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Abstract  

   The thermoelectric Nernst effect of solids converts heat flow to beneficial electronic 

voltages. Here, using a correlated topological semimetal with high carrier mobility μ in 

presence of magnetic fluctuations, we demonstrate an enhancement of the Nernst effect 

close to a magnetic phase transition. A magnetic instability in NdAlSi modifies the carrier  

relaxation time on ‘hotspots’ in momentum space, causing a strong band filling 

dependence of μ. We quantitatively derive electronic band parameters from a novel two-

band analysis of the Nernst effect Sxy, in good agreement with quantum oscillation 

measurements and band calculations. While the Nernst response of NdAlSi behaves much 

like conventional semimetals at high temperatures, an additional contribution ΔSxy from 

electronic correlations appears just above the magnetic transition. Our work demonstrates 
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the engineering of the relaxation time, or the momentum-dependent self energy, to 

generate a large Nernst response independent of a material’s carrier density, i.e. for metals, 

semimetals, and semiconductors with large μ.  

  

Main text  

Introduction  

Thermoelectric effects convert temperature gradients to useful electric power, and are broadly 

classified into two categories: First, the Seebeck effect, where a voltage is induced parallel to 

the heat gradient, and secondly the Nernst effect, where the voltage appears in a direction 

perpendicular to the heat flow. While both the Seebeck and Nernst effect of narrow-gap 

semiconductors have been intensively studied in the context of energy saving technology for 

more than two decades [1-3], the further technological potential of Nernst-type phenomena was 

pointed out recently [4]. The two most well-known contributions to this thermoelectric response 

are the normal Nernst effect from orbital motion of electrons, and the anomalous Nernst effect 

that appears in the ground state of magnetic materials, which is typically proportional to the 

magnetization [5-8]. Here, we highlight a magnetic enhancement of the former effect in a 

semimetal with high carrier mobility, a consequence of electronic correlations that has been 

rather little explored so far.  

   Thermoelectric phenomena are generally known to be very sensitive to details of the electronic 

structure in vicinity of the Fermi energy EF, which separates occupied from unoccupied quantum 

states in a solid [9,10]. Specifically, the normal Nernst effect contains terms proportional to the 

filling-dependent change in carrier density, dn/dE, and terms proportional to the change in carrier 

relaxation (scattering) time, dτ/dE (see Methods). The dn/dE term drives a large thermoelectric 

response only in materials with a low number of carriers, such as narrow-gap semiconductors, 
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but the latter effect may largely enhance the thermoelectric response even in good metals [11-

18]. One particularly well-established way to enhance band-filling dependence of the relaxation 

time, dτ/dE, is by electron correlations, especially close to ‘hot spots’, or regions of enhanced 

scattering, on the electronic Fermi surface [11,19]. Meanwhile, a quantitative demonstration of 

enhanced Nernst signals from such hot spots has remained an open challenge, largely due to the 

low carrier mobility of many available correlated materials. To address this issue, we study the 

Nernst response of the topological semimetal NdAlSi with elevated carrier mobility [20-22] and 

hot spots of scattering at a Fermi surface nesting instability (Fig. 1). The results indicate that 

Nernst effects from dτ/dE become large and dominant in clean systems with highly mobile 

charge carriers coupled to collective modes, such as lattice waves or – our focus here – magnetic 

fluctuations.  

   Topological semimetals, where crystalline or time-reversal symmetries enforce degeneracies 

of electronic bulk bands and associated surface states in solids [17, 20-25], are suitable to 

demonstrate the proposed Nernst effect from dτ/dE: They have large carrier mobilities μ due to 

protected band crossings, where the effective band mass approaches zero. Furthermore, their 

physical behaviour can be designed based on symmetry principles, and electron correlations can 

be introduced by chemical alloying while leaving crystal symmetries and related band crossings 

intact. Third and finally, transport properties can be studied quantitatively in such materials due 

to a low number of Fermi surface sheets with high carrier mobility, generating transport 

behaviour that is conveniently nonlinear as a function of magnetic field.  

   We choose the polar magnetic Weyl semimetals RAlSi/RAlGe (R = rare earth) as promising 

materials for our proof-of-principle study, where high-mobility Weyl electrons coexist with 

complex magnetic order at low temperatures [20-22].  In these materials, Weyl fermions [23], 

that is singly degenerate linear band crossing points, are present due to breaking of inversion 

symmetry in the body-centered tetragonal space-group I41md [Fig. 1(a)]. Contrary to inversion 
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symmetric materials, where magnetic order may generate Weyl fermions and other band 

degeneracies [24], the electronic structure in polar and chiral topological semimetals forms a 

robust backdrop for the study of correlation phenomena, being changed but little at the magnetic 

transition point [20,21].   

   Here, we demonstrate that the thermoelectric response of a prototypical magnetic Weyl 

semimetal, NdAlSi, can be enhanced in vicinity of a magnetic instability. This correlation 

phenomenon benefits from the high carrier mobility of quasi-relativistic Weyl electrons, 

demonstrated here by a thorough analysis of the Nernst effect Sxy in the high-temperature 

regime. Semiclassical transport theory, ignoring electron-electron scattering, also well 

reproduces Sxy at the base temperature of our experiment. Meanwhile, an additional Nernst 

contribution ΔSxy appears and is strongly enhanced just above the transition to long-range 

magnetic order at TN = 7 K, where magnetic fluctuations are coupled to the Fermi surface of 

the electron gas. Through ab-initio calculations of the electronic structure, as well as careful 

evaluation of the experimental profile ΔSxy(T) and its magnitude, we conclude that the 

additional term originates from the band-filling (energy) derivative of the carrier relaxation 

time, dτ/dE, due to a magnetic nesting instability between high-mobility Weyl electrons. 

Finally, the results are placed in the wider context of thermoelectric materials with relaxation 

time contributions.  

  

Results   

Electric transport and high mobility charge carriers  

   The electronic band structure of NdAlSi is composed of several Fermi surfaces; Fig. 1(c) 

shows the result of our ab-initio band theory calculations, combined with the present electric 

transport experiments (see Supplementary Information). The Fermi surface includes two 
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Weyl-type sheets (β, Σ) with linear band dispersions, and two trivial pockets (γ, δ) with rather 

quadratic bands. Only the δ-pocket has electron-like transport characteristics; all others are 

hole-like (Figs. S2 and S3). In this work, we observe strong thermoelectric anomalies due to a 

Fermi surface nesting instability [26-28] towards a periodically modulated, helimagnetic state 

with ordering vector Q = (2/3, 2/3, 0) [Fig. 1(b), 22]. The ordering vector, shown as a fat 

yellow arrow in Fig. 1(d), causes strong magnetic scattering of high-mobility Weyl carriers in 

the Σ-pockets above the magnetic ordering temperature. Meanwhile, signatures of charge 

carriers in the other bands can also be clearly identified in our transport experiments.  

   We first construct band-theoretical models of the electronic structure in NdAlSi by electrical 

transport measurements. Here, electric current Jx, magnetic field Bz, and the transverse (Hall) 

electric field Ey define a right-hand Cartesian frame along the x-, z-, and y-axes, respectively; 

this is shown in Fig. 2(a), inset. The Hall conductivity relates them according to Jx = σxy Ey. 

Field-dependent traces of σxy show a dispersive shape with a sharp maximum around 2 Tesla, 

accompanied by pronounced Shubnikov-de Haas oscillations. Our two-carrier Drude fit, 

shown by black dashed lines in Fig. 2(a), well reproduces σxy up to room temperature (see 

Methods). Figures 2(b) and 2(c) show electronic band parameters derived from the fit: n1 and 

n2 are positive, reaching values of 6.5×1019 cm-3 and 2.5×1019 cm3 at low temperature; this 

indicates coherent metallic conduction. Similar transport parameters are also obtained from the 

two-carrier fit of σxx (see Supplementary Information). The carrier mobilities μ1 and μ2 rise 

monotonically upon cooling towards 2,000 cm2/Vs and 6,000 cm2/Vs at 8 K, high values 

among magnetic topological semimetals [29] that are testament to the low defect concentration 

in our single-crystalline samples.  

   It is helpful to consider the Hall effect in the context of Shubnikov-de Haas oscillations, 

which serve as a caliper for the Fermi surface cross-sectional area [30]. From the oscillation 
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analysis, and consistent with Ref. [22], the carrier densities of the trivial γ Fermi surface 

pocket, and of β with linear Weyl-dispersion, are estimated as 6.6×1019 cm-3 and 1.0×1019 cm3, 

close to n1 and n2 from the Hall effect (see Supplementary Information). We conclude that the 

electrical Hall effect in NdAlSi is dominated by two hole-type Fermi surfaces, the trivial γ 

pocket with carrier density n1, and the low-mass Weyl electrons of β with carrier density n2 

and exceedingly high carrier mobility μ2. Our main point of interest, the Weyl fermions in the 

Σ-pocket, may also represent a minority contribution to n2 and μ2, but their fingerprints appear 

much more clearly in the thermoelectric response. All Fermi surface segments shown in Fig. 

1(c) are clearly observed in quantum oscillation experiments that are well consistent with 

density functional theory calculations (Table S1).  

  

Thermoelectric phenomena: Seebeck effect  

   Having established a basic understanding of electric transport in NdAlSi, we move on to the 

thermoelectric effects. Applying a temperature gradient (-∂xT) to the sample, voltages appear 

both along the x- and y-axes; these define the thermoelectric Seebeck and Nernst effects Sxx = -

Ex / |-∂xT | and Sxy = Ey / |-∂xT |. In Fig. 2(b), Sxx is divided by temperature, a common way to 

correct for the reduced ability of electrons to carry entropy upon cooling. The Seebeck effect 

is positive – consistent with the sign of the Hall effect – and Sxx/T is nearly independent of 

temperature above 50 K; a pronounced enhancement appears below 50 K, with maximum 

around Tmax = 15 K. Excluding the phonon-drag effect (Fig. S5), we proceed to interpret the 

thermoelectric phenomena in NdAlSi in terms of a thermally induced drift of charge carriers, 

using semiclassical transport theory. The Seebeck-enhancement at Tmax is closely related to the 

correlation-driven Nernst effect of Weyl electrons discussed in the following sections. Our 
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focus here on the Hall and Nernst response of NdAlSi is motivated mostly by their enhanced 

sensitivity to high-mobility conduction electrons.  

