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Abstract

A common technique in the study of complex quantum-mechanical systems
is to reduce the number of degrees of freedom in the Hamiltonian by using
quasi-degenerate perturbation theory. While the Schrieffer–Wolff transforma-
tion achieves this and constructs an effective Hamiltonian, its scaling is subop-
timal, and implementing it efficiently is both challenging and error-prone. We
introduce an algorithm for constructing an equivalent effective Hamiltonian
as well as a Python package, Pymablock, that implements it. Our algorithm
combines an optimal asymptotic scaling with a range of other improvements.
The package supports numerical and analytical calculations of any order and
it is designed to be interoperable with any other packages for specifying the
Hamiltonian. We demonstrate how the package handles constructing a k.p
model, analyses a superconducting qubit, and computes the low-energy spec-
trum of a large tight-binding model. We also compare its performance with
reference calculations and demonstrate its efficiency.
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1 Introduction

Effective models enable the study of complex quantum systems by reducing the dimension-
ality of the Hilbert space. Their construction separates the low and high-energy subspaces
by block-diagonalizing a perturbed Hamiltonian

H =

(
HAA

0 0
0 HBB

0

)
+H′, (1)

where HAA
0 and HBB

0 are separated by an energy gap, and H′ is a series in a perturbative
parameter. This procedure requires finding a series of the basis transformation U that
is unitary and that also cancels the off-diagonal block of the transformed Hamiltonian
order by order, as shown in Fig. 1. The low-energy effective Hamiltonian H̃AA is then a
series in the perturbative parameter, whose eigenvalues and eigenvectors are approximate
solutions of the complete Hamiltonian. As a consequence, the effective model is sufficient
to describe the low-energy properties of the original system while also being simpler and
easier to handle.

A common approach to constructing an effective Hamiltonian is the Schrieffer–Wolff
transformation [1, 2], also known as Löwdin partitioning [3], or quasi-degenerate pertur-
bation theory. This method parameterizes the unitary transformation U = e−S and finds
the series S that decouples the A and B subspaces of H̃ = eSHe−S . This idea enabled ad-
vances in multiple fields of quantum physics. As an example, all the k.p models are a result
of treating crystalline momentum as a perturbation that only weakly mixes atomic orbitals
separated in energy [4]. More broadly, this method serves as a go-to tool in the study of
superconducting circuits and quantum dots, where couplings between circuit elements and
drives are treated as perturbations to reproduce the dynamics of the system [5,6].

Constructing effective Hamiltonians is, however, both algorithmically complex and
computationally expensive. This is a consequence of the recursive equations that define
the unitary transformation, which require an exponentially growing number of matrix
products in each order. In particular, already a 4-th order perturbative expansion that is
necessary for many applications may require hundreds of terms. While the computational
complexity is only a nuisance when analysing model systems, it becomes a bottleneck
whenever the Hilbert space is high-dimensional. Several alternative approaches improve
the performance of the Schrieffer–Wolff algorithm by either using different parametriza-
tions of the unitary transformation [3, 7–10], adjusting the problem setting to density
matrix perturbation theory [11, 12], or a finding a similarity transform instead of a uni-
tary [13]. A more recent line of research even applies the ideas of Schrieffer–Wolff trans-
formation to quantum algorithms for the study of many-body systems [14, 15]. Despite
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+
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H̃0 + H̃1 + H̃2

Figure 1: Block-diagonalization of a Hamiltonian with a first order perturbation.

these advances, neither of the approaches combines an optimal scaling with the ability to
construct effective Hamiltonians.

We introduce an algorithm to construct effective models with optimal scaling, thus
making it possible to find high order effective models for systems with millions of degrees of
freedom. This algorithm exploits the efficiency of recursive evaluations of series satisfying
polynomial constraints and obtains the same effective Hamiltonian as the Schrieffer–Wolff
transformation. We make the algorithm available via the open source package Pymablock
1(PYthon MAtrix BLOCK-diagonalization), a versatile tool for the study of numerical
and symbolic models.

2 Constructing an effective model

We illustrate the construction of effective models by considering several representative
examples. The simplest application of effective models is the reduction of finite sym-
bolic Hamiltonians, which appear in the derivation of low-energy dispersions of materials.
Starting from a tight-binding model, one performs Taylor expansions of the Hamiltonian
near a k-point, and then eliminates several high-energy states [4, 16]. In the study of
superconducting qubits, for example, the Hamiltonian contains several bosonic operators,
so its Hilbert space is infinite-dimensional, and the coupling between bosons makes the
Hamiltonian impossible to diagonalize. The effective qubit model describes the analytical
dependence of qubit frequencies and couplings on the circuit parameters [5, 17–21]. This
allows to design circuits that realize a desired qubit Hamiltonian, as well as ways to un-
derstand and predict qubit dynamics, for which computational tools are being actively
developed [22–24]. Finally, mesoscopic quantum devices are described by a single particle
tight-binding model with short range hoppings. This produces a numerical Hamiltonian
that is both big and sparse, which allows to compute a few of its states but not the full
spectrum [25]. Because only the low-energy states contribute to observable properties,
deriving how they couple enables a more efficient simulation of the system’s behavior.

