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We predict that one- and two-dimensional self-bound quantum droplets, forming in Bose-Einstein
condensates in the presence of Lee-Huang-Yang (LHY) quantum corrections to the mean-field en-
ergy, may demonstrate exceptional mobility in periodic optical lattices and that they may exhibit
considerable displacements across the lattice, remaining dynamically stable, even under weak initial
phase kicks imparted to them. Mobility properties of quantum droplets are determined by their
internal structure and strongly depend on the number of particles in them. We find that due to
the peculiar effect of the LHY quantum corrections, odd (i.e, on-site centered) and even (i.e., inter-
site-centered) one-dimensional quantum droplets feature alternating mobility and immobility bands
closely corresponding to the regions, where translational perturbation mode is unstable and stable,
respectively. This picture becomes even richer in two-dimensional case, where odd-odd, even-odd or
even-even quantum-droplets also feature alternating mobility and immobility domains, and where,
surprisingly, the droplet may be mobile in one direction, but immobile in the orthogonal direction.
We link changes in mobility properties with multiple intersections of energy E(µ) and norm N(µ)
dependencies for droplets with different internal structure.
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Introduction. Great current interest to quantum
droplets (QDs) is motivated by their unusual physical
properties stemming from quantum corrections to the
meanfield energy that qualitatively affect their existence
and stability [1, 2] allowing, in particular, formation of
stable multidimensional states even in free space. Quan-
tum droplets were observed and extensively studied in
single-component dipolar Bose gases, where collapse due
to long-range attractive dipolar interactions can be com-
pensated by the repulsive Lee-Huang-Yang (LHY) cor-
rection [3–8], and in Bose-Bose mixtures, where the re-
pulsive LHY correction becomes important when the
intra-component repulsion is compensated by the inter-
component attraction leading to stabilization of not only
fundamental [9–14], but also of excited states [15–19].
Current progress in this rapidly expanding field is sum-
marized in several recent reviews [20–22].

Remarkably, in the presence of strong confinement
along one or two coordinates, the dynamics of one- (1D)
and two-dimensional (2D) quantum droplets can be de-
scribed by the reduced models with different nonlineari-
ties [1, 2]. Therefore, the interplay between such nonlin-
earities and relatively weak periodic [23–29] and radially
periodic [30–32] optical lattices may be particularly inter-
esting and unusual, since the properties of lattice solitons
strongly depend on the nature and law of nonlinear inter-
actions in the system. Notice that the form of the beyond
mean field corrections may depend on the shape of the
confining potential, see for instance [33] for description of
quantum fluctuations in the presence of strong confine-
ment in deep periodic two-dimensional lattices.

The breakup of translational invariance by the lat-
tice is known to severally restrict the mobility of non-
linear excitations that tend to radiate when they travel

across the lattice [34–38] that leads to their eventual trap-
ping around one of the potential minima [39–42]. This
is the case also for Bose-Einstein condensates with lo-
cal cubic interactions, where compact solitons moving
across the lattice are quickly trapped (and only very
broad wavepackets show mobility) [43–45]. Thus, one
of the intriguing open questions, important also for un-
derstanding of dynamics of nonlinear waves in various
periodic media, is whether nonlinearities specific for QDs
can grant them enhanced mobility in optical lattices?

Notice that previously mobility of lattice solitons was
studied mainly in distinct physical systems, such as non-
linear optical media, where different degrees of mobility
were encountered in discrete models with cubic-quintic
[46–49] or saturable [49–57] nonlinearities, in materi-
als with nonlocal nonlinearity [58], in competing linear
and nonlinear pseudo-potentials [59–61], or in models
with more complicated nonlocal inter-site nonlinearities
[49, 62–66]. In most cases, the existence of steadily trav-
elling solitons was related either to vanishing Peierls-
Nabarro (PN) barrier (i.e., the energy difference between
the onsite- and intersite-centered solitons) or to the onset
of dynamical instabilities. In matter-wave systems with
LHY quantum contribution such mobility enhancement
has never been considered, to the best of our knowledge.