  

Extracting band parameters from the Nernst effect  

 It is well established that the thermoelectric effects Sxx and Sxy are much more sensitive to 

details of the electronic structure in close vicinity of the Fermi energy, as compared to 

electrical transport [9]. The Nernst effect is then a sensitive probe for the energy derivative of 

electronic band parameters in vicinity of the Fermi edge, such as dn/dE for the carrier density 

and dτ/dE for the carrier relaxation time [10-17]. To separate the correlation-driven Nernst 

signal ΔSxy originating from sizable dτ/dE in NdAlSi, we derive expressions for the 

thermoelectric response as a sum of various Fermi surface pockets. This kind of multi-band 

analysis of the thermoelectric effect has been attempted in the literature only rarely, e.g. for 

specific limiting cases in Ref. [31-34]. First, it is useful to normalize the Nernst effect by the 

electric resistivity ρxx; the experimental data at high and low temperatures are then well 

described by two terms, attributed to two Fermi surfaces γ and β  

𝑆𝑥𝑦

𝜌𝑥𝑥𝑇
= 𝐴1

′ 𝐹(𝜇1, 𝐵) + 𝐴2
′ 𝐺(𝜇2, 𝐵),                 (1) 

with prefactors A1’ and A2’, carrier mobilities μ1 and μ2, and dimensionless functions F and G 

for the γ- and β-pockets of the Fermi surface, respectively. Like the Hall conductivity, F, G 

have pronounced maxima at intermediate magnetic fields if the carrier mobility is high. Our 

analysis shows that only at intermediate temperatures, an additional term ΔSxy related to dτ/dE 

from correlations on the Σ pocket appears on top of this well-defined background; more details 

are given in Methods.  
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   The background specified by Eq. (1), however, contains a lot of valuable information in 

itself, going far beyond what can be extracted from the Hall effect. Being highly nonlinear as a 

function of magnetic field, the Nernst signal in Fig. 3 gives the reasonable four fit parameters 

of Eq. (1) already at high temperature T > 40 K (see also Fig. S1). A good description of the 

data can be obtained even when fixing the ratios A1’/A2’ =7.0 and μ2/μ1 = 3.1 for the entire 

dataset, independent of temperature; the corresponding fit is shown by black dashed lines in 

Figs. 3(a) and 3(b). Encouragingly, the extracted carrier mobilities are close to the values in 

Fig. 2(c). The prefactors A1’ and A2’ meanwhile are directly related to dn/dE, that is to the 

effective band mass mγ of γ and Fermi velocity vβ of β; these cannot be extracted from the Hall 

effect alone. Figures 3(i) and 3(j) show mγ and vβ to be nearly independent of temperature, 

taking values of 0.25 m0 (m0 being the free electron mass) and 6.0×105 m/s, respectively, in 

quantitative agreement with our analysis of quantum oscillations at low temperatures (Figs.  

S2, S3; Table S1).   

   We further demonstrate that Eq. (1), without additional ΔSxy, well describes the experimental 

observations at the lowest temperatures, deep in the magnetically ordered state. The ΔSxy term 

found in the temperature range 10 K to 30 K appears to be absent at the lowest temperatures. 

Extrapolating the band parameters A1’, A2’, μ1, μ2 as in Methods, we find an excellent, 

parameter-free description of the experimental data at T = 2 K, see Fig. 3(h). It is emphasized 

that, although the curve at the low temperature in Fig. 3(h) shows a sharp, step-like anomaly, 

this is not attributed to an anomalous Nernst effect from spin-orbit interactions [35], but it can 

be explained by conventional two carrier model. Instead, the semiclassical Lorenz force acting 

on drifting, high-mobility charge carriers in a magnetic field quantitatively explains the data. 

Significant deviations from Eq. (1) appear below 30 K, shown by red shaded areas in Figs. 

3(c)-3(g), with the implication of an additional contribution ΔSxy originating from relaxation 

time effects (dτ/dE), strongly enhanced just above the Néel transition at TN = 7.4 K.  
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Nernst effect by scattering from magnetic fluctuations  

 Why should the additional term ΔSxy be ascribed to dτ/dE, and thus to a magnetic instability 

driven by correlations of the electron gas in NdAlSi? We offer five pieces of evidence based 

on the profiles of ΔSxy/ρxxT in Fig. 4, viewed in the context of ab-initio band theory 

calculations.  First, the field-dependent profile ΔSxy (B) is suppressed with increasing the field 

beyond 3-5 T. Such a signal cannot arise from the anomalous Nernst effect that is in 

proportion to the bulk magnetization [4-8]. Second, our analysis shows that ΔSxy (B) is not 

likely due to additional enhancement of A1’ or A2’, since no anomaly appears in the carrier 

density and mobility around TN [Figs. 2(b) and 2(c)]. Third, the fact that ΔSxy drops sharply at 

low temperature indicates that a potential change of the electronic band dispersion, e.g. due to 

zone-folding in the magnetically ordered state, cannot be its root cause. Also, this suppression 

suggests that a contribution from the anomalous Nernst effect due to Berry curvature of the 

topological band structure is unlikely [35].  Fourth, a scaling analysis of the Nernst effect as a 

function of magnetization in Fig. S4 rules out a competing scenario, where ΔSxy is driven by 

the emergent magnetic field of spin fluctuations with left- or right-handed spin chirality [36-

39]. Fifth and finally, we are well able to describe ΔSxy in semiclassical theory by the 

expression  

∆𝑆𝑥𝑦

𝜌𝑥𝑥𝑇
= 𝐵3 (

±2𝜇3𝐵 − tan 𝜃𝐻(1 − (𝜇3𝐵)2)

(1 + (𝜇3𝐵)2)2
).                     (2) 

where μ3, tanθH = ρyx/ρxx, and B3 ∝ dτ/dE are the carrier mobility, the (total) Hall angle, and a 

prefactor independent of the magnetic field, respectively (see Methods). Fits of ΔSxy to Eq. (2) 

are shown as black dashed lines in Figs. 4(a)-4(c). On a quantitative level, we find μ3/μ2 = 0.6, 
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consistent with the calculated ratio of Fermi velocities vΣ and vβ of the two Weyl-type Fermi 

surfaces illustrated in Fig. 1(c).   

Figure 4(e) shows the temperature-dependent profile of dτ/dE obtained from B3, with a sharp 

maximum at Tmax = 15 K, implying characteristic broadening of the Fermi-Dirac distribution 

of 3.8kBTmax ~ 3 milli-electron Volt (meV), see Fig. S6. Figure 1(d) demonstrates consistency 

between this observation and the calculated band-filling dependence of the Weyl-type Σ 

pocket, where the Fermi contour at EF = -3 meV just barely touches the yellow nesting plane, 

a hotspot of electron scattering introduced by the (fluctuating) magnetic order. Note that the 

sign dτ/dE > 0 indicates enhanced of scattering of charge carriers below the Fermi energy.  

  

Discussion   

   We argue above that the additional signal ΔSxy, appearing in a limited window of 

temperature, should be ascribed to charge carrier correlations and suppressed carrier relaxation 

time in proximity to a Fermi surface nesting instability. More quantitatively, the total 

relaxation rate of electrons is a sum of various terms according to Matthiessen’s rule [9], with 

τ -1(k) = τ0
-1+ τph

-1+ τel-el
-1+ τel-m

-1(k) +… where τ0, τph, and τel-el represent scattering from lattice 

defects, lattice vibrations, and electron-electron interaction respectively (see Supplementary 

Information). We assume for simplicity that only scattering of conduction electrons from 

magnetic fluctuations τel-m depends on the position k of an electronic state in momentum 

space. Then, the energy derivative that enters the formula for the Nernst effect is written as 

dτ/dE= dτ/dk× dk/dE, and the latter factor is proportional to the inverse Fermi velocity vF. 

The derivative, and hence ΔSxy, become large when scattering from fluctuations constitutes a 

sizable portion of τ -1(k), i.e. in clean materials with high carrier mobility. Figure 4(d) 

illustrates contour lines of the relaxation time τ(k) in momentum space, with a hot-spot of τ(k) 



11  

  

that can be driven by magnetic fluctuations with propagation vector Q ≈ (2/3, 2/3, 0) in 

NdAlSi.   

   Essential ingredients for large Nernst signals in the present mechanism are then (a) strong or 

at least moderately strong coupling between the electron gas and other (collective) degrees of 

freedom, impacting the carrier relaxation time and (b) the presence of conducting carriers with 

high mobility μ. Although (b) is not exclusive to Weyl- or Dirac-electrons, or even to 

topological semimetals as a material class, the Σ pocket in NdAlSi can well serve as a toy 

model system, where relaxation time effects enhance the thermoelectric Nernst voltage.   

   Cooling below Tmax = 15 K, all Weyl electrons of the Σ pocket are now removed from the 

nesting hot-spot by more than the width of the Fermi-Dirac distribution. These electrons 

cannot participate in enhanced scattering from magnetic correlations – see Fig. 1(d) – and ΔSxy 

begins to drop rapidly. The effect of dτ/dE on the thermoelectric Seebeck effect has been 

suggested in some recent work [11-18], while related phenomena in the Nernst effect remain 

largely unexplored. The existing literature is summarized in Table 1, which highlights the 

present Weyl semimetal NdAlSi’s unique combination of high carrier mobility and sizable 

dτ/dE. Sharp features in Nernst signal Sxy(B) of NdAlSi thus reveal a small minority of high-

mobility Weyl electrons, exposed to electron correlations by a Fermi surface nesting 

instability.  

   Recent insights into the materials engineering of topological matter have led to the 

identification of chiral and polar materials with robust linear band crossing points [21,25]. To 

these, correlations can be introduced via chemical composition tuning, while leaving intact the 

fundamental symmetries of the crystalline space group – and maintaining band degeneracies. 