Pymablock treats all the problems, including the ones above, using a unified approach
that only requires three steps:

• Define a Hamiltonian

• Call pymablock.block_diagonalize

• Request the desired order of the effective Hamiltonian

1The documentation and tutorials are available in https://pymablock.readthedocs.io/
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The following code snippet shows how to use Pymablock to compute the fourth order
correction to an effective Hamiltonian H̃:

# Define perturbation theory

H_tilde, *_ = block_diagonalize([H_0, H_1], subspace_eigenvectors=[vecs_A, vecs_B])

# Request 4th order correction to the effective Hamiltonian

H_AA_4 = H_tilde[0, 0, 4]

The function block_diagonalize interprets the Hamiltonian H0 +H1 as a series with two
terms, zeroth and first order and calls the block diagonalization routine. The subspaces
to decouple are spanned by the eigenvectors vecs_A and vecs_B of H0. This is the main
function of Pymablock, and it is the only one that the user ever needs to call. Its first out-
put is a multivariate series whose terms are different blocks and orders of the transformed
Hamiltonian. Calling block_diagonalize only defines the computational problem, whereas
querying the elements of H_tilde does the actual calculation of the desired order. This
interface treats arbitrary formats of Hamiltonians and system descriptions on the same
footing and supports both numerical and symbolic computations.

2.1 k.p model of bilayer graphene

To illustrate how to use Pymablock with analytic models, we consider two layers of
graphene stacked on top of each other, as shown in Fig. 2. Our goal is to find the low-
energy model near the K point [16]. To do this, we first construct the tight-binding model
Hamiltonian of bilayer graphene. The main features of the model are its 4-atom unit cell

Figure 2: Crystal structure and hoppings of AB-stacked bilayer graphene.

spanned by vectors a1 = (1/2,
√
3/2) and a2 = (−1/2,

√
3/2), and with wave functions

ϕA,1, ϕB,1, ϕA,2, ϕB,2, where A and B indices are the two sublattices, and 1, 2 are the layers.
The model has hoppings t1 and t2 within and between the layers, respectively, as shown
in Fig. 2. We also include a layer-dependent onsite potential ±m.

We define the Bloch Hamiltonian using the Sympy package for symbolic Python [26].

t_1, t_2, m = sympy.symbols("t_1 t_2 m", real=True)

alpha = sympy.symbols(r"\alpha")

H = Matrix([

[m, t_1 * alpha, 0, 0],

[t_1 * alpha.conjugate(), m, t_2, 0],
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[0, t_2, -m, t_1 * alpha],

[0, 0, t_1 * alpha.conjugate(), -m]]

)

H =


m t1α 0 0
t1α

∗ m t2 0
0 t2 −m t1α
0 0 t1α

∗ −m


where α(k) = 1 + eik·a1 + ek·a2 , with k the wave vector. We consider K = (4π/3, 0) the
reference point point in k-space: k = (4π/3 + kx, ky) because α(K) = 0, making kx and
ky small perturbations. Additionally, we consider m ≪ t2 a perturbative parameter.

To call block_diagonalize , we need to define the subspaces for the block diagonaliza-
tion, so we compute the eigenvectors of the unperturbed Hamiltonian at the K point,
H(α(K) = m = 0). Then, we substitute α(k) into the Hamiltonian, and call the block
diagonalization routine using that kx, ky, and m are perturbative parameters via the
symbols argument.

vecs = H.subs({alpha: 0, m: 0}).diagonalize(normalize=True)[0]

H_tilde, U, U_adjoint = block_diagonalize(

H.subs({alpha: alpha_k}),

symbols=(k_x, k_y, m),

subspace_eigenvectors=[vecs[:, :2], vecs[:, 2:]] # AA, BB

)

The order of the variables in the perturbative series will be that of symbols . For example,

requesting the term∝ kixk
j
yml from the effective model is done by calling H_tilde[0, 0, i, j, l] ,

where the first two indices are the block indices (AA). The series of the unitary transfor-
mation U and U † are also defined, and we may use them to transform other operators.

We collect corrections up to third order in momentum to compute the standard
quadratic dispersion of bilayer graphene and trigonal warping. We query these terms
from H_tilde and those proportional to mass to obtain the effective Hamiltonian (shown

as produced by the code)2:

H̃eff =

[
m

3t21
4t2

(−k2x − 2ikxky + k2y)
3t21
4t2

(−k2x + 2ikxky + k2y) −m

]
+ 3mt21

2t22
(−k2x − k2y)

√
3t21
8t2

(k3x − 5ik2xky + 9kxk
2
y + 3ik3y)√

3t21
8t2

(k3x + 5ik2xky + 9kxk
2
y − 3ik3y)

3mt21
2t22

(k2x + k2y)


The first term is the standard quadratic dispersion of gapped bilayer graphene. The
second term contains trigonal warping and the coupling between the gap and momentum.
All the terms take less than two seconds in a personal computer to compute.

2.2 Dispersive shift of a transmon qubit coupled to a resonator

The need for analytical effective Hamiltonians often arises in circuit quantum electrody-
namics (cQED) problems, which we illustrate by studying a transmon qubit coupled to a
resonator [5]. Specifically, we choose the standard problem of finding the frequency shift of
the resonator due to its coupling to the qubit, a phenomenon used to measure the qubit’s

2The full code is available at https://pymablock.readthedocs.io/en/latest/tutorial/bilayer graphene.html.
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state [17]. The Hamiltonian of the system is given by

H = −ωt(a
†
tat −

1

2
) +

α

2
a†ta

†
tatat + ωr(a

†
rar +

1

2
)− g(a†t − at)(a

†
r − ar), (2)

where at and ar are bosonic annihilation operators of the transmon and resonator, respec-
tively, and ωt and ωr are their frequencies. The transmon has an anharmonicity α, so that
its energy levels are not equally spaced. In presence of both the coupling g between the
transmon and the resonator and the anharmonicity, this Hamiltonian admits no analytical
solution. We therefore treat g as a perturbative parameter.

