, and 6 × 6 × 6 k-point

grids of (a), (b) optical spectra ((εd − 1) · E), (c), (d) first-order magneto-optical spectra (K · E),

and (e), (f) second-order magneto-optical spectra (Gs · E).
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