The resulting high-mobility, correlated semimetals represent a family of weakly coupled 

materials that stand apart from the more established copper-oxide and iron-based 
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superconductors [40-44], from layered chalcogenides with charge-density wave instabilities 

[45], or from heavy-fermion compounds [46]. For example, in the much more strongly 

correlated copper oxides, the interpretation of the thermoelectric Nernst effect [47-49] and the 

notion of hotspots of relaxation time on the Fermi surface [42] remain controversial. In 

contrast, NdAlSi and its relatives likely realize the weak-coupling scenario of Ruderman-

Kittel-Kasuya-Yosida [26-28], where the momentum dependent self energy, or relaxation time 

τ(k), is calculated in first-order perturbation theory ~∫d3q G(q) χ(k-q) from the electronic 

Green’s function G and the magnetic susceptibility χ(q). However, the present mechanism of 

an enhanced Nernst effect based on relaxation time engineering is generally applicable, 

providing a stimulus to investigate thermoelectric effects in as-yet less explored metallic 

materials, including clean systems with nesting instabilities such as elemental Cr or the RTe3 

layered CDW systems (R = rare earth). In fact, we found an enhanced Nernst signal due to the 

relaxation time effect in another high-mobility semimetal, GdPtBi (see Supplementary 

Information), suggesting that enhancements of the thermoelectric response commonly appear 

in various correlated materials due to magnetic fluctuations close to the magnetic transition 

temperature. Even for the anomalous Nernst effect, previous work suggests a correlation of 

magnetic entropy (fluctuations) and the amplitude of the signal [50]. The present enhanced 

Nernst effect is particularly pronounced in crystals with high carrier mobility and low impurity 

concentration, criteria that are often fulfilled for large single-crystalline grains; yet even some 

polycrystalline materials can have very high carrier mobilities as well as large thermoelectric 

responses [51-53]. In addition, the relaxation time effect dτ/dE also has an impact not only on 

the Nernst effect but also on the Seebeck effect, which can be operated without the application 

of the magnetic field. In this way, thermoelectric phenomena generated via the relaxation time 

of charge carriers open a window onto the fundamental physics of electron correlation – but 
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may also find real-world applications in energy harvesting using highly conductive metals, 

where conduction electrons are coupled to collective spin, orbital, or lattice fluctuations.  

Add note: After submission of our manuscript, we became aware of a related work focused on 

quantum oscillations in RAlSi (R = rare earth) [54]. 

Methods  

Sample preparation and characterization  

   Single-crystalline samples of NdAlSi were prepared by the Al flux method. Elemental Nd, 

Si, and Al elements were inserted into an Al2O3 crucible and sealed inside a quartz tube in 

vacuum. The starting composition (Nd:Si:Al) is 1:1:10. The tube was placed in a box furnace, 

heated from room temperature to 1000 ℃ in 5 hours, and kept there for 12 hours.  

Subsequently, it was slowly cooled to 700 ℃ in 50 hours (-6 ℃/h) and kept for 12 hours. The 

crucible was quickly removed from the furnace and centrifuged. Millimeter-sized, plate like 

crystals with the c-axis normal to the sample plane and the a-axis parallel to the plate’s edges 

were obtained, which are characterized by sharp Laue x-ray diffraction patterns.  

 

Thermoelectric measurements  

   Thermoelectric measurements on NdAlSi were performed in high vacuum (<1 × 10−4 Torr) 

using a Quantum Design Physical Property Measurement System (PPMS). The sample was 

fixed by Ag paste (Dupont) to a Cu block which serves as a heat sink. The Cu block is 

attached to the sample pack by using low-temperature adhesive (GE varnish). Thermal 

gradients were applied by applying current to a 1 kΩ chip resistor and temperature gradients 

on the rectangular-shaped sample (about 0.5 K/mm) were read by Nickel-

Chromium/Constantan thermocouples. The thermocouples were attached to a thick gold wire 
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by Stycast 2850FT epoxy and the thick Au wire in turn was attached to the side of the sample 

by silver paste. The thermoelectric voltage drop was measured through phosphor bronze wires 

(40 μm in diameter) attached to the side of the sample. The entire setup was covered by a 

copper tube to prevent radiative heating from outside.  

 

Ab-initio band calculations   

We perform spin density functional theory calculations in the ferromagnetic state of NdAlSi 

using the Vienna ab-initio simulation package [55]. We employ the exchange-correlation 

functional proposed by Perdew, Burke, and Ernzerhof [56], pseudopotentials with the 

projector augmented wave basis [57, 58], and use the experimental lattice parameters a = 

4.1972Å and c = 14.4915Å [22]. The Hubbard U correction with U = 6.0 eV for Nd-4f states 

and spin-orbit interactions are taken into account. A 163 Monkhorst-Pack k-grid and 500 eV as 

a plane-wave cutoff are used for the self-consistent calculations. Then, we construct a tight-

binding model using the Wannier90 package [59]. Here, 144 Bloch states are evaluated on a 83 

uniform k-grid. The trial orbitals are set to be Nd-f and d, Al-s and p, as well as Si-s and p 

orbitals. Fermi surface calculations are performed using a 2403 uniform k-grid based on the 

abovementioned tight-binding model. 

 

Mott relation and energy derivative of carrier relaxation time 

   The electric and thermoelectric conductivity tensors define a material’s current Ji = σij Ej and 

Ji = αij (-∂jT) in response to an applied electric field Ej and to a temperature gradient (-∂jT), 

respectively. Expressions for σij, αij in a magnetic field are derived using semi-classical 

Boltzmann theory (9):  
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Here, gk corresponds to a distortion of the equilibrium probability for occupying each quantum 

state, described by the Fermi-Dirac distribution function f0. Further, ε, ζ, v, and τ are the 

electronic band dispersion, chemical potential, Fermi velocity, and carrier relaxation time, 

respectively. The magnetic field B is applied along z and the electric field E is parallel to x. We 

neglect any spatial dependence of gk, as well as Berry phase contributions. Integrating over all 

Fermi surface sheets, we derive the electric and thermoelectric currents as 
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The latter expression is further approximated by the crucial insight of Mott, who reduced the 

energy factor (𝜀 − 𝜁) in Eq. (5) to an energy derivative over the other integrands [9]. The final 

expression depends both on the energy derivative of the carrier density, i.e. of the partial density 

of states (PDOS), as well as the energy derivative of τk. The latter is the main focus of the present 

work. Note that the assumption of a unique value of τk for Σ is a necessary but crude 

approximation, in case of the hotspot scenario discussed in the main text.  

  

Normal Nernst effect for more than one electronic band  

   Consider the electric field E caused by the diffusion of charge carriers in a thermal gradient 

∇T along x and a magnetic field B along z. The sign of the Nernst effect is then fixed by the 

convention that diffusion of superconducting vortices causes a positive Sxy, Sxy = Ey/|∇T|  
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[17,47]. Generally, the Nernst effect can have contributions from the orbital motion of carriers, 

from spin-orbit interactions in conjunction with the net magnetization M of the solid, and from 

higher order terms; for example from the spin chirality Si∙(Sj×Sk). These are dubbed normal, 

anomalous, and topological Nernst effects, respectively. In the semi-classical regime and using 

the relaxation time approximation with isotropic τ, the normal Nernst signal is expressed as,  

𝑆𝑥𝑦 = −
𝜋2

3

𝑘B
2

𝑒
𝑇𝜌𝑥𝑥𝜎𝑥𝑥

𝜕 tan 𝜃𝐻

𝜕𝜀
.                                             (6) 

Here, tanθH = σxy/σxx is the Hall angle. Further consider the Drude expressions for multi-band 

conduction, σxx = Σi e|ni|μi/[1+(μiB)2] and σxy = Σi eniμi
2B/[1+(μiB)2], with carrier densities ni and 

carrier mobilities μi = eτi/mi; e>0 and mi are the fundamental charge and the effective band 

masses, respectively. By transposing T and ρxx to the left side, and transforming the remaining 

right hand side of Eq. (6), we derive  

𝑆𝑥𝑦

𝜌𝑥𝑥𝑇
= ∑ [𝐴𝑖 (

±𝜇𝑖𝐵 − tan 𝜃𝐻

1 + (𝜇𝑖𝐵)2
) + 𝐵𝑖 (

±2𝜇𝑖𝐵 − tan 𝜃𝐻(1 − (𝜇𝑖𝐵)2)

(1 + (𝜇𝑖𝐵)2)2
)]

𝑖

.         (7) 

The upper and lower sign notation describes hole- and electron-type carriers, respectively. Here, 

Ai = -π2kB
2μi/3 ∙ dni/dE and Bi = -π2kB

2ni/3 ∙ dμi/dE are the contributions from the energy 

derivatives of the carrier density and of the carrier mobility. Furthermore, by decomposing 

contributions from quadratic bands (Ei
Q = ℏ2ki

2/2mi) and linear bands (Ei
L = ℏkivi, while replacing 

mi →EFi/vFi
2
 in the expression for the mobility), the following relation can be derived 

𝑆𝑥𝑦

𝜌𝑥𝑥𝑇
= ∑ [𝐴𝑖

Q (
±𝜇𝑖𝐵 − tan 𝜃𝐻

1 + (𝜇𝑖𝐵)2
) + 𝐵𝑖

Q (
±2𝜇𝑖𝐵 − tan 𝜃𝐻(1 − (𝜇𝑖𝐵)2)

(1 + (𝜇𝑖𝐵)2)2
)]

𝑖:Quad

+ ∑ [𝐴𝑖
L (

±𝜇𝑖𝐵 − tan 𝜃𝐻

1 + (𝜇𝑖𝐵)2
)

𝑖: Line

+ (
𝐴𝑖

L

3
+ 𝐵𝑖

L) (
±2𝜇𝑖𝐵 − tan 𝜃𝐻(1 − (𝜇𝑖𝐵)2)

(1 + (𝜇𝑖𝐵)2)2
)].          (8) 
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Here, the coefficients for quadratic bands are Ai
Q = ±gsgdkB

2μimiki/6ℏ2 and Bi
Q = -gsgdekB

2ki
3/18mi 

∙ dτi/dE; the coefficients for linear bands are Ai
L = ±gsgdkB

2μiki
2/6ℏvi, Bi

L = -gsgdekB
2viki

2/18ℏ ∙ 

dτi/dE, where gs and gd are spin and orbital degeneracy of each Fermi surface pocket, 

respectively. 

   In the specific case of NdAlSi, the Nernst effect at high and low temperatures is well described 

by parallel conduction of a trivial hole pocket γ (Eγ = ℏ2kγ
2/2mγ) and a Weyl-type hole pocket β 

(Eβ = ℏkβvβ). At intermediate temperatures, additional contributions to Sxy that are not from the 

energy-dependent carrier density are summarized in the term ΔSxy/ρxxT, 

𝑆𝑥𝑦

𝜌𝑥𝑥𝑇
= 𝐴𝛾 (

±𝜇𝛾𝐵 − tan 𝜃𝐻

1 + (𝜇𝛾𝐵)
2 ) + 𝐴𝛽 (

±𝜇𝛽𝐵 (5 + 3(𝜇𝛽𝐵)
2

) − 2 tan 𝜃𝐻 (2 + 1(𝜇𝛽𝐵)
2

)

3 (1 + (𝜇𝛽𝐵)
2

)
2 )

+
∆𝑆𝑥𝑦

𝜌𝑥𝑥𝑇
,                                                                                                               (9) 

where the coefficients are Aγ = ±gsgdkB
2μγmγkγ/6ℏ2 and Aβ = ±gsgdkB

2μβkβ
2/6ℏvβ. Here, we define 

Aγ’ = Aγ/μγ and Aβ’ = Aβ/μβ. We set the spin and orbital degeneracies of γ (β) to gs = 2 (gs = 1) 

and gd = 4 (gd = 4), respectively, for the analysis at high temperatures; this is consistent with the 

large spin-orbit splitting of β in the nonmagnetic state of polar NdAlSi.  