To deal with the infinite dimensional Hilbert space, we observe that the perturbation
only changes the occupation numbers of the transmon and the resonator by ±1. Therefore
computing n-th order corrections to the n0-th state allows to disregard states with any
occupation numbers larger than n0+n/2. We want to compute the second order correction
to the levels with occupation numbers of either the transmon or the resonator being 0 and
1. We accordingly truncate the Hilbert space to the lowest 3 levels of the transmon and the
resonator. The resulting Hamiltonian is a 9×9 matrix that we construct using Sympy [26].

Finally, to compute the energy corrections of the lowest levels, we call block_diagonalize

for each state separately, replicating a regular perturbation theory calculation for single
wavefunctions. To do this, we observe that H0 is diagonal, and use subspace_indices to
assign the elements of its eigenbasis to the A (0) or B (1) subspace. For example, to find
the qubit-dependent frequency shift of the resonator, χ, we start by computing the second
order correction to |0t0r⟩:

indices = [0, 1, 1, 1, 1, 1, 1, 1, 1] # 00 is the first state in the basis

H_tilde, *_ = block_diagonalize(H, subspace_indices=indices, symbols=[g])

H_tilde[0, 0, 2][0, 0] # 2nd order correction

E
(2)
00 =

g2

−ωr + ωt
. (3)

Repeating this process for the other levels requires changing subspace_indices according
to the basis of H, and yields the desired resonator frequency shift:

χ = (E
(2)
11 − E

(2)
10 )− (E

(2)
01 − E

(2)
00 )

= − 2g2

α+ ωr − ωt
+

2g2

−α+ ωr + ωt
− 2g2

ωr + ωt
+

2g2

ωr − ωt

= − 4αg2
(
αωt − ω2

r − ω2
t

)
(ωr − ωt) (ωr + ωt) (−α+ ωr + ωt) (α+ ωr − ωt)

.

(4)

In this example, we have not used the rotating wave approximation, including the fre-
quently omitted counter-rotating terms ∼ arat to illustrate the extensibility of Pymablock.
Computing higher order corrections to the qubit frequency only requires increasing the
size of the truncated Hilbert space and requesting H_tilde[0, 0, n] to the desired order
n.

2.3 Induced gap in a double quantum dot

Large systems pose an additional challenge due to the cubic scaling of linear algebra
routines with matrix size. To overcome this, Pymablock is equipped with an implicit
method, which utilizes the sparsity of the input and avoids the construction of the full
transformed Hamiltonian. We illustrate the efficiency of this method by applying it to a
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system of two quantum dots coupled to a superconductor between them, shown in Fig. 3,
and described by the Bogoliubov-de Gennes Hamiltonian:

HBdG =

{
(k2/2m− µsc)σz +∆σx for L/3 ≤ x ≤ 2L/3,

(k2/2m− µn)σz otherwise,
(5)

where the Pauli matrices σz and σx act in the electron-hole space, k is the 2D wave vector,
m is the effective mass, and ∆ the superconducting gap.

We use the Kwant package [27] to build the Hamiltonian of the system 3, which we
define over a square lattice of L × W = 200 × 40 sites. On top of this, we consider two
perturbations: the barrier strength between the quantum dots and the superconductor,
tb, and an asymmetry of the dots’ potentials, δµ.

The system is large: it is a sparse array of size 63042 × 63042, with 333680 non-zero
elements, so even storing all the eigenvectors would take 60 GB of memory. The pertur-
bations are also sparse, with 632, and 126084 non-zero elements for the barrier strength
and the potential asymmetry, respectively. The sparsity structure of the Hamiltonian and
the perturbations is shown in the left panel of Fig. 3, where we use a smaller system of
L×W = 8×2 for visualization. Therefore, we use sparse diagonalization [28] and compute
only four eigenvectors of the unperturbed Hamiltonian closest to zero energy, which are
the Andreev states of the quantum dots.

vals, vecs = scipy.sparse.linalg.eigsh(h_0, k=4, sigma=0)

vecs, _ = scipy.linalg.qr(vecs, mode="economic") # orthogonalize the vectors

We now call the block diagonalization routine and provide the computed eigenvectors.

H_tilde, *_ = block_diagonalize([h_0, barrier, dmu], subspace_eigenvectors=[vecs])

Because we only provide the low-energy subspace, Pymablock uses the implicit method.
Calling block_diagonalize is now the most time-consuming step because it requires pre-
computing several decompositions of the full Hamiltonian. It is, however, manageable and
it only produces a constant overhead of less than three seconds.

To compute the spectrum, we collect the lowest three orders in each parameter in an
appropriately sized tensor.

h_tilde = np.array(np.ma.filled(H_tilde[0, 0, :3, :3], fill_value).tolist())

This takes two more seconds to run, and we can now compute the low-energy spectrum
after rescaling the perturbative corrections by the magnitude of each perturbation.

def effective_energies(h_tilde, barrier, dmu):

barrier_powers = barrier ** np.arange(3).reshape(-1, 1, 1, 1)

dmu_powers = dmu ** np.arange(3).reshape(1, -1, 1, 1)

return scipy.linalg.eigvalsh(

np.sum(h_tilde * barrier_powers * dmu_powers, axis=(0, 1))

)

Finally, we plot the spectrum of the 2 Andreev states in Fig. 3. As expected, the crossing at
E = 0 due to the dot asymmetry is lifted when the dots are coupled to the superconductor.
In addition, we observe how the proximity gap of the dots increases with the coupling
strength.