In this paper we show that quantum droplets in op-
tical lattices that exist in stable form due to nontrivial
competition between cubic nonlinearity and LHY correc-
tion offer very rich opportunities for realization of mobile
states that can move across the lattice practically with-
out radiation, provided that certain conditions for norm
and symmetry of quantum droplet are fulfilled. In the
effectively 1D geometry, we find that continuous fami-
lies of QDs feature mobility and immobility bands that
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FIG. 1: The lowest part of bandgap structure produced by
the 1D optical lattice V (x) = −V0 cos(2κx) with V0 = 2 and
κ = 2. Blue curves show the dependencies µν(kB), ν = 1, 2, 3,
and the gray areas correspond to values of µ that belong to
spectral gaps. The two lowest spectral bands are separated
by the first finite gap. In this paper we consider quantum
droplets situated in the semi-infinite gap, i.e., with chemical
potentials µ below the first band with ν = 1. For interpreta-
tion of the references to color in this figure legend, the reader
is referred to the web version of this article.

alternate for odd and even states. We find that mobil-
ity properties change around energy intersections for odd
and even solutions (which can be heuristically interpreted
as a continuous counterpart of the vanishing PN barrier).
We report also on the unprecedented mobility of quantum
droplets in 2D case, where such states can be mobile in
one direction, but immobile in the orthogonal direction.
These results are in sharp contrast to previous findings
in optical and matter-wave media, where 2D lattice soli-
tons demonstrate very restricted mobility due to strong
radiative losses or decay/collapse already after crossing
of several of lattice periods, especially in systems with
cubic nonlinearity [42, 53].
Mobility in 1D. First we consider a quasi-1D Bose-Bose

mixture with identical components, which can be mod-
elled by the following dimensionless equation [2, 67]:

iΨt = −
1

2
Ψxx + V (x)Ψ − g|Ψ|Ψ+ δ|Ψ|2Ψ, (1)

where positive coefficients δ and g stand for the effective
strengths of the meanfield cubic nonlinearity and the at-
tractive LHY correction, respectively. We use the values
of nonlinear coefficients g = 1 and δ = 0.4 that ensure
the formation of quantum droplets [68–70]. Due to the
opposite signs, the nonlinear terms are competing, which
is a key factor for enhanced mobility. The mixture is
loaded in optical lattice V (x) = −V0 cos(2κx), where V0
and κ are the lattice depth and spatial period ℓ = π/|κ|,
respectively. To ensure validity of Eq. (1), we consider
here a relatively shallow lattice with V0 = 2 and κ = 2,
such that in physical units the lattice depth is compa-
rable with the recoil energy (i.e. our regime is far from

odd

even

FIG. 2: Profiles of odd (left panel) and even (right panel)
QDs coexisting at N = 6.6, 26.0, and 45.4. For unstable
solutions (odd droplet with N = 26.0 and even droplets with
N = 6.6 and 45.4) we also show with black dashed lines the
antisymmetric translational perturbation modes.

tight-binding one). Among conserved quantities of sys-
tem (1) is the number of particles N =

∫∞

−∞
|Ψ|2dx and

energy E =
∫∞

−∞
(12 |Ψx|2+V (x)|Ψ|2− 2g

3 |Ψ|3+ δ
2 |Ψ|4)dx.

We note that number of particles N is introduced for
the dimensionless equation (1) and therefore N can be
fractional. The actual number of particles N scales as
N ∼ 103 . . . 104×N , depending on chosen physical units.

Let us first briefly address the system in the ab-
sence of interactions. This case formally corresponds
to g = δ = 0 in Eq. (1). The Floquet theory dictates
that solutions can be found in the form of Bloch waves
Ψ(x, t) = ei[kBx−µ(kB)t]u(x; kB), where kB is the Bloch
momentum in the Brillouin zone kB ∈ [−π/ℓ, π/ℓ), µ(kB)
is the chemical potential, and functions u(x; kB) are ℓ-
periodic in x. The one-dimensional optical lattice pro-
duces a bandgap structure which consists of a countable
set of spectral bands with µ = µν(kB) and u = uν(x; kB),
where we have introduced index ν = 1, 2, . . . to enumer-
ate the spectral bands. The lowest part of the bandgap
structure for our parameters is displayed in Fig. 1. In
what follows, we will consider QDs with chemical poten-
tials µ situated in the semi-infinite gap, i.e., below the
first spectral band.