   We obtain an excellent description of Sxy by Eq. (9) with four free parameters (Aγ’, Aβ’, μγ, and 

μβ) at high temperatures above 40 K. However, features in Sxy become less sharp at T > 70 K, so 

that a reduction in the number of free parameters was found to be helpful to stabilize the fit. We 

fixed the ratios Aγ’/Aβ’ ~7.0 and μβ/μγ ~3.1 independent of T, retaining a very good description 

of the experimental data. In particular, all parameters extracted from the semiclassical model of 

Sxy have distinct physical meaning and can be cross-referenced with Hall effect and quantum 

oscillation experiments.  
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We extend the analysis according to Eq. (9) to T < 40 K by extrapolating the band parameters 

Aγ’, Aβ’, μγ, and μβ as follows. Firstly, Aβ’ = ±gsgdkB
2ℏkβ

2/vβ is set to be 0.45 independent of 

temperature, as changes of the electronic structure are moderate in this regime [see Figs. 2(b) 

and 3(j)]. Also, the carrier mobilities are extrapolated to low T, being proportional to the 

longitudinal conductivity σxx. Furthermore, we assume that the spin degeneracy (gs) of the γ 

pocket smoothly changes from unity at 2 K to gs = 2 at 40 K, considering that the exchange 

splitting of electronic bands is enhanced at low temperatures. Meanwhile, gs of β is set to be 

unity at all temperatures, reflecting its small Fermi surface volume and large spin-orbit splitting 

even in the paramagnetic state. In this way, we estimated the first and second term in Eq. (9), 

and isolated ΔSxy at intermediate temperatures.  

  

Two carrier fit of the Hall conductivity  

   We model the Hall conductivity σxy with a two-carrier Drude expression as [9]  

𝜎𝑥𝑦 = 𝑛1𝑒𝜇1

𝜇1𝐵

1 + (𝜇1𝐵)2
+ 𝑛2𝑒𝜇2

𝜇2𝐵

1 + (𝜇2𝐵)2
.                          (10) 

Here, n1 and n2 (μ1 and μ2) are the carrier densities (carrier mobilities). The resulting carrier 

densities n1 and n2 show good agreement with quantum oscillations of the γ and β pockets, as 

discussed in the main text.  

 

Data availability  

The data supporting the findings of this study are available from the corresponding authors 

upon reasonable request.  
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Main Text Figures   

  

Figure 1. Fermi surface nesting of Weyl points in NdAlSi. (a) Crystal structure of NdAlSi, 

with polar c-axis. (b) Spin texture in the ab-plane (plane I) with the magnetic ordering vector 

Q ≈ (2/3, 2/3, 0) along the [110] direction, as revealed in Ref. [22]. (c) The electronic structure 

in NdAlSi; one octant of the Brillouin Zone is shown. There are four types of Fermi surfaces: 

a high-mobility Weyl β pocket (brown), a Weyl Σ pocket subject to Ruderman-Kittel-Kasuya-

Yosida (RKKY) interactions (red), a hole γ pocket with quadratic electronic band dispersion 

(pink), and an electron δ pocket with heavy electron mass (blue). In the Hall and Nernst 

effects, only the former three contribute dominantly (below). White solid lines indicate the 

extremal cross-sections of electron orbits observed experimentally when a magnetic field is 

applied along the a-axis. (d) Two-dimensional cuts of Fermi surfaces at kz = 0, where traces 
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corresponding to EF = -4, -3, and 0 meV are shown. Yellow lines and a shaded region indicate 

the nesting plane with ordering vector Q. Illustration: Weyl cones in the electronic band 

structure of Σ.
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Figure 2. High mobility electrons from Weyl and trivial Fermi surface pockets in NdAlSi, 

detected by electrical transport. (a) Hall conductivity σxy at various temperatures. The black 

dashed lines indicate fitting to a two-carrier model. Inset (top left): Sample geometry, where 

magnetic field B and electric current J are applied along the c-axis and a-axis, respectively.  

Inset (bottom) shows the two components of the fit individually. (b) Carrier density of two Fermi 

surface sheets, estimated by two carrier fitting (left axis). The parameters μ1, n1 are assigned to 

a trivial (γ) and μ2, n2 to a Weyl-type (β) Fermi surface sheet, respectively. Right axis: 

Temperature dependence of the Seebeck effect divided by temperature, with enhancement 

above TN likely due to electron correlations on Σ. (c) Carrier mobility of the trivial γ and Weyl 

β bands as a function of temperature.      
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Figure 3. Two carrier analysis of thermoelectric Nernst effect in NdAlSi. (a-h) Magnetic 

field dependence of Nernst effect Sxy normalized by resistivity and temperature. Two-carrier 

decomposition of the Nernst effect is shown by black dotted lines; this represents a fit to Eq. 

(1) at T ≥35 K and a calculated curve according to Eq. (1), with extrapolated model parameters, 

at lower temperatures. An excess Nernst signal ΔSxy, beyond Eq. (1), appears at intermediate 

temperatures T = 10 - 30 K, marked by pale red shading between the data and the semiclassical 
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calculation. Inset: Sample geometry for thermoelectric measurements, where magnetic field 

and temperature gradient are applied along the crystallographic c- and a-axes, respectively. (i,j) 

Temperature dependence of effective mass and Fermi velocity for γ and β pockets with 

quadratic and linear band dispersions, respectively. Corresponding electronic structure 

parameters estimated from quantum oscillation (QO) experiments are also shown as  

green dotted lines in Figs. 3(i) and 3(j).      
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Figure 4. Enhancement of thermoelectric Nernst effect due electron correlations from a 

magnetic Fermi surface instability. (a-c) Magnetic field dependence of excess Nernst signal 

ΔSxy, normalized by temperature and longitudinal resistivity ρxx, at 30 K, 12 K, and 2 K. A fit 

to Eq. (2) is indicated by the black line. (d) Illustration: Contour lines of relaxation time τ(k) in 

momentum space with a hot-spot of τ(k), such as can be driven by magnetic ordering with 

propagation vector Q ≈ (2/3, 2/3, 0) in NdAlSi, c.f. Fig. 1. The arrows indicate a k-space 

gradient of the relaxation time. For a given electron or hole on the Fermi surface, the effective 

energy dependence of τ is a product of this gradient and the inverse Fermi velocity, dτ/dE = 

dτ/dk ∙ dk/dE. (e) Energy derivative of carrier relaxation time dτ/dE, derived from ΔSxy and 

attributed to correlations on the Σ pocket. Yellow shading and a vertical dashed line mark the 

regime of strong fluctuations and the transition to long-range magnetic order at TN = 7.4 K, 

respectively.     
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Material 

μ 

(cm2/Vs) 

|dln(τ)/dE|  

(eV-1) 

|dln(EF)/dE| 

(eV-1) Sxx Sxy References 

NdAlSi, β 6,000 - 7 〇 〇 this work 

NdAlSi, Σ 3,500 33 12 〇 〇 this work 

PbSnSe 100,000 - 20 〇 〇 [17] 

Co0.999Ni0.001Sb3 200 650 - 〇 〇 [12] 

CeCu2Si2 80 150 - 〇 〇 [13] 

CuFeS2 60 680 - 〇 × [14] 

Mo0.92Nb0.08Te2 40 110 - 〇 × [15] 

MnGe ~5 10 - 〇 × [16] 

Table 1. Carrier mobility μ and energy derivative of the carrier relaxation time τ for 

correlated materials with lifetime enhancement of the thermoelectric effect. The energy 

derivative of μ~τ/EF has two components, from the relaxation time and the Fermi energy, shown 

in the third and fourth column, respectively [12-17]. Materials with small Fermi surfaces and 

high carrier mobility, such as PbSnSe, have sizable filling dependence of μ even in absence of 

correlations. Among correlated materials with unconventional Nernst responses, NdAlSi shows 

exceedingly high mobility, which enables us to perform quantitative analysis of |dln(τ)/dE| with 

resolution in momentum space. Circles (〇) and crosses (×) represent if the Seebeck and Nernst 

effect are measured in the reference or not.   
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Supplementary Text 

Raw data of the Nernst effect 

   Raw data of the Nernst effect divided by temperature (Sxy/T) at various temperatures is shown 

in Fig. S1. The Nernst signal Sxy for B || c follows a non-linear trend versus magnetic field, which 

enables us to perform a quantitative analysis. The field-dependence of Sxy/T has a clear 

resemblance to Sxy/ρxxT in Figs. 3(a)-(h), including an enhancement around Tmax~15 K. Thus we 

exclude the possibility that the anomaly in Sxy/ρxxT originates from an anomaly in ρxx. The raw 

data of the Nernst effect at 3 T indeed shows an enhancement around 15 K in temperature 

dependence (see Fig. S1(i)). Also, the Seebeck effect (Sxx/T) shows a similar enhancement around 

15 K (see Figs. 2(b) and S1(j)). Hence, the signal we extracted in Fig. 4(e) is likely robust and 

not qualitatively dependent on the details of the analysis. 

Quantum oscillations and Fermi surface volume 

   To confirm the consistency of our analysis of the Nernst effect, we extracted band parameters 

such as carrier density and Fermi velocity from quantum oscillations in the Nernst effect Sxy [Fig. 

S2(a)]. We calculate a fast Fourier transformation (FFT) of the oscillatory component Sxy
Osci. 

after subtracting a smooth polynomial background Sxy
BG [Fig. S2(b)]. The spectra show peaks at 

three frequencies: 51 T, 67 T, and 128 T [Fig. S2(c), Table S1], which are assigned, respectively, 

to the Σ, β, and γ pockets in Ref. [S1].  

   We estimate the carrier density n of each pocket by using the elliptical approximation n = 

gsgdkF
akF

bkF
c/6π2, where gs and kF

α (α=a, b, c) are spin degeneracy and Fermi momenta, 

respectively. The parameter gd, termed orbital degeneracy in the following, counts the number 

of symmetry-equivalent Fermi surface pockets in the first Brillouin zone. The carrier density of 

β (γ) at low temperature is estimated to be 1.0×1019 cm-3 (6.6×1019 cm-3) by considering the kF-

anisotropy from the band calculation and by setting gs = 1 (gs = 2) and gd = 4 (gd = 4). The 

extracted carrier densities from quantum oscillation analysis show a good agreement with those 

estimated by fitting σxy with a Drude-type semiclassical model (Fig. 2). 