3The full code is available at https://pymablock.readthedocs.io/en/latest/tutorial/induced gap.html.
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H00 +H10 +H01

H00

H10

H01

0 10−4

δµ

−5

0

5

E

×10−3

tb = 0.0

tb = 0.5

tb = 0.75µsc,∆µN, δµ µN, δµ

tb

L
W

Figure 3: Hamiltonian (left) and Andreev levels (right) of two quantum dots
coupled to a superconductor (inset). The barrier tb between the dots and the
superconductor, H10, and the asymmetry δµ between the dots’ potential, H01,
are perturbations.

Computing the spectrum of the system for 3 points in parameter space would require
the same time as the total runtime of Pymablock in this example. This demonstrates the
speed of the implicit method and the efficiency of Pymablock’s algorithm.

3 Perturbative block-diagonalization algorithm

3.1 Problem statement

Pymablock finds a series of the unitary transformation U (we use calligraphic letters to
denote series) that block-diagonalizes the Hamiltonian

H = H0 +H′, H0 =

(
HAA

0 0
0 HBB

0

)
, (6)

with H′ = H′
D + H′

O containing an arbitrary number and orders of perturbations with
block-diagonal and block-offdiagonal components, respectively. The series here may be
multivariate, and they represent sums of the form

A =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nk=0

λn1
1 λn2

2 · · ·λnk
k An1,n2,...,nk

, (7)

where λi are the perturbation parameters and An1,n2,...,nk
are linear operators. The prob-

lem statement, therefore, is finding U and H̃ such that

H̃ = U†HU , H̃AB = 0, U†U = 1, (8)

8
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which is schematically shown in Fig. 1. Series multiply according to the Cauchy product:

C = AB ⇔ Cn =
∑

m+p=n

AmBp.

The Cauchy product is the most expensive operation in perturbation theory, because it
involves a large number of multiplications between potentially large matrices. For example,
evaluating n-th order of C requires ∼ ∏

i ni ≡ N multiplications of the series elements.4

A direct computation of all the possible index combinations in a product between three
series ABC would have a higher cost ∼ N2, however, if we use associativity of the product
and compute this as (AB)C, then the scaling of the cost stays ∼ N .

There are many ways to solve the problem (8) that give identical expressions for U
and H̃. We are searching for a procedure that satisfies two additional constraints:

• It has the same complexity scaling as a Cauchy product, and therefore ∼ N multi-
plications per additional order.

• It does not require multiplications by H0.

• It requires only one Cauchy product by HD, the block-diagonal part of H.

The first requirement is that the algorithm scaling is optimal: the desired expression
at least contains a Cauchy product of U and H. Therefore the complexity scaling of
the complete algorithm may not become lower than the complexity of a Cauchy product
and we aim to reach this lower bound. The second requirement is because in perturbation
theory, n-th order corrections to H̃ carry n energy denominators 1/(Ei−Ej), where Ei and
Ej are the eigenvalues of H0 belonging to different subspaces. Therefore, any additional
multiplications by H0 must cancel with additional energy denominators. Multiplying by
H0 is therefore unnecessary work, and it gives longer intermediate expressions. The third
requirement we impose by considering a case in which HO = 0, where HD must at least
enter H̃ as an added term, without any products. Moreover, because U depends on the
entire Hamiltonian, there must be at least one Cauchy product by H′

D. The goal of our
algorithm is thus to be efficient and to produce compact results that do not require further
simplifications.

3.2 Existing solutions

A common approach to constructing effective Hamiltonians is to use the Schrieffer–Wolff
transformation [1]:

H̃ = eSHe−S , eS = 1 + S +
1

2!
SS +

1

3!
SSS + · · · , (9)

where S =
∑

n Sn is an antihermitian polynomial series in the perturbative parameter,
making eS a unitary transformation. Requiring that H̃AB = 0 gives a recursive equation
for Sn, whose terms are nested commutators between the series of S and H. Similarly, the
transformed Hamiltonian is given by a series of nested commutators

H̃ =

∞∑
j=0

1

j!

[
H,

∞∑
n=0

Sn

](j)
, (10)

4If both A and B are known in advance, fast Fourier transform-based algorithms can reduce this cost to
∼ N logN . In our problem, however, the series are constructed recursively and therefore this optimization
is impossible.
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where the superscript (j) denotes the j-th nested commutator [A,B](j) = [[A,B](j−1), B],
with [A,B](0) = A and [A,B](1) = AB − BA. Regardless of the specific implementation,
this expression does not meet either of our two requirements:

• The direct computation of the series elements requires ∼ expN multiplications, and
even an optimized one has a ∼ N2 scaling.

• Evaluating Eq. (10) contains multiplications by H0.

Alternative parametrizations of the unitary transformation U require solving unitarity
and block diagonalization conditions too, but give rise to a different recursive procedure
for the series elements. For example, using hyperbolic functions

U = coshG + sinhG, G =
∞∑
i=0

Gi, (11)

leads to different recursive expressions for Gi [8], but does not change the algorithm’s
complexity. On the other hand, using a polynomial series directly

U =

∞∑
i=0

Ui, (12)

gives rise to another recursive equation for Ui [3, 7, 9, 10]. Still, this choice results in an
expression for H̃ whose terms include products by H0, and therefore requires additional
simplifications.