Stationary quiescent quantum droplets admit the rep-
resentation Ψ(x, t) = e−iµtψ(x), where µ is the chemi-
cal potential and ψ(x) → 0 as x → ±∞. It is known
[71–73] that in a system with purely meanfield repulsive
nonlinearity solitons do not appear in the semi-infinite
forbidden gap of the spectrum. However, the attractive
LHY correction enables the existence of QDs in the semi-
infinite gap. We focus on two families of solutions that
can be denoted as odd and even QDs. This terminology
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FIG. 3: (a) Chemical potential µ vs. number of particles N for
odd (red color) and even (blue color) QDs; the inset shows
the same dependencies in the region of small N , where the
families bifurcate from the edge of the spectral band shown
with the gray area; in this region the dependencies for odd
and even solutions are indistinguishable on the scale of the
inset. (b) Normalized energy E − 〈µ〉N (lower panel), where
〈µ〉 = −0.786 is a coefficient which is introduced to remove the
irrelevant linear slope. (c) Maximal instability rates. (d) The
displacement of the integral center ∆xc = xc(T )−xc(0) of the
droplet plotted in units of the lattice period ℓ at T = 2·103 vs.
number of particles N . The initial kick eiαx with α = 0.01 has
been imparted to initially quiescent droplets. Several mobility
bands calculated for α = 0.005 are plotted with dashed curves.
Vertical dotted lines in all panels indicate numbers of particles
for droplets whose dynamics is shown in Fig. 4 (first three
lines) and Fig. S1 of Supplementary material [78] (last two
lines). For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this
article.

reflects the spatial shape of corresponding wavefunctions
ψ(x), which, respectively, feature odd or even numbers
of local maxima. Odd QDs are centered at the lattice
“sites” [one of minima of V (x)], while even QDs are cen-
tered between lattice “sites” [i.e. they have at least two
equal maxima of ψ on neighboring lattice minima]. Sev-
eral examples of QDs with different numbers of peaks
are shown in Fig. 2. Stationary solutions presented in

Fig. 2 and below have been computed using the itera-
tive Newton method applied to the corresponding finite-
difference problem on a sufficiently large computational
window subject to the zero boundary conditions. The
families of odd and even QDs detach from the lowest edge
of the spectral band [see the inset in Fig. 3(a)]. As num-
ber of particles N increases, the impact of the repulsive
cubic nonlinearity builds up that leads to the appearance
of the lower bound of the chemical potential [Fig. 3(a)].
Remarkably, for sufficiently large N the competition be-
tween cubic nonlinearity and LHY correction causes out-
of-phase oscillations of chemical potentials µ(N) for odd
and even QDs, leading to multiple intersections of corre-
sponding µ(N) curves. These oscillations are accompa-
nied by the gradual broadening of the droplets, so that
they eventually acquire flat-top shapes as in uniform case
[67], but with density modulations due to presence of the
lattice. Similar oscillations are observed also in E(N)
dependencies for odd and even droplets in Fig. 3(b). No-
tice that the difference of energies E of two different so-
lutions at fixed number of particles N is frequently asso-
ciated with so-called Peierls-Nabarro barrier that the so-
lution should overcome, when it moves across the lattice
(thereby passing between odd and even configurations
upon motion). Hence, the points where the difference
of energies vanishes correspond to the points, where this
barrier vanishes, and hence even minimal kick is sufficient
to set droplet in motion.

Multiple intersections between energies of odd and
even QDs indicate on possible recurring exchange of sta-
bility between these states. To analyse their stability we
substitute the perturbed QD profile Ψ = e−iµt[ψ(x) +
χ1(x, t) + iχ2(x, t)], where χ1,2 = eλtϕ1,2(x) are compo-
nents of a small perturbation, into Eq. (1), linearize it
around ψ, and obtain a pair or equations: λϕ1 = −L−ϕ2