   From the temperature dependence of Shubnikov-de Haas oscillations in the magnetoresistance, 

we extract the effective masses for Σ and β pockets as 0.15 m0
 and 0.11 m0, respectively (Fig. 

S15(a)). This is in good agreement with Ref. [S1], which also determined the effective mass of 

γ to be 0.2 m0. By utilizing the relation mvF = ℏkF, the Fermi velocity of β is estimated as 4.8×105 

m/s. These parameters from quantum oscillations show an excellent agreement with those from 

our Sxy analysis (Figs. 3(i) and 3(j)). 

 

Electron-type carriers in NdAlSi in tunnel diode oscillator (TDO) measurements 

   We measured the field-dependent change of a tunnel diode oscillator’s (TDO) resonant 

frequency to precisely detect quantum oscillations in pulsed magnetic fields up to 60 Tesla at the 

Institute for Solid State Physics (ISSP, The University of Tokyo) [S2]. The TDO is based on an 

LC-tank circuit powered by a tunnel diode that is biased in the negative resistance region of its 

current-voltage characteristic. A coil of about 5 turns and diameter of 1 mm is turned from copper 

wire. A NdAlSi single crystal is fixed inside the coil by Apiezon-N grease. The coil’s axis and 

the crystallographic a-axis of NdAlSi are set perpendicular and in parallel to the magnetic field 

direction, respectively. We approximate the circuit’s resonant frequency as f ~ 1/2π√𝐿𝐶 with 
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inductance L and capacitance C, typically lying in the MHz range. The measurement principle 

is as follows: The skin depth of a metallic sample is given by d = √𝜌/𝜋𝜀0𝑓, where ρ and ε0 are 

the sample resistivity and the permittivity of the vacuum. Therefore, resistivity variations of the 

sample result in a change of LC-circuit conductance 2rsΔd/R2, where rs, R, and Δd are the sample 

mean diameter, the coil diameter, and the skin depth variation. This means any change in f is 

proportional to the variation in sample resistivity, at least to the leading order.  

   The LC-circuit’s resonance frequency shows a variation Δf as a function of the magnetic field, 

with pronounced oscillations [Fig. S3(a)]. This quantum oscillation is discerned more clearly in 

the second derivative of Δf, shown in Fig. S3(b). We perform separate fast Fourier 

transformations (FFTs) in the low-B regime (12-25 T) and in the high-B regime (25–60 T), after 

subtracting a polynomial background from Δf. The FFT spectra in each regime are shown in Figs. 

S3(c,d). At low fields, two frequencies 61 T and 104 T are observed, which are assigned to the 

Σ and β pockets, respectively (B // a). Oscillations with larger frequency (321 T and 125 T) 

appear at elevated fields, which we denote as δ1 and δ2 and which correspond to two different 

carrier orbits around different projections of symmetry-equivalent, electron-like δ surfaces [Fig. 

S3(d), Fig. 1(c), Table S1]. The axis of the oscillation orbit is always perpendicular to the a-axis 

in this experiment. We further analyze the attenuation of the high-field oscillation amplitude 

against temperature to extract the effective mass of δ [Fig. S3(e)]. The masses m(δ1) and m(δ2) 

are found to be 1.74 m0 and 1.14 m0, respectively, one order of magnitude larger than the reported 

masses for the hole pockets β, Σ, and γ [S1]. The high mass of δ is well consistent with band 

calculations and in accord with the observation that electron-like carriers, with large effective 

mass and low carrier mobility, do not contribute significantly to the Nernst and Hall effects.  

 

Change in Hall resistivity across the magnetic transition  

We show the raw data of the Hall resistivity at various temperatures in Fig. S7. The Hall 

resistivity increases with decreasing temperature down to 50 K, however, it becomes nearly 

temperature independent at low temperatures below 30 K [Figs. S7(a) and S7(b)]. The absence 

of clear anomaly in temperature evolution of the Hall resistivity at low temperatures suggests 

that the change in electronic structure at magnetic transition is not significant. 

Furthermore, we investigated the possible signature of the anomalous Hall effect by analysis 

of the field profile of 𝜌𝑦𝑥 at 2 K [Fig. S8]. Although the field dependence of magnetization shows 

a jump at 0 T due to the flipping of the c-component of magnetic moment between two 

ferrimagnetic states (up-up-down and up-down-down), a clear jump is not observed around 0 T 

in the Hall resistivity. At the critical field around 6 T, a small step appears in the Hall resistivity. 

However, the normal Hall effect is much larger than this anomaly due to the small carrier density 

in the present compound. 

 

Fixing the ratio of mobilities (μβ/μγ) and coefficients (Aγ’/Aβ’)  

Here we explain in detail how we constrained the parameters to obtain reasonable fitting 

results for the Nernst effect Sxy(B). At high temperatures above 40 K, Sxy is fitted by the two-

carrier model in the semiclassical picture described in Eq. (9) in the main text. Out of four free 

parameters in Eq. (9), the first constraint is applied by fixing the ratio of mobilities (μβ/μγ), 

considering the fact that the ratio of mobilities from the analysis of Hall conductivity (μ2/μ1) is 

nearly constant against temperature [see Figs. S9(a) and S9(b)].  
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The next constraint is the ratio of the coefficients Aγ’/Aβ’. We calculated the ratio Aγ’/Aβ’ by 

using the coefficients Aγ’ and Aβ’ obtained from the analysis of the Nernst effect under the 

condition of μβ/μγ = 3.1 [Figs. S9(c) and S9(d)]. Since the ratio Aγ’/Aβ’ shows little temperature 

dependence from 40 K to 100 K, we fix Aγ’/Aβ’ = 7.0 for the final analysis of the Nernst effect, 

to reduce the number of free parameters in our model. We note that Aγ’/Aβ’ deviates from 7.0 at 

200 K and 300 K; this is likely another local minimum in the fit, caused by the weak field 

dependence of the Nernst effect due to reduced mobility at very high temperatures. In Figs. S9(e) 

and S9(f), we show a multi-band fit of the Nernst effect Sxy(B) at 300 K, without and with fixing 

the ratio Aγ’/Aβ’. In both cases, the Nernst effect is well explained by the two-carrier model, so 

we prefer to fix the ratio Aγ’/Aβ’ to obtain consistency between 300 K and the lower temperature 

data.  

 

Extrapolation of the mobility and Nernst amplitude coefficient toward low temperatures  

We explain how the two-carrier analysis was extrapolated towards low temperatures. Figure 

S10 shows the two free parameters obtained from the two-carrier fit of the Nernst effect at high 

temperatures above 40 K with Eq. (9), fixing the ratio of mobilities and coefficients as discussed 

above. We fix the value of Aγ’ to 3.2 when extending the analysis toward low temperatures, 

assuming that smooth evolution of the mobility and scattering time as a function of temperature 

and no strong electronic structure changes at the phase transition into the ordered state. The 

assumption (b) is motivated by the good agreement of the calculated and experimentally 

observed Nernst effect at T = 2 K. Moreover, the thermopower Sxx/T in zero magnetic field shows 

an enhancement around TN (Fig. 2, akin to the Δ𝑆𝑥𝑦 in Fig. 4), before returning to a comparable 

value as at high temperature. 

Next, we discuss the robustness of the extrapolated parameters for the T = 2 K data. We have 

calculated the sum of square deviation between the data at T = 2 K and our model, 

|𝜒|2 = ∑ |
𝑆𝑥𝑦

𝜌𝑦𝑥𝑇
(𝐵𝑖)𝑠𝑖𝑚 −

𝑆𝑥𝑦

𝜌𝑦𝑥𝑇
(𝐵𝑖)𝑜𝑏𝑠|

2
𝑁
𝑖=0 /𝑁                      (S1) 

where N is a number of data points of the magnetic field [Fig. S11]. Here, we vary the two 

extrapolated parameters while the ratios μβ/μγ, Aγ’/Aβ’ remain fixed, as for the high-temperature 

fits. We indicate the extrapolated value by an orange star and the optimal fit to the low-

temperature data by a white circle. Besides the reasonable match of these two, we note that there 

are no secondary minima in the space of these two parameters. 

 

Fitting of the Nernst signal by the two-carrier model with four free parameters 

We show the obtained parameters from the fitting of the Nernst effect by the two-carrier 

model with four free parameters (Aβ, Aγ, μβ, and μγ) in Fig. S12. Naturally, at high temperatures 

this model gives results that are equivalent to the analysis presented in the main text (the number 

of adjustable parameters at each temperature has been increased in this fitting with four free 

parameters). However, at low temperatures below 30 K, sharp anomalies in the parameters A1, 

A2, and μ2 indicate inadequacies of this model with four free parameters. As discussed in the 
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main text, this inadequacy of the four-band fit is well resolved by including the dτ/dE term for 

Sxy.  

In this analysis and also the analysis in the main text, we neglect the energy dependence of τ 

due to scattering processes that have uniform behavior in momentum space. Electron-electron 

and electron-phonon scattering rates at high temperatures are proportional to the total density of 

states (D), which is more stable (Fig. S13) as compared to the dni/dE of each individual band.     

Also, for elastic scattering from charge-neutral impurities (limit of strong screening in a good 

conductor), τ has weak energy dependence [S3-S6]. This argument can be supported at a 

quantitative level. The magnitude of dlnD/dE in our NdAlSi crystal is estimated to be 3 eV-1 (Fig. 

S13), which is one order of magnitude smaller than dlnni/dE (e.g., dlnnβ/dE~21 eV-1). Also, our 

estimation of dlnτ/dE (~33 eV-1) of the Σ pocket is one order of magnitude larger than dlnD/dE 

[see Table 1 in the main text], indicating that the relaxation time contribution is enhanced when 

the scattering has large a k-dependence due to the nesting properties of the Fermi surface. 