The following three algorithms satisfy both of our requirements while solving a related
problem. First, density matrix perturbation theory [11, 12, 29] constructs the density
matrix ρ of a perturbed system as a power series with respect to a perturbative parameter:

ρ =
∞∑
i=0

ρi. (13)

The elements of the series are found by solving two recursive conditions, ρ2 = ρ and
[H, ρ] = 0, which avoid multiplications by H0 and require a single Cauchy product each.
This approach, however, deals with the entire Hilbert space, rather than the low-energy
subspace, and does not provide an effective Hamiltonian. Second, the perturbative similar-
ity transform by C. Bloch [2,13] constructs the effective Hamiltonian in a non-orthogonal
basis, which preserves the Hamiltonian spectrum while breaking its hermiticity. Finally,
the recursive Schrieffer–Wolff algorithm [24] applies the Schrieffer–Wolff transformation to
the output of lower-order iterations, and calculates the effective Hamiltonian at a fixed per-
turbation strength, rather than as a series. We thus identify the following open question:
can we construct an effective Hamiltonian with a linear scaling algorithm that produces
compact expressions?

3.3 Pymablock’s algorithm

The first idea that Pymablock exploits is the recursive evaluation of the operator series,
which we illustrate by considering the unitarity condition. Let us separate the transfor-
mation U into an identity and U ′ = W + V:

U = 1 + U ′ = 1 +W + V, W† = W, V† = −V. (14)

10
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We use the unitarity condition U†U = 1 by substituting U ′ into it:

1 = (1 + U ′†)(1 + U ′) = 1 + U ′† + U ′ + U ′†U ′. (15)

This immediately yields

W =
1

2
(U ′† + U ′) = −1

2
U ′†U ′. (16)

Because U ′ has no 0-th order term, (U ′†U ′)n does not depend on the n-th order of U ′ nor
W, and therefore Eq. (16) allows to compute W using the already available lower orders
of U ′. Alternatively, using Eq. (14) we could define W as a Taylor series in V:

W =
√

1 + V2 − 1 ≡ f(V) ≡
∑
n

anV2n.

A direct computation of all possible products of terms in this expression requires ∼ expN
multiplications. A more efficient approach for evaluating this expression introduces each
term in the sum as a new series An+1 = AAn and reuses the previously computed results.
This optimization brings the exponential cost down to ∼ N2. However, we see that the
Taylor expansion approach is both more complicated and more computationally expensive
than the recurrent definition in Eq. (16). Therefore, we use Eq. (16) to efficiently compute
W. More generally, a Cauchy productAB whereA and B have no 0-th order terms depends
on A1, . . . ,An−1 and B1, . . . ,Bn−1. This makes it possible to use AB in a recurrence
relation, a property that we exploit throughout the algorithm.

To compute U ′ we also need to find V, which is defined by the requirement H̃AB = 0.
Additionally, we constrain V to be block off-diagonal: VAA = VBB = 0, a choice we make
to ensure that the resulting unitary transformation is equivalent to the Schrieffer–Wolff
transformation (see section 3.4). In turn, this makes W block-diagonal and makes the
norm of U ′ minimal.

The remaining condition for finding a recurrent relation for U ′ is that the transformed
Hamiltonian

H̃ = U†HU = HD + U ′†HD +HDU ′ + U ′†HDU ′ + U†H′
OU , (17)

is block-diagonal, a condition that determines V. Here we used U = 1+U ′ andH = HD+H′
O,

since H0 is block-diagonal by definition. Because we want to avoid products by HD, we
need to get rid of the terms that contain it by replacing them with an alternative expres-
sion. Our strategy is to define an auxiliary operator X that we can compute without ever
multiplying by HD. Like U ′, X needs to be defined via a recurrence relation, which we
determine later. Because Eq. (17) contains HD multiplied by U ′ from the left and from
the right, eliminating HD requires moving it to the same side. To achieve this, we choose
X = Y + Z to be the commutator between U ′ and HD:

X ≡ [U ′,HD] = Y + Z, Y ≡ [V,HD] = Y†, Z ≡ [W,HD] = −Z†, (18)

where Y is therefore block off-diagonal and Z, block diagonal. We use HDU ′ = U ′HD−X
to move HD through to the right and find

H̃ = HD + U ′†HD + (HDU ′) + U ′†HDU ′ + U†(H′
OU)

= HD + U ′†HD + U ′HD −X + U ′†(U ′HD −X ) + U†H′
OU

= HD + (U ′† + U ′ + U ′†U ′)HD −X − U ′†X + U†H′
OU

= HD −X − U ′†X + U†H′
OU ,

(19)

11
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where the terms multiplied by HD cancel according to Eq. (15). The transformed Hamil-
tonian does not contain multiplications by HD anymore, but it does depend on X , an
auxiliary operator whose recurrent definition we do not know yet. To find it, we first focus
on its anti-Hermitian part, Z. Since recurrence relations are expressions whose right-hand
side contains Cauchy products between series, we need to find a way to make a prod-
uct appear. We do so by using the unitarity condition U ′† + U ′ = −U ′†U ′ to obtain the
recursive definition of Z:

Z =
1

2
(X − X †)

=
1

2

[
(U ′ + U ′†)HD −HD(U ′ + U ′†)

]
=

1

2

[
− U ′†(U ′HD −HDU ′) + (U ′HD −HDU ′)†U ′

]
=

1

2
(−U ′†X + X †U ′).

(20)

Similar to computing Wn, computing Zn requires lower-orders of X and U ′. Then, we
compute the Hermitian part of X by requiring that H̃AB = 0 in the Eq. (19) and find

XAB = (U†H′
OU − U ′†X )AB. (21)

Once again, despite X enters the right hand side, because all the terms lack 0th order, this
defines a recursive relation for XAB, and therefore Y.