and λϕ2 = L+ϕ1, where L
± = 1

2∂
2
x + µ − V (x) + g

2 (3 ±
1)|ψ| − δ(2± 1)ψ2. The instability increment is given by
the real part of λ. Solving this eigenvalue problem for λ,
we obtained a sequence of exactly alternating domains
of stability and instability for odd and even QDs, pre-
sented in Fig. 3(c) [change of stability properties occurs
practically in the intersections of E(N) curves]. For suffi-
ciently large number of particles, the intervals where QDs
are stable (unstable) almost perfectly coincide with the
intervals where dµ/dN > 0 (< 0). Thus, in their stability
regions odd and even droplets formally obey the “anti-
Vakhitov-Kolokolov” stability criterion [74]. In the case
at hand, the violation of “standard” Vakhitov-Kolokolov
(VK) criterion results from the presence of the optical
lattice and from the fact that our system is characterized
by competition between attractive and repulsive nonlin-
earities that may considerably change the perturbation
spectrum. In earlier literature, similar examples of suc-
cessful usage of the anti-VK stability criterion have been
reported for QDs in 2D optical lattices [27], for spinor
2D QDs with Rashba-type spin-orbit coupling [75], and
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for discrete QDs [76, 77].
Alternating stability/instability domains are associ-

ated with a translational mode composed of a pair of
antisymmetric eigenfunctions ϕ1,2(x) = −ϕ1,2(−x). In
a uniform medium, this translational mode would corre-
spond to an identically zero eigenvalue λ = 0. However,
as the lattice is introduced, the zero eigenvalue gives birth
to a pair of opposite eigenvalues which repeatedly trans-
form from being purely imaginary (within stability re-
gions) to purely real (within instability regions) as the
number of atoms N increases. Oscillations of the trans-
lational eigenvalues for odd and even QDs are out-of-
phase and hence result in the alternating stability bands
in Fig. 3(c). Notice that when such unstable translational
mode is added as a perturbation to initial state, its de-
velopment at the initial stages of evolution is manifested
namely as a transverse shift of corresponding droplet.
These stability properties of QDs find their manifesta-

tion in dramatically enhanced mobility in certain inter-
vals of N — i.e. steady drifts of initially kicked states
practically without radiative losses. In Fig. 3(d) we plot
the displacement of the integral center of the droplet ∆xc
versus N [here the integral center position is defined as
xc(t) = N−1

∫∞

−∞
x|Ψ(x, t)|2dx], stimulated by the initial

kick ∼ eiαx with small α, after sufficiently large evolu-
tion time T . One observes alternating bands with sharp
boundaries between mobile and immobile droplets with
a given symmetry (odd or even), which closely corre-
late with corresponding stability and instability domains.
Figure 4 shows dynamics of kicked odd and even 1D QDs
with the same number of particles N corresponding to
the consecutive intersections of µ(N) curves in Fig. 3(a),
clearly highlighting alternating mobility properties. No-
tice that enhanced mobility can be observed already for
compact states, far from the flat-top limit. Dynamical
simulations presented in Fig. 4 have been performed us-
ing the well-known pseudospectral split-step method [73].
Examples of dynamical mobility and immobility of flat-
top states are presented in the Supplementary material
[78].
The results presented above have been obtained for a

relatively shallow lattice. While the enhanced mobility
remains robust under a moderated increase of the lattice
depth, our results indicate that a very deep lattice sup-
presses the mobility. For instance, for V0 = 15 mobile
droplets have been found only in a small vicinity of the
point, where stability of odd solitons changes for the first
time, and only for the odd solution.
In possible experiments with mixtures of two 39K Bose-

Einstein condensates in two different hyperfine states
[9, 10], condensation in odd or even droplets can be
achieved by using a combination of an anisotropic har-
monic trap and periodic optical lattice that can be shifted
with respect to the trap to produce either local minimum
(for odd states) or maximum (for even states) of poten-
tial at x = 0. In such experiments the transition into the

odd even

FIG. 4: Evolution dynamics of odd (left column) and even
(right column) droplets coexisting at N = 10.6, 14.4, 18.2; the
corresponding values of N are highlighted with vertical dotted
lines in Fig. 3. For each droplet, an initial phase kick eiαx has
been imparted, with α = 0.01. In all panels the spatial axis
x/ℓ occupies 21 spatial periods, and the time axis increases
from t = 0 to t = 103.