 

Analysis of longitudinal conductivity to check for consistency  

As a further crosscheck of our two-carrier analysis of the Hall conductivity, we perform a fit 

to the longitudinal conductivity at various temperatures [Fig. S14(a)]. The experimental data are 

well described by the two-carrier Drude model as follows: 

𝜎𝑥𝑥 =
𝑛1𝑒𝜇1

1 + (𝜇1𝐵)2
+

𝑛2𝑒𝜇2

1 + (𝜇2𝐵)2
.                      (S2) 

Here, n1 and n2 (μ1 and μ2) are carrier densities (carrier mobilities). The carrier mobilities (μ1 and 

μ2) from σxx show good agreement with those from σxy [Fig. S14(c)]. n1 and n2 at 8 K are 

estimated to be 8.0×1019 cm-3 and 4.7×1019 cm-3 from the fitting of σxx, while those from σxy are 

6.5×1019 cm-3 and 2.6×1019 cm-3, respectively. The observed difference in carrier densities, 

especially for n2, may originate from a sum contribution of the β and Σ pockets. The effective 

parameters ni and μi of the Drude model are expected to capture contributions from several Fermi 

surface segments, with slightly different carrier mobility. As mentioned in the main text, the 

Weyl fermions in the Σ-pocket, may also represent a minority contribution to n2 and μ2. Such a 

sum of contributions from β and Σ is weighted slightly differently in σxx and σxy, possibly 

explaining the discrepancy in the n2. A second possibility is the experimental uncertainty of 

sample geometry measurement, which is inevitable for contacts made with Ag paste, which have 

a width of about a few hundred μm. We assess the typical error bar of 10% due to shape 

measurement for ρxx and ρyx; this carries over to σxx and σxy, and the relative error can be on the 

order of 20%. 

 

Mass analysis of quantum oscillations for the investigation of change in electronic structure at 

the magnetic transition  

In order to discuss the possibility that the dn/dE term may explain the enhanced 

thermoelectric responses in Sxx and Sxy, we perform the mass analysis of quantum oscillations. 
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The energy derivative of carrier density for quadratic dispersion and for linear band dispersion 

in three-dimensional materials is described as 

𝑑𝑛

𝑑𝐸
∝ 𝑚∗𝑘F,          and               

𝑑𝑛

𝑑𝐸
∝

𝑘F
2

𝑣F
,          (S3) 

respectively. A strong change in dn/dE with temperature is therefore directly associated with a 

change of the effective mass m*, or the Fermi velocity vF. A change of dn/dE can occur and result 

in a change in thermoelectric responses, even if n itself remains relatively stable over a given 

temperature window. 

Figure S15 shows T-dependent SdH oscillations, based on our own analysis (left) and on 

measurements in a previous report [S1]. The SdH oscillations of the β, Σ, and γ pockets are all 

observed below and above TN, and especially in the regime of 10-15 K that is important for our 

discussion. The smooth, T-dependent decay of the oscillation amplitude suggests that any change 

of the effective masses (mβ and mγ) is weak between the low-T ferromagnetic regime (suppressed 

fluctuations) and the higher-T paramagnetic regime (with fluctuations). Therefore, it is unlikely 

that dn/dE term alone explains the enhanced thermoelectric responses in Sxx and Sxy. 

 

On the need for dτ/dE to describe the Nernst effect at TN < T < 40 K 

We estimate the effect of a reasonable change of the electronic structure on dn/dE, and the 

resulting change of the Nernst effect. We calculate the two-carrier decomposition of the Nernst 

effect from Eq. (S4), which is equivalent to Eq. (1) of the main text: 

𝑆𝑥𝑦

𝜌𝑥𝑥𝑇
= 𝐴𝛾

′ 𝐹(𝜇𝛾, 𝐵) + 𝐴𝛽
′ 𝐺(𝜇𝛽 , 𝐵).                 (S4) 

The contributions of γ and β to the Nernst effect at T = 11.6 K are shown in Fig. S16 as green 

and purple dotted lines, respectively (simulation without the effect of n2); the blue solid line 

represents their sum. Considering the possible change in the carrier density n2 of the Weyl β 

pocket by about 15 % [Fig. 2], we here assume a change of Aβ’ by 20% and calculate the resulting 

change of Sxy(B), to exaggerate the effect. When adjusting Aβ’ by 20 %, we obtain the red dashed 

line, only marginally different from the previous estimate and far away from explaining the large 

enhancement of Sxy just above TN (black curve), which is the focus of our work. More generally, 

we note that the observed Sxy is considerably much larger than each individual component to Eq. 

(S4); the signal enhancement cannot be explained even if Aβ’ and Aγ’ show some more drastic 

variation around Tmax. We conclude that our analysis of Sxy is not qualitatively changed by the 

reduction in carrier density n2 or by moderate changes in Aβ’, Aγ’. 

 

Extraction of relaxation time of each Fermi surface 

We focus on three relatively light, hole-like carrier pockets of NdAlSi: trivial γ and Weyl β 

& Σ pockets, where only the latter (Σ) is close to the nesting condition in RKKY theory. In Fig. 

S17, we present the carrier relaxation times τ extracted from the mobilities, together with the 
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relaxation time τΣ of the Σ pocket as obtained from the fit to Δ𝑆𝑥𝑦(𝐵) according to the last term 

in Eq. (8). A clear anomaly at Tmax ~15 K appears for Σ. We caution that the quantitative value 

of τΣ of the Σ-pocket is more sensitive to details of the analysis than τβ or τγ.  

To support Fig. S17(a), we also estimated the quantum scattering time τQ of the Weyl β pocket 

from an analysis of the dominant Shubnikov-de Haas (SdH) oscillation frequency. A fit to the 

Lifshitz-Kosevich formula is shown in Fig. S17(c) [S7]. At 8 K we find τQ = 1.2×10-13 s [Fig. 

S17(c)], reproducing τβ from transport experiments within a factor of 3. Note that quantum 

lifetimes are almost always reduced as compared to transport carrier relaxation times, being 

equally sensitive to both small- and large angle scattering [S8].  

The values of τβ, τγ, and τΣ are scattered within a factor of 2, consistent with moderate or 

weak correlations in NdAlSi. Even for Σ, the change of τΣ due to magnetic fluctuations is a mild 

effect on the order of 15% – which, however, significantly affects the thermoelectric response, 

as dτΣ/dE is more sensitive to the correlation effect than τΣ itself. While τβ and τγ monotonically 

increase toward low temperature, τΣ shows a dip around Tmax ~ 15 K, in good agreement with our 

scenario. As the RKKY interaction couples electronic states separated by the ordering vector Q 

in momentum space, it is natural that the Weyl Σ pocket is affected more strongly than β and γ 

[Figs. 1(c) and 1(d) of the main text].  

     More quantitatively, we can cross-check our estimate for dτΣ/dE shown in Fig. S17(b) [same 

as Fig. 4(e) in the main text] using the temperature-induced change of τΣ in Fig. S17(a). The 

maximal reduction max(|ΔτΣ|) at Tmax=12 K is estimated to be approximately 5×10-14 s as 

compared to a smooth background of the same shape as τβ(T). In our analysis, we found that the 

maximum dτΣ/dE appears at 15 K, and assumed that this is when the minimum of τ(E) is just at 

the HWHM of the Fermi-Dirac distribution centered around EF (Fig. S6). Therefore, we calculate 

2 × HWHM × max(dτΣ/dE) to estimate the maximum change of τΣ at the perfect nesting 

condition: 2×3 meV×(1.2×10-14 s/meV) = 7.2×10-14 s, which is close to two times the size of 

max(|ΔτΣ|). 

 

Fitting of the field dependence of the excess Nernst signal 

Here we explain in detail how we attribute the excess Nernst signal (ΔSxy) to the Σ pocket 

close to the nesting condition. The field dependence of the additional component in Sxy is fitted 

by 

𝛥𝑆𝑥𝑦

𝜌𝑥𝑥𝑇
= ∑ 𝐵𝑖 (

±2𝜇𝑖𝐵 − tan 𝜃𝐻(1 − (𝜇𝑖𝐵)2)

(1 + (𝜇𝑖𝐵)2)2
)

𝑖

,                          (S5) 

which contains the contributions from the energy dependence of the relaxation time (Bi = -

gsgdekB
2ki

3/18mi ∙ dτi/dE). The upper and lower sign notation describes hole- and electron-type 

carriers, respectively. By fitting ΔSxy assuming the contributions of hole-type and electron-type 

carriers (see Figs. 4(a-c) and S18(a-c)), we estimate the relaxation time τi = μimi/e for each case, 

and plot them against temperature in Fig. S18(d). When we assume that ΔSxy originates from 

electron-type δ pocket, the relaxation time is estimated to be 1.3×10-12 s. This value is not 

physically reasonable because it is more than three times larger than that for the Weyl β pocket 
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with a small effective mass (~4×10-13 s). Therefore, we choose hole-type carrier contributions as 

the solution for the fitting of ΔSxy. 

Furthermore, the temperature dependence of the relaxation time of hole contributions τhole 

(black) is suppressed around 15 K, although τβ (pink) and τγ (light brown) monotonically increase 

toward the lowest temperature (see Fig. S18(d)). It is true that the estimation of τhole may contain 

a large error bar, the difference in the temperature dependence suggests that ΔSxy comes from the 

pocket other than β or γ pocket, i.e. from the Σ pocket.  

 

Observation of a lifetime-driven Nernst effect in magnetic Weyl semimetal GdPtBi 

RAlSi and RPtBi (R = rare earth) both break inversion and time-reversal symmetries in their 

long-range ordered magnetic state. Both compounds show strong magnetic fluctuations above 

TN~7-9 K, and both have elevated carrier mobilities (~1,000-5,000 cm2/Vs). A particular 

advantage of GdPtBi is its simple electronic structure, namely its low carrier concentration, its 

quadratic band touching at the 𝛤-point of the first Brillouin zone, and its Fermi energy tunability 

with small amounts of Au/Pt doping.   

We report the Nernst effect of two samples of GdPtBi with different band filling, controlled 

by Au-doping: Stoichiometric GdPtBi (Sample S01) and Au-doped GdPt0.985Au0.015Bi (Sample 

S02), where the magnetic field was applied along the (111) direction and the heat current was // 

(110). We show the low-field slope of the Nernst effect divided by temperature in Figs. S19(e) 

and S19(f).  

At base temperature, GdPtBi with quadratic band touching is dominated by a single carrier 

type, implying that the normal Nernst effect should vanish due to Sondheimer cancellation. At 

high temperatures, thermally activated carriers appear, resulting in a strong temperature 

dependence of the Nernst effect (~dn/dE). This differs from semimetallic NdAlSi, where the 

carrier density is much larger and the normal Nernst effect (~dn/dE) shows weak temperature 

dependence; thermally activated carriers play a lesser role in NdAlSi, and both electron- and 

hole-type carriers are present at all temperatures [no Sondheimer cancellation, see Fig. S19(d)]. 