The final part is straightforward: using HD = H0 + H′
D and the definition of Y in

Eq. (18) fixes V as a solution of:

VABHBB
0 −HAA

0 VAB = YAB − [V,H′
D]

AB, (22)

a Sylvester’s equation, which we only need to solve once for every new order. In the
eigenbasis of H0, the solution of Sylvester’s equation is V AB

n,ij = (Y− [V,H′
D])

AB
n,ij/(Ei−Ej),

where Ei are the eigenvalues of H0.
We now have the complete algorithm:

1. Define series U ′ and X and make use of their block structure and Hermiticity.

2. To define the diagonal blocks of U ′, use W = −U ′†U ′/2.

3. To find the off-diagonal blocks of U ′, solve Sylvester’s equation
VABHBB

0 −HAA
0 VAB = YAB − [V,H′

D]
AB. This requires X .

4. To find the diagonal blocks of X , define Z = (−U ′†X + X †U ′)/2.

5. For the off-diagonal blocks of X , use YAB = (−U ′†X + U†H′U)AB.

6. Compute the effective Hamiltonian as H̃ = HD −X − U ′†X + U†H′
OU .

3.4 Equivalence to Schrieffer–Wolff transformation

Pymablock’s algorithm and the Schrieffer–Wolff transformation both find a unitary trans-
formation U such that H̃AB = 0. They are therefore equivalent up to a gauge choice in each
subspace, A and B. We establish the equivalence between the two by demonstrating that
this gauge choice is the same for both algorithms. The Schrieffer–Wolff transformation
uses U = expS, where S = −S† and SAA = SBB = 0, this restriction makes the result
unique [2]. On the other hand, our algorithm produces the unique block-diagonalizing

12
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transformation with a block structure UAA = U†
AA, UBB = U†

BB and UAB = −U†
BA. The

uniqueness is a consequence of the construction of the algorithm, where calculating every
order gives a unique solution satisfying these conditions. To see that the two solutions are
identical, we expand the Taylor series of expS. Every even order gives a Hermitian, block-
diagonal matrix, while every odd order gives an anti-Hermitian block off-diagonal matrix,
showing that expS has the same structure as U above. The reverse statement about the
structure of logU can be seen similarly, using the Taylor series of the logarithm around
1. Using a series expansion is justified by the perturbative nature of the result, meaning
that S is close to 0 and U is close to 1. Because of the uniqueness of both results, we find
that expS from conventional Schrieffer–Wolff transformation is identical to U found by
our algorithm, which remains true if both power series are truncated at a finite order.

3.5 Extra optimization: common subexpression elimination

While the algorithm of Sec. 3.3 satisfies our requirements, we improve it further by reusing
products that are needed in several places, such that the total number of matrix multipli-
cations is reduced. Firstly, we rewrite the expressions for Z in Eq. (20) and H̃ in Eq. (19)
by utilizing the Hermitian conjugate of U ′†X without recomputing it:

Z =
1

2

[
(−U ′†X )− h.c.

]
,

H̃ = HD + U†H′
OU − (U ′†X + h.c.)/2,

where h.c. is the Hermitian conjugate, and X drops out from the diagonal blocks of H̃
because the diagonal blocks of X are anti-Hermitian. Additionally, we reuse the repeated
A ≡ H′

OU ′ in
U†H′

OU = H′
O +A+A† + U ′†A. (23)

Next, we observe that some products from the U†HOU term appear both in X in Eq. (21)
and in H̃ (19). To avoid recomputing these products, we introduce B = X −H′

O −A and
define the recursive algorithm using B instead of X . With this definition, we compute the
off-diagonal blocks of B as:

BAB,BA =
[
X −H′

O −A
]AB,BA

=
[
A† + U ′†A− U ′†X

]AB,BA

=
[
U ′†H′

O + U ′†A− U ′†X
]AB,BA

= −(U ′†B)AB,BA,

(24)

where we also used Eq. (21) and the definition of A. The diagonal blocks of B, on the
other hand, are given by

BAA,BB =
[
X −H′

O −A
]AA,BB

=

[
1

2
[(−U ′†X )− h.c.]−A

]AA,BB

=

[
1

2
[(−U ′†[X −H′

O −A])− h.c.]− 1

2
[A† +A] +

1

2
[(−U ′†A)− h.c.]

]AA,BB

,

=

[
1

2
[(−U ′†B)− h.c.]− 1

2
[A† + h.c.]

]AA,BB

,

(25)
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where we used Eq. (20) and that U ′†A is Hermitian. Using B changes the relation for VAB

in Eq. (22) to

VABHBB
0 −HAA

0 VAB =
(
B −H′ −A− [V,H′

D]
)AB

. (26)

Finally, we combine Eq. (19), Eq. (23), Eq. (25) and Eq. (24) to obtain the final expression
for the effective Hamiltonian:

H̃D = HD + (A+ h.c.)/2− (U†B + h.c.)/2. (27)

Together with the series U ′ in Eqs. (16,26), A = H′
OU ′, and B in Eqs. (25,24), this equation

defines the optimized algorithm.

4 Implementation

4.1 The data structure for block operator series

The optimized algorithm from the previous section requires constructing 14 operator se-
ries, whose elements are computed using a collection of recurrence relations. This warrants
defining a specialized data structure suitable for this task that represents a multidimen-
sional series of operators. Because the recurrent relations are block-wise, the data structure
needs to keep track of separate blocks. In order to support varied use cases, the actual
representation of the operators needs to be flexible: the block may be dense arrays, sparse
matrices, symbolic expressions, or more generally any object that defines addition and
multiplication. Finally, the series needs to be queryable by order and block, so that it
supports a block-wise multivariate Cauchy product—the main operation in the algorithm.