regime, where droplets may form, typically occurs upon
variation of the intra(inter)-species scattering lengths via
Feshbach resonance in the external magnetic field, see for
details [9, 10]. When the formation of a desired state is
achieved, harmonic trap can be switched off, while well-
developed phase-imprinting methods [79, 80] can be used
to create initial kick for the droplet.
Mobility in 2D. The evolution of the effectively 2D QDs

under assumption of identical components in Bose-Bose
mixture is governed by the equation [2]:

iΨt = −
1

2
(Ψxx+Ψyy)+V (x, y)Ψ+2|Ψ|2Ψ ln(2|Ψ|2), (2)

where we now consider two-dimensional lattice V (x, y) =
−2 cos(2κx) − 2 cos(2κy) with κ = 2. Logarithmic non-
linearity describes competition between attraction in the
regions with small |Ψ|2 and repulsion in domains, where
|Ψ|2 is large enough. The peculiarity of the 2D case
is that now the droplet can have the same or different
symmetries along the x and y axes that allows to ob-
tain three different droplet families, odd-odd, even-odd,
and even-even ones. Corresponding µ(N) dependencies
and representative examples of stationary solutions are
shown in Fig. 5. As in the 1D case, the droplets appear
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FIG. 5: (a) Chemical potential versus number of particles in
2D QDs of odd-odd (black curves), even-odd (red curves),
and even-even (blue curves) types. Dashed lines highlight
intersection points of all three dependencies. (b) Profiles of
odd-odd QDs in consecutive intersection points. (c) Profiles of
even-odd and even-even QDs in one of the intersection points.
Chemical potentials are indicated near corresponding profiles.
In all cases κ = 2. For interpretation of the references to color
in this figure legend, the reader is referred to the web version
of this article.

in semi-infinite gap, and their norm rapidly increases as
µ approaches certain minimal value. Remarkably, all
three families intersect practically at the same number
of particles N =

∫∫
|Ψ|2dxdy indicated in Fig. 5(a) by

the vertical dashed lines. Each subsequent intersection
corresponds to addition of humps (broadening) to QD
of a given type [Fig. 5(b)]. In contrast to the 1D case,
N always increases with decrease of µ. Similar inter-
sections are observed in E(µ) dependencies (not shown).
By analogy with 1D case, one can expect alternation of
mobility properties for states in different intersections of
µ(N) curves. We thus simulated the dynamics of QDs
corresponding to consecutive intersections in the pres-
ence of initial phase kick imparted by the multiplication
of the input by the eiαx+iαy factor (thus, we simultane-
ously test mobility properties in two orthogonal direc-
tions). We found unprecedented mobility enhancement
for QDs with certain symmetries in this system mani-
fested in their motion over multiple lattice periods prac-
tically without radiation (in contrast to previous results
on mobility of 2D lattice solitons that tend to quickly de-
cay or get trapped after initial kick), see Fig. 6. For each
intersection we observe that one of the states featuring

FIG. 6: Comparison of mobility of three different types of
quantum droplets with chemical potentials µ = −0.638 (a),
µ = −0.690 (b), and µ = −0.714 (c) corresponding to conse-
quent intersections of their µ(N) curves. In each case top row
shows coordinates (xc, yc) of the integral center of the droplet
vs. time, while bottom row shows superimposed snapshots of
|Ψ| at t = 0 and t = 1800. Dashed white lines are guides for
the eye. In all cases the initial kick was imparted on droplet
by multiplying its wavefunction with eiαx+iαy with α = 0.01.
For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.

the same symmetry along two axes (i.e., either odd-odd
or even-even) is mobile and travels in the diagonal direc-
tion, while another one remains nearly quiescent and only
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weakly oscillates around its initial position. In the next
intersection, the former state becomes immobile, while
the latter starts moving [compare first and third columns
in Fig. 6(a) and (b)]. Remarkably, “mixed” (i.e. even-
odd) states always feature different mobility properties
along the two directions (Fig. 6, middle column), i.e.,
they start moving either along x or along y axes, and
this direction alternates for consecutive intersections. To
stress that this alternation of mobility properties persists
in next intersections, even for broad flat-top modes, we
present their dynamics in the Supplementary material
[78].

Conclusion. Summarizing, we have predicted that 1D
and 2D QDs in optical lattices may demonstrate strongly
enhanced mobility that depends on the number of par-
ticles and internal symmetry of corresponding droplet
states. Mobility enhancement is observed even for suffi-
ciently compact QDs, occupying only several lattice sites.
The mobility enhancement can be linked to the excita-
tion of unstable translational perturbation modes. Our
results may open the way for the experimental realization
of highly mobile self-sustained states in BECs trapped in
lattices, and suggest new strategies for control of dynam-
ics of matter waves.
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