There are key similarities between the two materials, however: akin to NdAlSi, the Nernst signal 

of GdPtBi shows an anomaly close to the Curie-Weiss temperature TCW, around 30 K.  

In order to separate the contributions of dn/dE and dτ/dE, we fitted the temperature 

dependence of the Nernst effect of GdPtBi, focusing on the low field regime (μB≪1). Here, the 

Nernst effect for the two-carrier model can be derived from Eq. (9) in the main text as 

𝑆𝑥𝑦

𝜌𝑥𝑥𝐵𝑇
=

(3𝜋2)
1
3𝑘𝐵

2

3ℏ2𝑒2

𝑚1

𝜌𝑥𝑥
2

(1 +
1

𝑏
)

1
𝑏

𝑛1

1
3𝑛2 + 𝑛2

1
3𝑛1

(𝑛1 +
1
𝑏

𝑛2)
3 +

∆𝑆𝑥𝑦

𝜌𝑥𝑥𝐵𝑇
,                          (S6) 

where n1, n2, m1, m2, µ1, and µ2, are the carrier density, effective mass, and mobility of carrier 1 

(holes) and 2 (electrons), respectively. The first term in Eq. (S6) originates from the energy 

derivative of carrier density dn/dE, while the second term represents the additional contribution 

including the relaxation time effect. We introduce a constant “b” as the ratio of carrier masses (b 

= m2/m1). 
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To fit the temperature dependence, we eliminate some of these parameters, making 

reasonable assumptions: First, given the quadratic band touching and obeying Luttinger's rule, 

we enforce constant n1-n2 at all temperatures and set the electron density n2 to be activated with 

an activation barrier Ea. Second, we use the same relaxation time for both carriers. Third, we set 

the mass ratio to b = 0.25, based on band structure calculations and prior experimental work [S9]. 

This means the electrons are significantly much lighter than the holes. 

Blue lines in Figs. S19(g)-(i) show fits following the contribution from dn/dE at high 

temperatures with three adjustable parameters: For hole-type S01 (slightly electron-type S02), 

we obtain Ea = -15 meV (+7 meV) defining the activation-type behavior at low T as measured 

from the band-touching point, and m1= 0.7~1.3 me from the overall signal amplitude. 

A deviation from the model for dn/dE appears at low temperatures, see red highlights in Figs. 

S19(g)-(i). For B // (111), as here, the heat current is moving in planes of triangular lattice 

arrangement of Gd ions in the half-Heusler structure, precluding a contribution from scalar spin 

chirality fluctuations. Therefore, as in NdAlSi, we attribute the additional Nernst signal that 

onsets close to the Curie-Weiss temperature TCW to magnetic fluctuations and the relaxation time 

effect. We conclude that such thermoelectric phenomena should appear ubiquitously in 

correlated topological semimetals, and beyond.  

 

Details on the Nernst effect measurements 

    The Hall effect and Nernst effect data are anti-symmetrized Hall effect and Nernst effect data 

with respect to the magnetic field, to eliminate the contribution of the Seebeck effect due to the 

misalignment of the voltage terminals (see Figs. S20(a) and (b)). Furthermore, we confirmed 

that the voltage drops of the thermocouples, thermopower, and Nernst terminals show a linear 

dependence against the heater power (P = RI2, with heater resistance R and current to the heater 

I) as shown in Fig. S20(c), which suggests that the thermal gradient is assessed to be 

homogeneous within the measured region of our sample. 

 

Reproducibility of the enhanced Nernst effect 

    We measured two samples to confirm the reproducibility of our results on the enhanced Nernst 

effect. The Nernst effect divided by temperature (Sxy/T) for the 2nd sample (sample 2) is shown 

in Fig. S21(a). With decreasing temperature from 52 K, Sxy/T increases down to 14.4 K, 

accompanied by clear quantum oscillations. Sxy/T decreases at further lower temperatures and 

the overall field dependence of sample 2 is similar to that of the 1st sample (sample 1), which is 

discussed in the main text. Both samples show the enhanced Nernst signal around 15 K (see Fig. 

S1(i) and S21(b)). We note here that the absolute value of Sxy/T differs between the two samples 

(~30%). The difference in absolute signal amplitude likely originates from uncertainties in the 

measurement of the sample geometry, i.e. in the measurement of the distance between voltage 

terminals. We also confirmed that the temperature dependence of the Seebeck coefficient and 

thermal conductivity of sample 2 reproduce the results of sample 1 (Fig. S21(c) and (d)). 
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Comparison of quantum oscillation frequencies between experiment and density functional 

theory  

Table S1 summarizes the cross-sectional areas of Fermi surfaces from the experiment and 

DFT calculations. The DFT calculations well reproduce the frequencies observed in the 

experiment, without a need to significantly shift the energy from the value determined by DFT. 

Specifically, the characteristic frequencies of Σ, β, and γ surfaces show good agreement when 

setting the Fermi energy to 0 meV, while δ requires a shift to EF= -0.7 meV for a reasonable 

agreement. Please note that the calculated δ-pocket has a narrow neck at EF = 0, and its 

characteristic oscillation frequency changes rapidly even with a small shift in EF (Fig. S3, inset). 

As compared to a previous study, our work provides a more thorough characterization of 

oscillation frequencies with the magnetic field along the a-axis [S1]. 

 

Calculation of the Seebeck effect from band parameters  

As for the Seebeck effect Sxx, compensation between the electron and hole pockets occurs 

according to Eq. (S2). In the Drude approximation, at zero magnetic field, the Seebeck effect Sxx 

is expressed as 

𝑆𝑥𝑥 ≡ 𝐴
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,                     (S7) 

where A=-π2kB
2/3e, by ignoring the relaxation time contribution. Here, we assume that the 

scattering time (at high temperature) is identical for all Fermi surfaces, and independent of 

momentum. By considering carriers with quadratic dispersion (E = ℏ2kF
2/2m*, n = gsgdkF

3/6π2) 

or linear dispersion (E = ℏvFkF, n = gsgdkF
3/6π2), we derive 
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,      (S8) 

where gs, gd, kF, and vF are spin degeneracy, orbital degeneracy, Fermi momentum, and Fermi 

velocity, respectively. The upper and lower signs (±) denote hole- and electron-type carriers, 

respectively.  

Firstly, we calculate Sxx/T to be 0.38 μV/K2 from Eq. (S8) assuming parallel conduction of 

the γ, β, Σ pockets with hole type carriers, but without taking into account the δ electron pocket. 

We use kF and vF of these three pockets from the analysis of quantum oscillations, while gs and 

gd are set to the values used in the Nernst analysis. The calculated value of Sxx is one order of the 

magnitude larger than the experimental observation (Fig. 2(b)); as compared to the longitudinal 

conductivity, carrier compensation leads to a highly sensitive behavior of the thermopower on 

band parameters in this multi-band system. A reasonable agreement between the experiment and 

calculation is obtained by assuming a moderately small spin splitting and reduced spin 

degeneracy of the δ electron pocket even in zero magnetic field, due to spin-orbit interactions 

and the noncentrosymmetric crystal structure of NdAlSi [Table S2]. 
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Estimation of the magnitude of the life-time contribution to the thermoelectric effects 

We estimate the size of the relaxation time contribution to the thermoelectric effects in Table 

1 as follows. In the case of NdAlSi, |dln(τ)/dE| is calculated by using the extracted dτ/dE from 

the analysis of Sxy and the relaxation time τ. |dln(τ)/dE| of GdPtBi and GdPt0.985Au0.015Bi are 

estimated to be 15 eV-1 and 54 eV-1, respectively, which are on the same magnitude as that of 

NdAlSi. |dln(τ)/dE| of other compounds in Table 1 are estimated by assuming that the observed 

Seebeck effect originates only from the relaxation time contribution, i.e. 𝑆𝑥𝑥 = −
𝜋2

3

𝑘B
2

𝑒
𝑇

𝜕 ln 𝜏

𝜕𝜀
.  
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Fig. S1. Raw data of the Nernst effect of NdAlSi. (a)-(h) The Nernst effect divided by 

temperature (Sxy/T) from 100 K to 2 K. Nernst signal Sxy for B || c shows non-linear behavior as 

a function of the magnetic field, which enables us to perform a quantitative analysis. The 

overall field dependence resembles the data shown in Figs. 3(a)-3(h). (i, j) Temperature 

dependence of Sxy/T and Sxx/T at 3 T. The red curve in (b) is the guide to the eye. An 

enhancement around 15 K is observed in Sxy/T and Sxx/T at 3 T, which is similar to the 

enhanced Seebeck effect at 0 T around 15 K (see Fig. 2(b)).  
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Fig. S2. Quantum oscillations in the Nernst effect. a, Nernst effect Sxy at 2 K for B || c. We 

focus on quantum oscillations in the field-aligned ferromagnetic phase above the critical field 

Bth, where Nd spins are coaligned. The blue line represents the background from a non-

oscillatory component Sxy
BG. b, Oscillatory component Sxy

Osci. as a function of 1/B, obtained by 

subtracting Sxy
BG from Sxy. c, A fast Fourier transformed spectrum of Sxy

Osci.. Three frequencies 

of 51, 67, and 128 T are observed, which were assigned, respectively, to the Σ, β, and γ pockets 

first identified in Ref. [S1]. The grey shaded area indicates the ferrimagnetic regime. 
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Fig. S3. Quantum oscillations of NdAlSi in tunnel diode oscillator (TDO) measurements in 

pulsed magnetic fields. a, Isotherm of the resonant frequency Δf of a tank circuit whose 

inductance is sensitive to changes in the sample’s penetration depth for MHz electromagnetic 

fields (tunnel diode oscillator, TDO measurement). b, Second derivative of Δf with respect to 

magnetic field, demonstrating clear quantum oscillations. c,d, Fourier spectra of the oscillatory 

part of Δf in the low field (10-20 T) and high field (25 to 60 T) regions. e, Temperature 

dependence of the Fourier amplitude, and estimation of the effective mass for two orbits on the 

heavy-electron δ pocket in the high-B regime. The inset to a shows the two cyclotron orbits of 

the δ pocket for B || a. 
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Fig. S4. The excess Nernst signal ΔSxy in NdAlSi does not scale with the bulk magnetization. 