The most straightforward way to implement a perturbation theory calculation is to
write a function that has the desired order as an argument, computes the series up to
that order, and returns the result. This makes it hard to reuse already computed terms
for a new computation, and becomes complicated to implement in the multidimensional
case when different orders in different perturbations are needed. We find that a recursive
approach addresses these issues: within this paradigm, each series needs to define how its
entries depend on lower-order terms.

To address these requirements, we define a BlockSeries Python class and use it to
represent the series of U , H, and H̃, as well as the intermediate series used to define
the algorithm. The objects of this class are equipped with a function to compute their
elements and it stores the already computed results in a dictionary. Storing the results for
reuse is necessary to optimize the evaluation of higher order terms and it allows to request
additional orders without restarting the computation. For example, the definition of the
BlockSeries for H̃ has the following form:

H_tilde = BlockSeries(

shape=(2, 2), # 2x2 block matrix

n_infinite=n, # number of perturbative parameters

eval=compute_H_tilde, # function to compute the elements

name="H_tilde",

dimension_names=("lambda", ...), # parameter names

)

Here compute_H_tilde is a function implementing Eq. (27) by querying other series objects.

Calling H_tilde[0, 0, 2] , the second order perturbation ∼ λ2 of the AA block, then does
the following:

1. Evaluates compute_H_tilde(0, 0, 2) if it is not already computed.
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2. Stores the evaluation result in a dictionary.

3. Returns the result.

To conveniently access multiple orders at once, we implement NumPy array indexing so
that H_tilde[0, 0, :3] returns a NumPy masked array array with the orders ∼ λ0 , ∼ λ1,
and ∼ λ2 of the AA block. The masking allows to support a common use case where some
orders of a series are zero, so that they are omitted from the computations. We expect
that the BlockSeries data structure is suitable to represent a broad class of perturbative
calculations, and we plan to extend it to support more advanced features in the future.

We utilize BlockSeries to implement multiple other optimizations. For example, we
exploit Hermiticity when computing the Cauchy product of U ′†U ′ in Eq. (16), by only
evaluating half of the matrix products, and then complex conjugate the result to obtain
the rest. Similarly, for Hermitian and anti-Hermitian series, like the off-diagonal blocks of
U ′, we only compute the AB blocks, and use the conjugate transpose to obtain the BA
blocks. This approach should also allow us to implement efficient handling of symmetry-
constrained Hamiltonians, where some blocks either vanish or are equal to other blocks
due to a symmetry. Moreover, using BlockSeries with custom objects yields additional
information about the algorithm and accommodates its further development. Specifically,
we have used a custom object with a counter to measure the algorithm complexity (see also
Sec. 5) and to determine which results are only used once so that they can be immediately
discarded from storage.

4.2 The implicit method for large sparse Hamiltonians

A distinguishing feature of Pymablock is its ability to handle large sparse Hamiltonians,
that are too costly to diagonalize, as illustrated in Sec. 2.3. Specifically, we consider the
situations when the sizeNA of the A subspace is small compared to the entire Hilbert space,
so that obtaining the basis ΨA of the A subspace is feasible using sparse diagonalization.
The projector on the A subspace PA = Ψ†

AΨA is then a low-rank matrix, a property that
we exploit to avoid constructing the B subspace explicitly. Furthermore, the solution of
Sylvester’s equation in Eq. 22 amounts to multiplying NA large vectors, rows of Y AB

n , by
the energy denominators Ei − Ej , where Ei are the NA eigenvalues of the A subspace
provided by sparse diagonalization.

The key tool to solve this problem is the projector approach introduced in Ref. [30],
which introduces an equivalent extended Hamiltonian using the projector PB = 1 − PA

onto the B subspace:

H̄ =

(
Ψ†

AHΨA Ψ†
AHPB

PBHΨA PBHPB

)
. (28)

In other words, the subspace Ā is written in the basis of ΨA, while the basis of the B̄
subspace is the same as the original complete basis of H to preserve its sparsity. We also
project out the A-degrees of freedom from the B̄ subspace to avoid duplicate solutions
in H̄, which introduces NA eigenvectors with zero eigenvalues. Introducing H̄ allows to
multiply by operators of a form PBHnPB efficiently by using the low-rank structure of
PA. In the code we represent the B̄B̄ operators as LinearOperator objects from the SciPy
package [28], enabled by the ability of the BlockSeries to store arbitrary objects. Storing
the ĀĀ and ĀB̄ blocks as dense matrices—efficient because these are small and dense—
finishes the implementation of the Hamiltonian.

To solve the Sylvester’s equation we write it for every row of V ĀB̄
n separately:

V ĀB̄
n,ij (Ei −H0) = Y ĀB̄

n,j (29)
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This equation has a solution despite Ei − H0 not being invertible because Y ĀB̄
n PA = 0.

We solve this equation using the MUMPS sparse solver [31, 32], which prepares an ef-
ficient sparse LU-decomposition of Ei − H0, or the KPM approximation of the Green’s
function [33]. Both methods work on sparse Hamiltonians with millions of degrees of
freedom.