Excess Nernst effect divided by temperature ΔSxy/T plotted against magnetization M. Clear 

scaling behaviour onto a universal curve is not observed, in contrast to materials with a 

thermoelectric Nernst effect from spin-chirality driven Berry phases [S10-S13]. Even while the 

magnetization is still far from saturation and magnetic fluctuations are expected to persist, the 

present ΔSxy nearly vanishes. Instead, the signal is well described by Eq. (2). Note that, when 

focusing on individual square net layers of Nd ions in NdAlSi, scalar spin chirality of magnetic 

fluctuations is expected to cancel between neighbouring squares. 
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Fig. S5. Thermal conductivity κxx and absence of phonon drag in NdAlSi. Smoothly 

decreasing towards the lowest temperatures below 50 K, the longitudinal thermal conductivity 

does not show a pronounced peak around 15 K – unlike the Seebeck effect in Fig. 2(b). Combined 

with temperature-independent behaviour of Sxx/T above 35 K, this data is consistent with the 

near-absence of phonon drag contributions to the thermoelectric properties, where lattice 

vibrations couple to charge carriers and enhance the thermoelectric Seebeck or Nernst effects 

[S14]. 
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Fig. S6. Fermi-Dirac distribution function (fFD) and its half width at half maximum 

(HWHM). From the energy derivative of the Fermi-Dirac distribution function fFD = 1/(exp((E-

EF)/kBT) +1) at 15 K, the HWHM is about 3 meV. 
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Fig. S7 Hall resistivity at various temperatures. Hall resistivity 𝜌𝑦𝑥(𝐵) of NdAlSi (a) at high 

temperatures and (b) at low temperatures. The change of the Hall resistivity across the magnetic 

transition temperature is very hard to quantify, and even up to 15 K, where we observed the 

enhanced Nernst signal, we could not observe a clear change. In panel (b), the critical field at 2 

K is denoted by dashed lines.  
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Fig. S8 Hall effect of NdAlSi at low temperature. (a) Magnetization and (b) Hall resistivity 

of NdAlSi at 2 K for B || c. The inset shows the magnified view around 0 T without clear 

signatures of anomalous Hall effect. The solid and dashed lines indicate increasing and 

decreasing magnetic field (they mostly overlap precisely). The signal is mostly dominated by 

the normal (field-linear) Hall effect.  
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Fig. S9. How the number of free parameters was constrained in our model. (a) Temperature 

dependence of mobilities of the γ-pocket (μ1) and β-pocket (μ2) extracted from two carrier fitting 

of the Hall conductivity, without constraint. (b) The ratio of the mobilities (μ2/μ1) is nearly 

constant against temperature. (c) The coefficients in Eq. (9) of the contribution from the γ-pocket 

(Aγ’) and β-pocket (Aβ’). (d) The ratio of the two coefficients (Aγ’/Aβ’) and the dashed line, which 

corresponds to the assumption in the (constrained) fit of the Nernst effect. (e, f) Nernst effect at 

300 K is fitted by the two-carrier model (e) without constraints on the coefficients A1’ and A2’, 

and (f) by fixing the ratio A1’/ A2’. The field dependence of the Nernst coefficient can be well 

described in both cases, however, we chose the results of (f), because small number of free 

parameters are required. 

  



52  

  

 

Fig. S10. Extrapolation of the analysis toward low temperatures. (a) The coefficient Aγ’ 

obtained from the fitting of the Nernst effect. We fixed the value of Aγ’ as 3.2 when extending 

the analysis toward low temperatures, as discussed in the text. (b) Mobility μβ extracted from the 

fitting of the Nernst effect (symbols) and μ2 obtained from the analysis of σxy (dotted line, 

multiplied by a factor of 0.68). To extrapolate μβ in the Nernst effect to low temperature, we 

followed this dashed line. 
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Fig. S11. Robustness of the extrapolated parameters. The square deviation of the simulated 

curve from the experimental data at 2 K (|χ|2) plotted as a function of μβ and Aγ’ under the 

condition that the ratio of mobilities and prefactors are fixed as μβ/μγ = 3.1 and Aγ’/Aβ’ = 7.0. (b) 

A magnified view of Fig. S11(a) with the expanded color scale. The orange symbol and white 

circle indicate the parameters we chose and those show a local minimum, respectively.  
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Fig. S12. Fitting of the Nernst effect by the two-carrier model with four free parameters 

and without dτ/dE term. Extracted (a) mobility μ and (b) coefficients A’ from the two-carrier 

fitting. The calculated mobilities show an anomalous decrease below 30 K, indicating that the 

two-carrier model is unreliable in this low-temperature regime. Dotted lines are adapted from 

Fig. S10, for the model presented in the main text.  
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Fig. S13. Density of states of NdAlSi from DFT calculations. The total density of states of 

NdAlSi in the ferromagnetic state, with a local minimum around E = 0 eV. 
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Fig. S14. Two-carrier Drude fitting of the longitudinal conductivity σxx. (a) Longitudinal 

electrical conductivity σxx at various temperatures. The black dashed lines indicate fitting to a 

two-carrier Drude model. (b) Two components of the fit, depicted individually. (c) Carrier 

mobility of the trivial γ and Weyl β bands as a function of temperature. Open (filled) symbols 

denote mobilities derived from the longitudinal electrical conductivity (from the Hall 

conductivity), respectively. 
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Fig. S15 Change in electronic structure across the magnetic transition. Temperature 

dependence of the FFT amplitude of SdH oscillations (a) in magnetoresistance measured up to 

14 T in our work and (b) in magnetoresistance up to 35 T adapted from Ref. S1. The temperature 

dependence of each pocket can be fitted with a single effective mass across the Néel temperature, 

indicating that the change of electronic structure is not significant between the field-aligned 

ferromagnetic and the high-temperature, thermally fluctuating states. 
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Fig. S16. Modeling the Nernst effect of NdAlSi above TN by Drude theory. (a) Magnetic field 

dependence of the Nernst effect Sxy normalized by resistivity and temperature at T = 11.6 K, 

close to Tmax (black curve). The blue line represents a two-carrier decomposition of the Nernst 

effect calculated according to Eq. (9). The contributions from trivial γ and Weyl-type β pockets 

are shown as purple (1st) and green (2nd) dotted lines. The red line is the revised two-carrier 

calculation of Sxy, where a 20% change of the parameter Aβ for the Weyl-type β pocket is 

considered. (b) Magnified view of (a), with expanded vertical axis. 
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Fig. S17. Comparison of relaxation time and energy derivative of relaxation time in NdAlSi. 

(a) The blue, black, and red points correspond to the relaxation times of the trivial γ pocket, the 

Weyl β pocket, and the Weyl Σ pocket, respectively. The former two are calculated from the Hall 

conductivity, and the latter is calculated from a fit to Δ𝑆𝑥𝑦 according to Eq. (8) in the main text. 

The Σ-pocket is close to the nesting condition in NdAlSi and shows a dip of τ around Tmax ~ 15 

K. (b) Energy derivative of carrier relaxation time dτΣ/dE, derived from ΔSxy and attributed to 

correlations of electrons on the Σ Fermi surface. (c) (b) Cross-check of relaxation time estimate 

τQ using Dingle plot for Shubnikov-de Haas (SdH) oscillation of the Weyl β pocket, showing 

ln[Δρxx / ρxxB sinh(x)] versus 1/B at 8 K together with a linear fit (blue line). Here, Δρxx represents 

the oscillatory amplitude, x = 2π2kBT/ℏωc, and TD is the Dingle temperature. 
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Fig. S18. Analysis of the field dependence of the excess Nernst signal (ΔSxy). (a-c) Fitting of 

ΔSxy assuming the contribution of electron-type carriers at several temperatures. (d) Extracted 

scattering time plotted against temperature from the analysis of ΔSxy and the Hall conductivity.  
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Fig. S19. Low-field Nernst effect originating from the relaxation time contribution in 

magnetic topological semimetals NdAlSi and GdPtBi. (a-c) ρ-T curves of semi-metallic 

NdAlSi, semi-metallic GdPtBi, and semi-conducting GdPt0.985Au0.015Bi. (d-f) Temperature 

dependence of the low-field slope of the Nernst effect divided by temperature for three samples, 

with B || [111] for GdPtBi and B // [001] for NdAlSi. (g-i) Temperature dependence of the low-

field slope of Sxy, divided by resistivity and temperature. The blue dotted lines indicate the 

contribution from the energy derivative of carrier density dn/dE. The dn/dE of GdPtBi and 

GdPt0.985Au0.015Bi are calculated by considering thermally activated carriers around the band-

touching point (see text), while that of NdAlSi is estimated by taking the low-field slope of the 

two-carrier fitting at 0 T (following Fig. 3 of the main text). The red shaded area is attributed to 

the relaxation time contribution of the Nernst effect (ΔSxy), which is enhanced just above the 

Néel temperature (TN) denoted by a black triangle. The Curie-Weiss temperature (TCW) is shown 

by a black dashed line. Note that the low-T increase in panel (g) is due to a rapid decrease of 

resistivity in the low-temperature ordered state, and that fluctuations persist down to lower 

temperatures in GdPtBi. 
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Fig. S20. Details on the Nernst effect measurements. (a, b) Field dependence of the Nernst 

effect divided by temperature (Sxy/T) at 11.6 K and 2.2 K, respectively. The blue and red curves 

show the raw data and the data anti-symmetrized to the magnetic field. (c) Heater power 

dependence of the voltage drop of the thermocouples (T.C.), thermopower (T.P.), and Nernst 

terminals (N.E.) at 2 K and 9 T. The linear fits are shown to demonstrate the linearity to the 

heater power. We used the heater power of 40 μW for the measurement at 2 K.  
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Fig. S21. Reproducibility of the enhanced Nernst effect. (a) Magnetic field dependence of the 

Nernst effect divided by temperature (Sxy/T) at various temperatures for sample 2. (b) 

Temperature dependence of Sxy/T at 3 T for the sample 2. (c, d) Temperature dependence of the 

Seebeck effect divided by temperature and thermal conductivity for sample 2. 
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Table S1. Comparison of quantum oscillation frequencies between experiment and density 

functional theory. Characteristic frequencies of Σ, β, and γ pockets show good agreement when 

setting the Fermi energy to 0 meV, while δ requires a shift to EF= -0.7 meV for a reasonable 

agreement. Note that δ has a narrow neck at EF = 0, and its characteristic oscillation frequency 

changes rapidly even with a small shift in EF (Fig. S3, inset). 
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Table S2. The estimation of thermopower at 0 T. The Seebeck effect divided temperature Sxx/T 

simulated by assuming parallel conduction of the γ, β, Σ pockets with hole type carriers without 

δ electron pocket and with δ electron pocket of spin degeneracy gs = 1, 1.5, and 2, respectively. 

The experimental value at 0 T and 50 K is also shown. Good agreement between the experiment 

and calculation requires the small splitting of the δ electron pocket. 
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