5 Benchmark

To the best of our knowledge, there are no other packages implementing arbitrary order
quasi-degenerate perturbation theory. Literature references provide explicit expressions
for the effective Hamiltonian up to fourth order, together with the procedure for obtaining
higher order expressions [34]. Because the full reference expressions are lengthy, we do not
provide them, but for example at 4-th order the effective Hamiltonian is a sum of several
expressions of the form ∑

m′′m′′′ l

H ′
mm′′H ′

m′′m′′′H ′
m′′′ l

H ′
lm′

(Em′′ − El)(Em′′′ − El)(Em − El)
, (30)

where the m-indices label states from the A-subspace and l-indices label the states from
the B-subspace. More generally, at n-th order each term is a product of n matrix elements
of the Hamiltonian and n− 1 energy denominators. Directly carrying out the summation
over all the states requires O(N2

AN
n−1
B ) operations, where NA and NB are the number

of states in the two subspaces. In other words, the direct computation scales worse than
a matrix product with the problem size. Formulating Eq. (30) as n − 1 matrix products
combined with n − 1 solutions of Sylvester’s equation, brings this complexity down to
O((n− 1)×NAN

2
B). This optimization, together with the hermiticity of the sum, allows

us to evaluate the reference expressions for the effective Hamiltonian for 2-nd, 3-rd, and 4-
th order using 1, 4, and 27 matrix products, respectively. Pymablock’s algorithm utilizes
1, 3, and 14, matrix products to obtain the same orders of the effective Hamiltonian.
Its advantage becomes even more pronounced at higher orders due to the exponential
growth of the number of terms in the reference expressions. While finding the optimized
implementation from the reference expressions is possible for the 3-rd order, we expect it to
be extremely challenging for the 4-th order, and essentially impossible to do manually for
higher orders. Moreover, because the BlockSeries class tracks absent terms, in practice
the number of matrix products depends on the sparsity of the block structure of the
perturbation, as shown in Fig. 4.

The efficiency of Pymablock becomes especially apparent when applied to sparse nu-
merical problems, similar to Sec. 2.3. We demonstrate the performance of the implicit
method by using it to compute the low-energy spectrum of a large tight-binding model, and
comparing Pymablock’s time cost to that of sparse diagonalization. We define a 2D square
lattice of 52× 52 sites with nearest-neighbor hopping and a random onsite potential µ(r).
The perturbation δµ(r) interpolates between two different disorder realizations. For the
sake of an illustration, we choose the system’s parameters such that the dispersion of the
lowest few levels with δµ features avoided crossings and an overall nonlinear shape, whose
details are not relevant. Similar to Sec. 2.3, constructing the effective Hamiltonian involves
three steps. First, we compute the 10 lowest states of the unperturbed Hamiltonian using
sparse diagonalization. Second, block_diagonalize computes a sparse LU decomposition

of the Hamiltonian at each of the 10 eigenenergies. Third, we compute corrections H̃1,
H̃2, and H̃3 to the effective Hamiltonian, each being a 10× 10 matrix. Each of these steps
is a one-time cost, see Fig. 5. Finally, to compare the perturbative calculation to sparse
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Figure 4: Matrix products required to compute H̃AA
n for a dense and block off-

diagonal first-order perturbation (left) and a dense and block off-diagonal per-
turbative series with terms of all orders present (right).

diagonalization, we construct the effective Hamiltonian H̃ = H0+ δµH̃1+ δµ2H̃2+ δµ3H̃3

and diagonalize it to obtain the low-energy spectrum for a range of δµ. This has a neg-
ligible cost compared to constructing the series. The comparison is shown in Fig. 5. We
observe that while the second order results are already very close to the exact spectrum,
the third order corrections fully reproduce the sparse diagonalization. At the same time,
the entire cost of computing the perturbative band structure for a range of δµ is lower
than computing a single additional sparse diagonalization.

6 Conclusion

We developed an algorithm for constructing an effective Hamiltonian that combines advan-
tages of different perturbative expansions. The main building block of our approach is a
set of recurrence relations that define several series that depend on each other and combine
into the effective Hamiltonian. Our algorithm constructs the same effective Hamiltonians
as the Schrieffer–Wolff transformation [1], while keeping the linear scaling per extra order
similar to the density matrix perturbation theory [11,12] or the non-orthogonal perturba-
tion theory [13]. Its expressions minimize the number of matrix multiplications per order,
making it appealing both for symbolic and numerical computations.

We provide a Python implementation of the algorithm in the Pymablock package [35].
The package is thoroughly tested (94% test coverage as of version 2.0), becoming a reli-
able tool for constructing effective Hamiltonians that combine multiple perturbations to
high orders. The core of the Pymablock interface is the BlockSeries class that handles
arbitrary objects as long as they support algebraic operations. This enables Pymablock’s
construction of effective models for large tight-binding models using its implicit method.
It also allows Pymablock to solve both symbolic and numerical problems in diverse physi-
cal settings, and potentially to incorporate it into existing packages, such as scqubits [22],
QuTiP [36,37], or dft2kp [38].

Beyond the Schrieffer–Wolff transformation, the Pymablock package provides a foun-
dation for defining other perturbative expansions. We anticipate extending it to time-
dependent problems, where the different regimes of the time-dependent drive modify the
recurrence relations that need to be solved. Applying the same framework to problems
with weak position dependence would allow to construct a nonlinear response theory of
quantum materials. Finally, we expect that in the many-particle context the same frame-
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Figure 5: Top panels: band structure of the perturbative effective Hamiltonian
(black) of a tight-binding model compared to exact sparse diagonalization (gray).
Bottom panel: a comparison of the Pymablock’s time cost with sparse diagonal-
ization. Most of the time is spent in the LU decomposition of the Hamiltonian
(red). The entire cost of the implicit method is lower than a single sparse diag-
onalization (gray). The operations of negligible cost are not shown. The bars
length corresponds to the average time cost over 40 runs, and the error bars show
the standard deviation.

work supports implementing different flavors of diagrammatic expansions.
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